Functionalized Carbon-Based Electrochemical Sensors for Food and Alcoholic Beverage Safety
Abstract
:1. Introduction
2. Electrochemical Techniques
3. Carbon Nanomaterial-Based Electrochemical Sensors
3.1. CDs
3.2. CNTs
Analytes | Materials | Electrochemical Techniques | Linear Range | Detection Limit | Sample | Ref. |
---|---|---|---|---|---|---|
Gallic acid | MCPE | CV and DPV | 0.5–15 µM | 0.3 µM | Wines | [84] |
Phenolic antioxidants | MWCNT | DPV | ND | ND | Wines | [85] |
Phenolic compounds | Fe3O4/MCPE | CV and DPV and ESI | 0.22–0.26 µM | 0.08 µM | Wines | [86] |
Catechol | AuNP-MWCNT | CV | 0–1.0 mM | 3.7 µM | Wines | [88] |
Catechin | Pt/MnO2/f-MWCNT | SWV | 2–950 µM | 0.02 µM | Wines | [89] |
Glucose | GOX-NFM/MWCNT | CV and CA | 1–3 mM | 20 µM | Beer | [90] |
TBHQ | CuO NFs/NH2-CNTs | DPV | 0.01–3.9 μM | 3 nM | Edible oils | [91] |
Bisphenol A | MWCNTs-βCD/SPCE | CV | 125 nM–2 μM | 13.76 nM | Water | [92] |
Methyl parathion | MWCNT/zirconia | CV | 19.9–176.8 μM | 9 nM | Ethanolic soybean | [93] |
Semicarbazide | MIP/SWNTs-COOH/CS | CV and PDV and ESI | 0.04–0.6 ng mL−1 | 0.025 ng mL−1 | Sheep casings | [94] |
3.3. Graphene
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Painter, J.A.; Hoekstra, R.M.; Ayers, T.; Tauxe, R.V.; Braden, C.R.; Angulo, F.J.; Griffin, P.M. Attribution of Foodborne Illnesses, Hospitalizations, and Deaths to Food Commodities by using Outbreak Data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407–415. [Google Scholar] [CrossRef]
- Yáñez, L.; Ortiz, D.; Calderón, J.; Batres, L.; Carrizales, L.; Mejía, J.; Martínez, L.; García-Nieto, E.; Díaz-Barriga, F. Overview of human health and chemical mixtures: Problems facing developing countries. Env. Health Persp. 2002, 110, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Shenashen, M.A.; Emran, M.Y.; El Sabagh, A.; Selim, M.M.; Elmarakbi, A.; El-Safty, S.A. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. Prog. Mater. Sci. 2021, 124, 100866. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Zeng, X.; Cao, J.; Jiang, W. Application of blockchain technology in food safety control: Current trends and future prospects. Crit. Rev. Food Sci. Nutr. 2020, 62, 2800–2819. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jia, W.; Zhu, L.; Mao, L.; Zhang, Y. Recent advances in heterocyclic aromatic amines: An update on food safety and hazardous control from food processing to dietary intake. Compr. Rev. Food Sci. Food Saf. 2019, 19, 124–148. [Google Scholar] [CrossRef] [PubMed]
- Wiwanitkit, V. Alcoholic Beverage Production in Indochina: Local Wisdom, Safety, Quality, and Legal Control. Prod. Mana. Bevera. 2019, 1, 381–407. [Google Scholar] [CrossRef]
- Anagnostopoulos, C.; Miliadis, G. Development and validation of an easy multiresidue method for the determination of mul-ticlass pesticide residues using GC–MS/MS and LC–MS/MS in olive oil and olives. Talanta 2013, 112, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Yang, Y.; Li, Y.; Fan, X.; Ding, S. Determination of neonicotinoid insecticides residues in eels using subcritical water extraction and ultra-performance liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2013, 777, 32–40. [Google Scholar] [CrossRef]
