Radioactivity in Soils of Kosovo and Radiological Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Experimental Methods
2.4. Activity Concentration (A)
2.5. Calculation of Radiological Hazards
2.6. Spatial Interpolation and Mapping
3. Results and Discussion
3.1. The Activity Concentrations of the Radionuclides
3.2. Assessment of Radiological Hazards
3.3. Assessment of Radiological Health Risks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodolli, G.; Kadiri, S.; Dumani, S.; Halimi, Y.; Jonuzaj, A.; Xhafa, B.; Hasani, F. Variation of total beta activity in air by years on Obiliq. J. Environ. Occup. Sci. 2012, 1, 121. [Google Scholar] [CrossRef]
- Turhan, Ş.; Köse, A.; Varinlioǧlu, A.; Şahin, N.K.; Arikan, T.I.; Oǧuz, F.; Yücel, B.; Özdemir, T. Distribution of terrestrial and anthropogenic radionuclides in Turkish surface soil samples. Geoderma 2012, 187–188, 117–124. [Google Scholar] [CrossRef]
- Danesi, P.R.; Markowicz, A.; Chinea-Cano, E.; Burkart, W.; Salbu, B.; Donohue, D.; Ruedenauer, F.; Hedberg, M.; Vogt, S.; Zahradnik, P.; et al. Depleted uranium particles in selected Kosovo samples. J. Environ. Radioact. 2003, 64, 143–154. [Google Scholar] [CrossRef]
- UNEP. Depleted Uranium in Kosovo, Post-Conflict Environmental Assessment (No. Scientific Team Mission to Kosovo 5–19 November 2000); UNEP: Geneva, Switzerland, 2001. [Google Scholar]
- Departamento de Protecção Radiológica e Segurança Nuclear. Report of the Portuguese Scientific Mission to Kosovo and to Bosnia- Herzegovina for Assessment of Radioactive Contamination and of the Radiological Risk Due to the Use of Depleted Uranium Ammunitions; Estrada Nacional 10, 2686–2953 Sacavém, Portugal, Relatório DPRSN-A, no 14 April 2001; MCT—Ministério da Ciência e Tecnologia: Lisbon, Portugal, 2001; Available online: http://www.ctn.tecnico.ulisboa.pt/uk/uk_reltec.htm (accessed on 13 September 2022).
- Carvalho, F.P.; Oliveira, J.M. Uranium isotopes in the Balkan’s environment and foods following the use of depleted uranium in the war. Environ. Int. 2010, 36, 352–360. [Google Scholar] [CrossRef]
- Zlobina, A.; Farkhutdinov, I.; Carvalho, F.P.; Wang, N.; Korotchenko, T.; Baranovskaya, N.; Farkhutdinov, A. Impact of Environmental Radiation on the Incidence of Cancer and Birth Defects in Regions with High Natural Radioactivity. Int. J. Environ. Res. Public Health 2022, 19, 8643. [Google Scholar] [CrossRef]
- Alzubaidi, G.; Hamid, F.B.S.; Abdul Rahman, I. Assessment of Natural Radioactivity Levels and Radiation Hazards in Agricultural and Virgin Soil in the State of Kedah, North of Malaysia. Sci. World J. 2016, 2016, 6178103. [Google Scholar] [CrossRef]
- Amanjeet; Kumar, A.; Kumar, S.; Singh, J.; Singh, P.; Bajwa, B.S. Assessment of natural radioactivity levels and associated dose rates in soil samples from historical city Panipat, India. J. Radiat. Res. Appl. Sci. 2017, 10, 283–288. [Google Scholar] [CrossRef]
- Shohda, A.M.; Draz, W.M.; Ali, F.A.; Yassien, M.A. Natural radioactivity levels and evaluation of radiological hazards in some Egyptian ornamental stones. J. Radiat. Res. Appl. Sci. 2018, 11, 323–327. [Google Scholar] [CrossRef]
- Tabar, E.; Yakut, H.; Saç, M.M.; Taşköprü, C.; İçhedef, M.; Kuş, A. Natural radioactivity levels and related risk assessment in soil samples from Sakarya, Turkey. J. Radioanal. Nucl. Chem. 2017, 313, 249–259. [Google Scholar] [CrossRef]
