Electrical and Optical Properties of Laser-Induced Structural Modifications in PbSe Films
Abstract
:1. Introduction
2. Experiments
2.1. Materials and Methods
2.2. Laser Modification
2.3. Electrical Characterization
3. Results and Discussion
3.1. Laser Modification of the Structure
3.2. Electrical and Optical Characterization
3.3. Modification Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Satiab, D.C.; Jain, H. Coexistence of photodarkening and photobleaching in Ge-Sb-Se thin films. J. Non-Cryst. Solids 2017, 478, 23–28. [Google Scholar]
- Antipov, A.A.; Arakelyan, S.M.; Emel’yanov, V.I.; Zimin, S.P.; Kutrovskaya, S.V.; Kucherik, A.O.; Prokoshev, V.G. CW laser-induced generation of periodic ring structures on thin PbSe films. Quantum Electron. 2011, 41, 5. [Google Scholar] [CrossRef]
- Tan, C.L.; Mohseni, H. Emerging technologies for high performance infrared detectors. Nanophotonics 2018, 7, 169–197. [Google Scholar] [CrossRef] [Green Version]
- Karim, A.; Andersson, J.Y. Infrared detectors: Advances, challenges and new technologies. IOP Conf. Ser. Mater. Sci. Eng. 2013, 51, 12001. [Google Scholar] [CrossRef] [Green Version]
- Weng, B.; Qiu, J.; Zhao, L.; Yuan, Z.; Chang, C.; Shi, Z. Recent development on the uncooled mid-infrared PbSe detectors with high detectivity. In Quantum Sensing and Nanophotonic Devices XI; SPIE: Bellingham, WA, USA, 2013; Volume 8993, p. 899311. [Google Scholar]
- Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 2012, 20, 279–308. [Google Scholar] [CrossRef]
- Tomaev, V.V.; Egorov, S.V.; Stoyanova, T.V. Investigation into the Photosensitivity of a Composite from Lead Selenide and Selenite in UV Region of Spectrum. Glass Phys. Chem. 2014, 40, 208–214. [Google Scholar] [CrossRef]
- Ren, Y.X.; Dai, T.J.; Luo, W.B.; Liu, X.Z. Evidences of sensitization mechanism for PbSe thin films photoconductor. Vacuum 2018, 149, 190–194. [Google Scholar] [CrossRef]
- Grayer, J.S.; Ganguly, S.; Yoo, S.-S. Embedded surface plasmon resonant disc arrays for improved MWIR sensitivity and increased operating temperature of PbSe photoconductive detectors. In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII; SPIE: Bellingham, WA, USA, 2019; Volume 11082, p. 81. [Google Scholar]
- Kasiyan, V.; Dashevsky, Z.; Schwarz, C.M.; Shatkhin, M.; Flitsiyan, E.; Chernyak, L.; Khokhlov, D. Infrared detectors based on semiconductor p–n junction of PbSe. J. Appl. Phys. 2012, 112, 086101. [Google Scholar] [CrossRef] [Green Version]
- Weng, B.; Qiu, J.; Yuan, Z.; Larson, P.R.; Strout, G.W.; Shi, Z. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings. Appl. Phys. Lett. 2014, 104, 021109. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Weng, B.; Yuan, Z.; Shi, Z. Study of sensitization process on mid-infrared uncooled PbSe photoconductive detectors leads to high detectivity. J. Appl. Phys. 2013, 113, 103102. [Google Scholar] [CrossRef] [Green Version]
- Tomaev, V.V.; Panov, M.F. Ellipsometric Control of the Parameters of Lead Selenide Films during Oxidation. Glass Phys. Chem. 2006, 32, 370–373. [Google Scholar] [CrossRef]
- Sergeev, M.M.; Zakoldaev, R.A.; Itina, T.E.; Varlamov, P.V.; Kostyuk, G.K. Real-Time Analysis of Laser-Induced Plasmon Tuning in Nanoporous Glass Composite. Nanomaterials 2020, 10, 1131. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, V.; Cabrera, M.J.; Seores, J.; Muñoz, D.; Fernández, J.F.; Enríquez, E. Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators. J. Eur. Ceram. Soc. 2018, 38, 2759–2766. [Google Scholar] [CrossRef]
- Sahoo, D.; Priyadarshini, P.; Dandela, R.; Alagarasan, D.; Ganesan, R.; Varadharajaperumal, S.; Naik, R. In situ laser irradiation: The kinetics of the changes in the nonlinear/linear optical parameters of As50Se40Sb10 thin films for photonic applications. RSC Adv. 2021, 11, 16015–16025. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Hochbaum, A.I.; Fardy, M.; Rabin, O.; Zhang, M.; Yang, P. Field-effect modulation of seebeck coefficient in single PbSe nanowires. Nano Lett. 2009, 9, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Rabin, O.; Hochbaum, A.I.; Fardy, M.; Zhang, M.; Yang, P. Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2009, 2, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Shyju, T.S.; Anandhi, S.; Sivakumar, R.; Garg, S.K.; Gopalakrishnan, R. Investigation on structural, optical, morphological and electrical properties of thermally deposited lead selenide (PbSe) nanocrystalline thin films. J. Cryst. Growth 2012, 353, 47–54. [Google Scholar] [CrossRef]
- Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.; Zhang, Y. Marangoni and buoyancy effects on direct metal laser sintering with a moving laser beam, Numerical Heat Transfer. Part A Appl. 2007, 51, 715–733. [Google Scholar] [CrossRef]
External Voltage | Untreated Film | Film after Laser Modification | Comparison: before and after Irradiation | |||
---|---|---|---|---|---|---|
R, Ohm | I, nA | R, Ohm | I, nA | dR, % | dI, % | |
U = 4 V | 218 | 100 | 208 | 140 | −4.59% | 40.00% |
U = 0.6 V | 1400 | 86 | 1200 | 140 | −14.29% | 62.79% |
P, mW | V, mm/s | q, kW/cm2 | t, μs | w, μJ/cm2 | Regime Name | |
---|---|---|---|---|---|---|
Regime 1 | 11.7 | 1.1 | 15 | 9 | 134 | Modification threshold |
Regime 2 | 17.2–26.4 | 0.9–1.2 | 22–33.6 | 8–11 | 241–269 | Photodarkening |
Regime 3 | 13.4 | 0.25 | 17 | 40 | 682 | Burn |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olkhova, A.A.; Patrikeeva, A.A.; Sergeev, M.M. Electrical and Optical Properties of Laser-Induced Structural Modifications in PbSe Films. Appl. Sci. 2022, 12, 10162. https://doi.org/10.3390/app121910162
Olkhova AA, Patrikeeva AA, Sergeev MM. Electrical and Optical Properties of Laser-Induced Structural Modifications in PbSe Films. Applied Sciences. 2022; 12(19):10162. https://doi.org/10.3390/app121910162
Chicago/Turabian StyleOlkhova, Anastasiia A., Alina A. Patrikeeva, and Maksim M. Sergeev. 2022. "Electrical and Optical Properties of Laser-Induced Structural Modifications in PbSe Films" Applied Sciences 12, no. 19: 10162. https://doi.org/10.3390/app121910162
APA StyleOlkhova, A. A., Patrikeeva, A. A., & Sergeev, M. M. (2022). Electrical and Optical Properties of Laser-Induced Structural Modifications in PbSe Films. Applied Sciences, 12(19), 10162. https://doi.org/10.3390/app121910162