- Vilchez, J.; El-Khattabi, R.; Fernández, J.; González-Casado, A.; Navalón, A. Determination of imidacloprid in water and soil samples by gas chromatography-mass spectrometry. J. Chromatogr. A 1996, 746, 289–294. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, L.; Cheng, Q.; Cai, J.; Wang, Y.; Yang, M.; Hua, X.; Liu, F. A bare-eye based one-step signal amplified semi-quantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples. Anal. Chim. Acta 2015, 881, 82–89. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. Chem. Rec. 2019, 20, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.T.; Durairaj, S.; Prins, S. Aicheng ChenNanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectro. 2021, 175, 112836. [Google Scholar] [CrossRef]
- Adley, C.C. Past, Present and Future of Sensors in Food Production. Foods 2014, 3, 491–510. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Wang, B.; Wu, A.; Cheng, G.; Li, Z.; Dong, S. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol−Gel Network. Anal. Chem. 2002, 74, 2217–2223. [Google Scholar] [CrossRef]
- Privett, B.; Shin, J.; Schoenfisch, M. Electrochemical sensors. Anal. Chem. 2010, 78, 3965. [Google Scholar] [CrossRef] [PubMed]
- Speranza, G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials 2021, 11, 967. [Google Scholar] [CrossRef]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J. Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials 2019, 9, 634. [Google Scholar] [CrossRef]
- Xiang, Q.; Huang, J.; Huang, H.; Mao, W.; Ye, Z. A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Adv. 2018, 8, 1820–1825. [Google Scholar] [CrossRef]
- Tuteja, S.K.; Chen, R.; Kukkar, M.; Song, C.K.; Mutreja, R.; Singh, S.; Paul, A.K.; Lee, H.; Kim, K.-H.; Deep, A.; et al. A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). Biosens. Bioelectron. 2016, 86, 548–556. [Google Scholar] [CrossRef]
- Lei, J.; Ju, H. Signal amplification using functional nanomaterials for biosensing. Chem. Soc. Rev. 2012, 41, 2122–2134. [Google Scholar] [CrossRef]
- Pan, M.; Yin, Z.; Liu, K.; Du, X.; Liu, H.; Wang, S. Carbon-Based Nanomaterials in Sensors for Food Safety. Nanomaterials 2019, 9, 1330. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Yong, K.; Choi, J.; Cowie, A. Emerging point-of-care technologies for food safety analysis. Sensors 2019, 19, 817. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent Progress in Nanomaterial-Based Optical Aptamer Assay for the Detection of Food Chemical Contaminants. ACS Appl. Mater. Interfaces 2017, 9, 23287–23301. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Liu, Y.; Geng, J.; Kou, X.; Xin, Z.; Yang, D. Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 2018, 106, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hu, Y.; Yang, Y.; Liu, H.; Fang, G.; Lu, X.; Wang, S. Emerging functional nanomaterials for the detection of food con-taminants. Trends Food Sci. Tech. 2018, 71, 94–106. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Hu, Y.; Zhou, C.; Lan, W.; Fu, H.; She, Y. Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sens. Actuators B Chem. 2020, 329, 129135. [Google Scholar] [CrossRef]
- Arslan, M.; Tahir, H.E.; Zareef, M.; Shi, J.; Rakha, A.; Bilal, M.; Xiaowei, H.; Zhihua, L.; Xiaobo, Z. Recent trends in quality control, discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques. Trends Food Sci. Technol. 2020, 107, 80–113. [Google Scholar] [CrossRef]
- Manikandan, V.S.; Adhikari, B.; Chen, A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 2018, 143, 4537–4554. [Google Scholar] [CrossRef]
- Rajeshwar, K.; Ibanez, J.G.; Swain, G.M. Electrochemistry and the environment. J. Appl. Electrochem. 1994, 24, 1077–1091. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Arrigan, D. Bioelectrochemistry. Fundamentals, Experimental Techniques and Applications. Chromatographia 2010, 72, 585. [Google Scholar] [CrossRef]