- Taşkın, H.; Yeşilkanat, C.M.; Kobya, Y.; Çevik, U. Evaluation And Mapping Of Radionuclides in The Terrestrial Environment And Health Hazard Due To Soil Radioactivity in Artvin, Turkey. Arab. J. Geosci. 2018, 11, 729. [Google Scholar] [CrossRef]
- Yeşilkanat, C.M.; Kobya, Y.; Taşkin, H.; Çevik, U. Dose rate estimates and spatial interpolation maps of outdoor gamma dose rate with geostatistical methods; A case study from Artvin, Turkey. J. Environ. Radioact. 2015, 150, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Kobya, Y.; Taşkın, H.; Yeşilkanat, C.M.; Çevik, U. Evaluation of Outdoor Gamma Dose Rate and Cancer Risk in Artvin Province, Turkey. Hum. Ecol. Risk Assess. 2015, 21, 2077–2085. [Google Scholar] [CrossRef]
- Ugbede, F.O.; Osahon, O.D. Soil-to-plant transfer factors of 238U and 232Th in rice from Ezillo paddy fields, Ebonyi State, Nigeria. J. Environ. Radioact. 2021, 233, 106606. [Google Scholar] [CrossRef] [PubMed]
- Raj, P.; Padiyath, N.; Semioshkina, N.; Addad, Y.; Foulon, F.; Francis, D.; Voigt, G. Conceptualization of arid region radioecology strategies for agricultural ecosystems of the United Arab Emirates (UAE). Sci. Total Environ. 2022, 832, 154965. [Google Scholar] [CrossRef] [PubMed]
- Uosif, M.A.M.; Alrowaili, Z.A.; Elsaman, R.; Mostafa, A.M.A. Soil–soybean transfer factor of natural radionuclides in different soil textures and the assessment of committed effective dose. Radiat. Prot. Dosim. 2020, 188, 529–535. Available online: https://academic.oup.com/rpd/article/188/4/529/5735230 (accessed on 13 September 2022). [CrossRef] [PubMed]
- IAEA. Technical Report Series; Guidelines on Soil and Vegetation Sampling for Radiological Monitoring; IAEA Division of Public Information, No. 486; IAEA: Vienna, Austria, 2019. [Google Scholar]
- GammaVision Gamma Spectroscopy. Application Software | AMETEK ORTEC. Available online: https://www.ortec-online.com/products/application-software/gammavision (accessed on 13 September 2022).
- IAEA. Radiation Safety; IAEA Division of Public Information, 96-00725 IAEA; IAEA: Vienna, Austria, 1996. [Google Scholar]
- ICRP. 1990 Recommendations of the International Commission on Radiological Protection. In ICRP Publication 60. Ann. ICRP; Pergamon Press: Oxford, UK, 1991. [Google Scholar]
- Khandaker, M.U.; Jojo, P.J.; Kassim, H.A.; Amin, Y.M. Radiometric analysis of construction materials using HPGe gamma-ray spectrometry. Radiat. Prot. Dosim. 2012, 152, 33–37. [Google Scholar] [CrossRef]
- Currie, L.A. Limits for Qualitative Detection and Quantitative Determination: Application to Radiochemistry. Anal. Chem. 1968, 40, 586–593. [Google Scholar] [CrossRef]
- Beretka, J.; Mathew, P.J. Natural Radioactivity of Australian Building Materials. Ind. Wastes By-Products. Health Phys. 1985, 48, 87–95. [Google Scholar]
- European Commission. Radiation Protection 112: Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials; European Commission: Brussels, Belgium, 1999; pp. 1–16.
- Krieger, R. Radioactivity of Construction Materials. Betonw. Fert. Technol. 1981, 47, 468–473. [Google Scholar]
- UNSCEAR. Sources and Effects of Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation; United Nations Publication: New York, NY, USA, 2008. [Google Scholar]
- UNSCEAR. Source and Effects of Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly with Annex B; United Nations Publication: New York, NY, USA, 2000. [Google Scholar]
- Mamont-Ciesla, K.; Gwiazdowski, B.; Biernacka, M.; Zak, A. Radioactivity of Building Materials in Poland. 1982. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:16033994 (accessed on 13 September 2022).