- Moses, P.R.; Wier, L.; Murray, W.R. Chemically modified tin oxide electrode. Anal. Chem. 1975, 47, 1882–1886. [Google Scholar] [CrossRef]
- Hierlemann, A.; Gutierrez-Osuna, R. Higher-Order Chemical Sensing. Chem. Rev. 2008, 108, 563–613. [Google Scholar] [CrossRef] [PubMed]
- Bonizzoni, M.; Anslyn, E.V. Combinatorial Methods for Chemical and Biological Sensors. J. Am. Chem. Soc. 2009, 131, 14597–14598. [Google Scholar] [CrossRef]
- Ouyang, J. Application of intrinsically conducting polymers in flexible electronics. SmartMat 2021, 2, 263–285. [Google Scholar] [CrossRef]
- Menon, S.; Jesny, S.; Kumar, K. A voltammetric sensor for acetaminophen based on electropolymerized molecular-ly imprinted poly (oaminophenol) modified gold electrode. Talanta 2018, 179, 668–675. [Google Scholar] [CrossRef]
- Guiseppi-Elie, A.; Lingerfelt, L. Immobilisation of DNA on Chips I; Wittmann, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 161–186. [Google Scholar]
- Mirsky, V.M.; Riepl, M.; Wolfbeis, O.S. Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens. Bioelectron. 1997, 12, 977–989. [Google Scholar] [CrossRef]
- Pardakhty, A.; Ahmadzadeh, S.; Avazpour, S.; Gupta, V.K. Highly sensitive and efficient voltammetric determination of ascorbic acid in food and pharmaceutical samples from aqueous solutions based on nanostructure carbon paste electrode as a sensor. J. Mol. Liq. 2016, 216, 387–391. [Google Scholar] [CrossRef]
- Gheibi, S.; Karimi-Maleh, H.; Khalilzadeh, M.A.; Bagheri, H. A new voltammetric sensor for electrocatalytic determination of vitamin C in fruit juices and fresh vegetable juice using modified multi-wall carbon nanotubes paste electrode. J. Food Sci. Technol. 2013, 52, 276–284. [Google Scholar] [CrossRef]
- Trani, A.; Petrucci, R.; Marrosu, G.; Zane, D.; Curulli, A. Selective electrochemical determination of caffeine at a gold-chitosan nanocomposite sensor: May little change on nanocomposites synthesis affect selectivity? J. Electroanal. Chem. 2017, 788, 99–106. [Google Scholar] [CrossRef]
- Molaakbari, E.; Mostafavi, A.; Beitollahi, H. Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine. Sens. Actuators B Chem. 2015, 208, 195–203. [Google Scholar] [CrossRef]
- Chiappalone, M.; Vato, A.; Tedesco, M.; Marcoli, M.; Davide, F.; Martinoia, S. Networks of neurons coupled to microelectrode arrays: A neuronal sensory system for pharmacological applications. Biosens. Bioelectron. 2003, 18, 627–634. [Google Scholar] [CrossRef]
- Thangavelu, K.; Palanisamy, S.; Chen, S.-M.; Velusamy, V.; Chen, T.-W.; Ramaraj, S.K. Electrochemical Determination of Caffeic Acid in Wine Samples Using Reduced Graphene Oxide/Polydopamine Composite. J. Electrochem. Soc. 2016, 163, B726–B731. [Google Scholar] [CrossRef]
- Lupu, S.; Parenti, F.; Pigani, L.; Seeber, R.; Zanardi, C. Differential pulse techniques on modified conventional-Size and mi-croelectrodes. Electroactivity of poly[4,4′-bis(butylsulfanyl)-2,2′-bithiophene] coating towards dopamine and ascorbic acid oxidation. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2003, 15, 715–725. [Google Scholar]
- Osteryoung, J.; Osteryoung, R. Square wave voltammetry. Anal. Chem. 1985, 57, 101–110. [Google Scholar] [CrossRef]
- Chen, A.; Shah, B. Electrochemical sensing and biosensing based on square wave voltammetry. Anal. Methods 2013, 5, 2158–2173. [Google Scholar] [CrossRef]
- Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179–2195. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, S.M.; Sharma, S.K. Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Lett. 2019, 29, 419–447. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, S.; Wang, J.; Yu, A.; Wei, G. Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications. Nanomaterials 2019, 9, 1045. [Google Scholar] [CrossRef]
- Fan, Z.; Zhao, Q.; Li, T.; Yan, J.; Ren, Y.; Feng, J.; Wei, T. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 2012, 50, 1699–1703. [Google Scholar] [CrossRef]
- Ito, Y.; Shen, Y.H.; Hojo, D.; Itagaki, Y.; Fujita, T.; Chen, L.H.; Aida, T.; Tang, Z.; Adschiri, T.; Chen, M.W. Correlation be-tween chemical dopants and topological defects in catalytically active nanoporous graphene. Adv. Mater. 2016, 28, 10644–10651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Liu, H.T.; Shi, Y.N.; Han, J.Y.; Yang, Z.J.; Zhang, Y.; Long, C.; Guo, J.; Zhu, Y.F.; Qiu, X.Y.; et al. Boosting CO2 conversion with terminal alkynes by molecular architecture of gra-phene oxide-supported Ag nanoparticles. Matter 2020, 3, 558–570. [Google Scholar] [CrossRef]
- Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J.M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable corre-lated states and spin-polarized phases in twisted bilayer-bilayer graphene. Nature 2020, 583, 215–220. [Google Scholar] [CrossRef] [PubMed]
- The different dimensions of nanotechnology. Nat. Nanotechnol. 2009, 4, 135. [CrossRef] [PubMed]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Hu, S.; Trinchi, A.; Atkin, P.; Cole, I. Tunable Photoluminescence Across the Entire Visible Spectrum from Carbon Dots Excited by White Light. Angew. Chem. Int. Ed. 2015, 54, 2970–2974. [Google Scholar] [CrossRef]
- Teradal, N.; Jelinek, R. Carbon nanomaterials in biological studies and biomedicine. Adv. Healthc. Mater. 2017, 6, 1700574. [Google Scholar] [CrossRef]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef]
- Atkin, P.; Daeneke, T.; Wang, Y.; Careya, B.; Berean, K.; Clark, R.; Ou, J.; Trinchi, A.; Cole, I.; Kalantar-zadeh, K. 2D WS2/carbon dot hybrids with enhanced photocatalytic activity. J. Mater. Chem. A 2016, 4, 13563–13571. [Google Scholar] [CrossRef]
- Vercelli, B.; Donnini, R.; Ghezzi, F.; Sansonetti, A.; Giovanella, U.; La Ferla, B. Nitrogen-doped carbon quantum dots obtained hydrothermally from citric acid and urea: The role of the specific nitrogen centers in their electrochemical and optical responses. Electrochim. Acta 2021, 387, 138557. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef] [Green Version]
- Stachurski, C.D.; Click, S.M.; Wolfe, K.D.; Dervishogullari, D.; Rosenthal, S.J.; Jennings, G.K.; Cliffel, D.E. Optical and electrochemical tuning of hydrothermally synthesized nitrogen-doped carbon dots. Nanoscale Adv. 2020, 2, 3375–3383. [Google Scholar] [CrossRef]
- Rigodanza, F.; Đorđević, L.; Arcudi, F.; Prato, M. Customizing the electrochemical properties of carbon nanodots with quinones in bottom-up syntheses. Angew. Chem. Int. Ed. 2018, 130, 5156–5161. [Google Scholar] [CrossRef]
- Ji, X.; Palui, G.; Avellini, T.; Na, H.; Yi, C.K.; Knappenberger, L.; Mattoussi, H. On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine. J. Am. Chem. Soc. 2012, 134, 6006–6017. [Google Scholar] [CrossRef]
- Morgan, L.D.; Baker, H.; Yeoman, M.S.; Patel, B.A. Chromatographic assay to study the activity of multiple enzymes involved in the synthesis and metabolism of dopamine and serotonin. Analyst 2012, 137, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, B.; Meng, F. Microwave-assisted preparation of N-doped carbon dots as a biosensor for electrochemical do-pamine detection. J. Colloid Interface Sci. 2015, 452, 199–202. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, H.; Hu, S.; Li, F.; Weng, W.; Chen, J.; Wang, Q.; He, Y.; Zhang, W.; Bao, X. A sensitive and reliable dopamine biosensor was developed based on the Au carbon dots–chitosan composite film. Biosens. Bioelectron. 2013, 52, 277–280. [Google Scholar] [CrossRef]