- ICRP. Recommendations of the ICRP: Annals of the ICRP (International Commission on Radiological Protection); Publication 103 Volume 37/2-4; ICRP: Ottawa, ON, Canada, 2007. [Google Scholar]
- Yeşilkanat, C.M. A novel hybrid approach to the mapping and prediction of the terrestrial gamma dose rate distribution in the Central Anatolia Region of Turkey. J. Environ. Radioact. 2019, 208–2009, 106009. [Google Scholar] [CrossRef]
- Pebesma, E.J.; Bivand, R. Classes and methods for spatial data in R. R News 2005, 4, 9–13. [Google Scholar]
- Pebesma, E.J.; Wesseling, C.G. Gstat: A program for geostatistical modelling, prediction and simulation. Comput. Geosci. 1998, 24, 17–31. [Google Scholar] [CrossRef]
- Bergmeir, C.; Benítez, J.M. Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS. J. Stat. Softw. 2012, 46, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Benesty, M.; et al. caret: Classification and Regression Training. R Packag. Version 6.0-86. 2020. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 13 September 2022).
- Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar] [CrossRef]
- Dizman, S.; Hodolli, G.; Kadiri, S.; Aliu, H.; Makolli, S. Radioactivity in Kosovo honey samples. Pol. J. Environ. Stud. 2020, 29, 1119–1127. [Google Scholar] [CrossRef]
- Guidotti, L.; Carini, F.; Rossi, R.; Gatti, M.; Cenci, R.M.; Beone, G.M. Gamma-spectrometric measurement of radioactivity in agricultural soils of the Lombardia region, northern Italy. J. Environ. Radioact. 2015, 142, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Alshahri, F.; El-Taher, A. Investigation of natural radioactivity levels and evaluation of radiation Hazards in residential-area soil near a Ras Tanura refinery, Saudi Arbia. Pol. J. Environ. Stud. 2019, 28, 25–34. [Google Scholar] [CrossRef]
- El Samad, O.; Baydoun, R.; Nsouli, B.; Darwish, T. Determination of natural and artificial radioactivity in soil at North Lebanon province. J. Environ. Radioact. 2013, 125, 36–39. [Google Scholar] [CrossRef]
- Abd El-mageed, A.I.; El-Kamel, A.H.; Abbady, A.; Harb, S.; Youssef, A.M.M.; Saleh, I.I. Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environments of Juban town in Yemen. Radiat. Phys. Chem. 2011, 80, 710–715. [Google Scholar] [CrossRef]
- Al-Masri, M.S.; Amin, Y.; Hassan, M.; Ibrahim, S.; Khalili, H.S. External gamma-radiation dose to Syrian population based on the measurement of gamma-emitters in soils. J. Radioanal. Nucl. Chem. 2006, 267, 337–343. [Google Scholar] [CrossRef]
- Ivanić, M.; Fiket, Ž.; Medunić, G.; Furdek Turk, M.; Marović, G.; Senčar, J.; Kniewald, G. Multi-element composition of soil, mosses and mushrooms and assessment of natural and artificial radioactivity of a pristine temperate rainforest system (Slavonia, Croatia). Chemosphere 2019, 215, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Dizman, S.; Görür, F.K.; Keser, R.; Görür, O. The assessment of radioactivity and radiological hazards in soils of Bolu province, Turkey. Environ. Forensics 2019, 20, 211–218. [Google Scholar] [CrossRef]