- Dai, H.; Xu, G.; Gong, L.; Yang, C.; Lin, Y.; Tong, Y.; Chen, J.; Chen, G. Electrochemical detection of triclosan at a glassy carbon electrode modifies with carbon nanodots and chitosan. Electrochim. Acta 2012, 80, 362–367. [Google Scholar] [CrossRef]
- Sheng, M.; Yue, G.; Sun, J.; Feng, G. Carbon nanodots–chitosan composite film: A plat form for protein immobilization, direct electrochemistry and bioelectrocatalysis. Biosens. Bioelectron. 2014, 58, 351–358. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, P.; Huang, L.; Huang, Y.; Huang, Q.; Zhang, W.; Wei, C.; Hu, S. A nitrogen-doped carbon dot/ferrocene@β-cyclodextrin composite as an enhanced material for sensitive and selective determination of uric acid. Anal. Methods 2014, 6, 2687–2691. [Google Scholar] [CrossRef]
- Shao, X.; Gu, H.; Wang, Z.; Chai, X.; Tian, Y.; Shi, G. Highly Selective Electrochemical Strategy for Monitoring of Cerebral Cu2+ Based on a Carbon Dot-TPEA Hybridized Surface. Anal. Chem. 2012, 85, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhong, Y.; Zhang, Y.; Weng, W.; Li, S. Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sens. Actuators B Chem. 2015, 206, 735–743. [Google Scholar] [CrossRef]
- Yang, L.; Huang, N.; Lu, Q.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. A quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a ferrocene derivative functional Au NPs/carbon dots nanocomposite and graphene. Anal. Chim. Acta 2016, 903, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Henifehpour, Y.; Joo, S. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393. [Google Scholar] [CrossRef]
- Rahman, G.; Najaf, Z.; Mehmood, A.; Bilal, S.; ul Haq Ali Shah, A.; Mian, S.A.; Ali, G. An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. C J. Carbon Res. 2019, 5, 3. [Google Scholar] [CrossRef]
- Liu, L.-P.; Yin, Z.-J.; Yang, Z.-S. A l-cysteine sensor based on Pt nanoparticles/poly(o-aminophenol) film on glassy carbon electrode. Bioelectrochemistry 2010, 79, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Soylemez, S.; Yoon, B.; Toppare, L.; Swager, T. Quaternized polymer-single-walled carbon nanotube scaffolds for a chemire sistive glucose sensor. ACS Sens. 2017, 2, 1123–1127. [Google Scholar] [CrossRef]
- Liu, S.F.; Petty, A.R.; Sazama, G.T.; Swager, T.M. Single-Walled Carbon Nanotube/Metalloporphyrin Composites for the Chemiresistive Detection of Amines and Meat Spoilage. Angew. Chem. Int. Ed. 2015, 54, 6554–6557. [Google Scholar] [CrossRef]
- Münzer, A.; Melzer, K.; Heimgreiter, M.; Scarpa, G. Random CNT network and regioregular poly(3-hexylthiophen) FETs for pH sensing applications: A comparison. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 4353–4358. [Google Scholar] [CrossRef]
- Nuengchamnong, N.; Ingkaninan, K. On-line HPLC–MS–DPPH assay for the analysis of phenolic antioxidant compounds in fruit wine: Antidesma thwaitesianum Muell. Food Chem. 2010, 118, 147–152. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.P.; Calegari, F.; Zarbin, A.J.G.; Marcolino-Júnior, L.H.; Bergamini, M.F. Voltammetric Determination of the Antioxidant Capacity in Wine Samples Using a Carbon Nanotube Modified Electrode. J. Agric. Food Chem. 2011, 59, 7620–7625. [Google Scholar] [CrossRef] [PubMed]
- Ziyatdinova, G.; Kozlova, E.; Budnikov, H. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay. Food Chem. 2016, 196, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Pwavodi, P.; Ozyurt, V.; Asir, S.; Ozsoz, M. Electrochemical sensor for determination of various phenolic compounds in wine samples using Fe3O4 nanoparticlesmodified carbon paste electrode. Micromachines 2021, 12, 312. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhu, Z.; Du, D.; Lin, Y. Nanomaterial-based electrochemical biosensors for food safety. J. Electroanal. Chem. 2016, 781, 147–154. [Google Scholar] [CrossRef]
- Salvo-Comino, C.; Rassas, I.; Minot, S.; Bessueille, F.; Arab, M.; Chevallier, V.; Rodriguez-Mendez, M.; Errachid, A.; Jaf-frezic-Renault, N. Voltammetric sensor based on molecularly imprinted chitosan-carbon nanotubes decorated with gold na-noparticles nanocomposite deposited on boron-doped diamond electrodes for catechol detection. Materials 2020, 13, 688. [Google Scholar] [CrossRef]
- Vilian, A.; Madhu, R.; Chen, S.; Veeramani, V.; Sivakumar, M.; Yun, S.; Han, Y. Facile synthesis of MnO2/carbon nanotubes decorated with a nanocomposite of Pt nanoparticles as a new platform for the electrochemical detection of catechin in red wine and green tea samples. J. Mater. Chem. B 2015, 3, 6285–6292. [Google Scholar] [CrossRef]
- Marco, M.; Edoardo, L.; Matteo, S. Monitoring of glucose in beer brewing by a carbon nanotubes based nylon nanofibrous biosensor. J. Nanomater. 2016, 2016, 5217023. [Google Scholar]
- Balram, D.; Lian, K.Y.; Sebastian, N.; Rasana, N. Ultrasensitive detection of cytotoxic food preservative tert-butylhydroquinone using 3D cupric oxide nanoflowers embedded functionalized carbon nanotubes. J. Hazard. Mater. 2021, 406, 124792. [Google Scholar] [CrossRef]
- Ali, Y.; Alam, A.U.; Howlader, M.M. Fabrication of highly sensitive Bisphenol A electrochemical sensor amplified with chemically modified multiwall carbon nanotubes and β-cyclodextrin. Sens. Actuators B Chem. 2020, 320, 128319. [Google Scholar] [CrossRef]
- Caetano, K.; Rosa, D.; Pizzolatto, T.; Santos, P.A.M.D.; Costa, T. MWCNT/zirconia porous composite applied as electrochemical sensor for determination of methyl parathion. Microporous Mesoporous Mater. 2020, 309, 110583. [Google Scholar] [CrossRef]
- Yu, W.; Tang, Y.; Sang, Y.; Liu, W.; Wang, S.; Wang, X. Preparation of a carboxylated single-walled carbon-nanotube-chitosan func-tional layer and its application to a molecularly imprinted electrochemical sensor to quantify semicarbazide. Food Chem. 2020, 333, 127524. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, L.; Herranz, M.; Martín, N. The chemistry of pristine graphene. Chem. Commun. 2013, 49, 3721–3735. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, K.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef]
- Ikhsan, N.I.; Pandikumar, A. Doped-Graphene Modified Electrochemical Sensors. In Graphene-Based Electrochemical Sensors for Biomolecules; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 67–87. ISBN 9780128153949. [Google Scholar]
- Yang, Z.J.; Yang, C.Y.; Han, J.Y.; Zhao, W.S.; Shao, S.X.; Li, S.Y.; Gao, H.W.; Xie, H.J.; Zhang, X.F. Boosting electrochemical CO2 reduction to formate using SnO2/graphene oxide with amide linkages. J. Mater. Chem. A 2021, 9, 19681–19686. [Google Scholar] [CrossRef]
- João, A.F.; Rocha, R.G.; Matias, T.A.; Richter, E.M.; Petruci, J.F.S.; Muñoz, R.A. 3D-printing in forensic electrochemistry: Atropine determination in beverages using an additively manufactured graphene-polylactic acid electrode. Microchem. J. 2021, 167, 106324. [Google Scholar] [CrossRef]
- Negut, C.; Stefan-van Staden, R.I.; Harja, F.; Staden, J. Pattern recognition of amino acids in wines. Electroanalysis 2019, 32, 7–10. [Google Scholar]
- Gao, F.; Zheng, D.; Tanaka, H.; Zhan, F.; Yuan, X.; Gao, F.; Wang, Q. An electrochemical sensor for gallic acid based on Fe2O3/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines. Eng. C Mater Biol Appl. 2015, 57, 279–287. [Google Scholar] [CrossRef]
- Goud, K.; Hayat, A.; Catanante, G.; Satyanarayana, M.; Gobi, K.V.; Marty, J. An electrochemical aptasensor based on func-tionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim. Acta 2017, 244, 96–103. [Google Scholar] [CrossRef]
- Geleta, G.; Zhen, Z.; Wang, Z. Novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite based elec-trochemical aptasensor for detection of aflatoxin B1. Analyst 2018, 143, 1644–1649. [Google Scholar] [CrossRef] [PubMed]
- Borisova, B.; Sánchez, A.; Soto-Rodríguez, P.E.D.; Boujakhrout, A.; Arévalo-Villena, M.; Pingarrón, J.M. Disposable am-perometric immunosensor for Saccharomyces cerevisiae based on carboxylated graphene oxide-modified electrodes. Anal. Bioanal. Chem. 2018, 410, 7901–7907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ping, J.; Ying, Y. Evaluation of trans-resveratrol level in grape wine using laser-induced porous graphene-based electrochemical sensor. Sci. Total Environ. 2020, 714, 136687. [Google Scholar] [CrossRef]
- Zhang, C.; Ping, J.; Ye, Z.; Ying, Y. Two-dimensional nanocomposite-based electrochemical sensor for rapid determination of trans-resveratrol. Sci. Total Environ. 2020, 742, 140351. [Google Scholar] [CrossRef] [PubMed]
- Jwz, A.; Kpw, A.; Xuan, Z. Fabrication of SnO2 decorated graphene composite material and its application in electrochemical detection of caffeic acid in red wine. Mater. Res. Bull. 2020, 126, 110820. [Google Scholar]
- Sadak, O.; Sundramoorthy, A.K.; Gunasekaran, S. Highly selective colorimetric and electrochemical sensing of iron (III) using Nile red functionalized graphene film. Biosens. Bioelectron. 2017, 89, 430–436. [Google Scholar] [CrossRef]
- Tian, G.; Sun, J.; Meng, W.; Song, L.; Zhang, Y. Electrochemical sensor based on graphene and mesoporous TiO2 for the sim-ultaneous determination of trace colourants in food. Food Chem. 2013, 141, 3731–3737. [Google Scholar]
- Zhou, L.; Wang, J.; Li, D.; Li, Y. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem. 2014, 162, 34–40. [Google Scholar] [CrossRef]
- Yang, X.; Guo, Q.; Yang, J.; Chen, S.; Hu, F.; Hu, Y.; Lin, H. Synergistic effects of layer-by-layer films for highly selective and sensitive electro-chemical detection of trans-resveratrol. Food Chem. 2020, 338, 127851. [Google Scholar] [CrossRef]
- Bettazzi, F.; Ingrosso, C.; Sfragano, P.; Pifferi, V.; Palchetti, I. Gold nanoparticles modified graphene platforms for highly sen-sitive electrochemical detection of vitamin C in infant food and formulae. Food Chem. 2020, 344, 128692. [Google Scholar] [CrossRef] [PubMed]
- AlThagafi, I.I.; Ahmed, S.A.; El-Said, W.A. Fabrication of gold/graphene nanostructures modified ITO electrode as highly sensitive electrochemical detection of Aflatoxin B1. PLoS ONE 2019, 14, e0210652. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, F.; Zaidi, S.A.; Koo, C.M. Highly sensitive electrochemical sensor based on environmentally friendly biomass-derived sulfur-doped graphene for cancer biomarker detection. Sens. Actuators B Chem. 2017, 241, 716–724. [Google Scholar] [CrossRef]
- Fang, L.; Huang, K.; Liu, Y. Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disul-fide/carbon aerogel composites and Au nanoparticles for signal amplification. Biosens. Bioelectron. 2015, 71, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Ng, A.; Siaj, M.; Zourob, M. Label-Free Voltammetric Aptasensor for the Sensitive Detection of Microcystin-LR Using Graphene-Modified Electrodes. Anal. Chem. 2014, 86, 7551–7557. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, D.; Ma, H.; Zhang, Y.; Fan, D.; Pang, X.; Du, B.; Wei, Q. Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem. 2018, 255, 125–132. [Google Scholar] [CrossRef]
- Chu, Y.; Cai, B.; Ma, Y.; Zhao, M.; Ye, Z.; Huang, J. Highly sensitive electrochemical detection of circulating tumor DNA based on thin-layer MoS2/graphene composites. RSC Adv. 2016, 6, 22673–22678. [Google Scholar] [CrossRef]
- Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Cheng, H.-M. Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template-Free Self-Assembly. Adv. Funct. Mater. 2011, 21, 1717–1722. [Google Scholar] [CrossRef]
Analytes | Materials | Electrochemical Techniques | Linear Range | Detection Limit | Sample | Ref. |
---|---|---|---|---|---|---|
Dopamine | N-doped CDs | DPV | 0.05~8 µM | 1.2 nM | Serum | [67] |
Dopamine | Au@CDs-CS | DPV and CV | 0.01~100 µM | 0.1 nM | Spiked sample | [68] |
Triclosan | CNDs-chitosan | CV | 10 nM~1.0 mM | 9.2 nM | Water | [69] |
H2O2 | Hb-CNDs-chitosan | CV | 1~118 µM | 0.27 µM | Toothpaste | [70] |
Uric acid | Fc@β-CD/N-CD | DPV | 5~120 µM | 0.08 µM | Urine | [71] |
Cu2+ ions | CDs-TPEA | DPASV | 1~60 µM | 100 nM | Spiked sample | [72] |
Glucose | CDs/Cu2O NPs | CV | 0.02~4.3 mM | 8.4 µM | - | [64] |
Acetamteinophen | Fc-S-Au/CDs | CV | 0.5~46 µM | 0.1 µM | Urine | [74] |
Analytes | Materials | Electrochemical Techniques | Linear Range | Detection Limit | Sample | Ref. |
---|---|---|---|---|---|---|
Atropine | Graphene-PLA | SWV | 5–60 µM | 1 µM | Wines | [99] |
Amino acids | Nanographene | CA | LRh, LRl, LRo, LRt | DLh, DLl, DLo, DLt | Wines | [100] |
Gallic acid | CS–fFe2O3–ERGO | DPV | 1–100 µM | 0.15 µM | Wines | [101] |
Aflatoxin B1 | FGO | CV and PDV and ESI | 0.05–6.0 ng mL−1 | 0.05 ng mL−1 | Wines | [102] |
Aflatoxin B1 | RGO/MoS2/PANI@Au/Cs | DPV | 0.01–1.0 fg mL−1 | 0.002 fg mL−1 | Wines | [103] |
Saccharomyces cerevisiae | PA-GO/SPE | CA | 10–107 CFU mL−1 | ND | White wine | [104] |
trans-Resveratrol | LPG | CV and DPV | 0.2–50 μM | 0.16 µM | Red wine | [105] |
trans-Resveratrol | Gr-MoS2 | DPV | 1.0–200 μM | 0.45 μM | Red wine | [106] |
Caffeic acid | SnO2-RGO | DPV | 0.15–25 μM | 80 nM | Red wine | [107] |
Fe3+ | po-Gr-NR | CV and DPV | 37.5 nM–21.53 mM | 18.7 nM | Red wine | [108] |
Sunset yellow and Tartrazine | GN/TiO2 | CV and SWV | LRsy, LRtt | DLsy, DLtt | Foods | [109] |
Bisphenol A | GNPs/GR | CV | 0.01 μM–10 μM | 5 nM | Milk | [110] |
TRA | GCE|Gr-Au/MIPs | CV | 0.01–10 μM | 0.0044 μM | Foods and medicines | [111] |
Vitamin C | Au NPs/PCA-RGO | CV | 50–500 μM | 17 μM | Foods | [112] |
Aflatoxin B1 | AuNPs/rGO/ITO | CV | Nr | 6.9 pg mL−1 | Foods | [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Zhang, X.; Guo, J. Functionalized Carbon-Based Electrochemical Sensors for Food and Alcoholic Beverage Safety. Appl. Sci. 2022, 12, 9082. https://doi.org/10.3390/app12189082
Yang Z, Zhang X, Guo J. Functionalized Carbon-Based Electrochemical Sensors for Food and Alcoholic Beverage Safety. Applied Sciences. 2022; 12(18):9082. https://doi.org/10.3390/app12189082
Chicago/Turabian StyleYang, Zhongjie, Xiaofei Zhang, and Jun Guo. 2022. "Functionalized Carbon-Based Electrochemical Sensors for Food and Alcoholic Beverage Safety" Applied Sciences 12, no. 18: 9082. https://doi.org/10.3390/app12189082