- Saleh, I.H. Radioactivity of 238U, 232Th, 40K, and 137Cs and assessment of depleted uranium in soil of the Musandam Peninsula, Sultanate of Oman. Turk. J. Eng. Environ. Sci. 2012, 36, 236–248. [Google Scholar] [CrossRef]
- Mostafa, A.M.A.; Uosif, M.A.M.; Elsaman, R.; Alrowaili, Z.A.; Moustafa, E. The dependence of natural radioactivity levels and its radiological hazards on the texture of agricultural soil in Upper Egypt. Environ. Earth Sci. 2020, 79, 228. [Google Scholar] [CrossRef]
- Kurnaz, A.; Küçükömeroǧlu, B.; Keser, R.; Okumusoglu, N.T.; Korkmaz, F.; Karahan, G.; Çevik, U. Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey). Appl. Radiat. Isot. 2007, 65, 1281–1289. [Google Scholar] [CrossRef]
- Jibiri, N.N.; Isinkaye, M.O.; Bello, I.A.; Olaniyi, P.G. Dose assessments from the measured radioactivity in soil, rock, clay, sediment and food crop samples of an elevated radiation area in south-western Nigeria. Environ. Earth Sci. 2016, 75, 107. [Google Scholar] [CrossRef]
- Ademola, J.A. Determination of natural radionuclides content in some building materials in nigeria by gamma-ray spectrometry. Health Phys. 2008, 94, 43–48. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis; Wiley: New York, NY, USA, 1998. [Google Scholar]
Country | 226Ra | 232Th | 40K | 137Cs | References |
---|---|---|---|---|---|
Italy | 79 | 48 | 640 | 25 | [38] |
Saudi Arabia | 23.2 | 7.7 | 278.0 | 1.4 | [39] |
Lebanon | 27 | 24 | 246 | 21 | [40] |
Yemen | 44.4 | 58.2 | 822.7 | 4.8 | [41] |
Syria | 29 | 21 | 310 | 27 | [42] |
Upper Egypt * | 16.5 | 10.2 | 192 | / | [46] |
Turkey (Bolu) | 18.2 | 17.3 | 258.3 | 7.5 | [44] |
Turkey (Artvin) | 42.2 | 32.2 | 402 | 30.4 | [12] |
Croatia | 44.7 | 42.3 | 542 | 30.8 | [43] |
Kosovo | 22.3 | 21.1 | 358.2 | 12.9 | Present study |
Radionuclides | Data | Mean-SD | Median | Min–Max | Percentiles (25–75) |
---|---|---|---|---|---|
226Ra (Bq/kg) | Actual | 22 ± 5 | 24 | 8–30 | 19–26 |
Simulation | 23 ± 2 | 23 | 12–29 | 21–25 | |
232Th (Bq/kg) | Actual | 21 ± 5 | 21 | 7–31 | 19–25 |
Simulation | 21 ± 2 | 21 | 11–29 | 20–22 | |
40K (Bq/kg) | Actual | 358 ± 106 | 368 | 105–515 | 289–447 |
Simulation | 370 ± 48 | 369 | 181–541 | 337–406 | |
137Cs (Bq/kg) | Actual | 13 ± 12 | 10 | <MDA–43 | 3–15 |
Simulation | 10 ± 2 | 10 | 1–41 | 7–13 | |
232Th/226Ra | Actual | 0.95 ± 0.1 | 0.95 | 0.69–1.21 | 0.9–1.00 |
Simulation | 0.93 ± 0.07 | 0.93 | 0.68–1.33 | 0.88–0.97 | |
40K/226Ra | Actual | 16.5 ± 5.1 | 16.9 | 7.75–30.4 | 12.8–18.5 |
Simulation | 16.4 ± 2.4 | 16.3 | 9.75–29.4 | 14.7–17.8 | |
40K/232Th | Actual | 17.4 ± 5.2 | 18.5 | 7.13–29.9 | 13.4–20.5 |
Simulation | 17.6 ± 2.3 | 17.7 | 9.83–27.6 | 15.9–19.3 |
Statistics | Raeq | Ig | Hex | AGDE (µSv/y) | ADR (nGy/h) | AEDE (µSv/y) | ELCR (×10−3) |
---|---|---|---|---|---|---|---|
Minimum | 27.27 | 0.20 | 0.07 | 91.92 | 13.47 | 16.51 | 0.06 |
Maximum | 100.40 | 0.74 | 0.27 | 335.11 | 48.77 | 59.81 | 0.21 |
Average | 80.13 | 0.61 | 0.22 | 269.81 | 39.3 | 48.22 | 0.17 |
World average | 370 | ≤1 | ≤1 | 300 | 60 | 70 | 2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadiri, S.; Dizman, S.; Yeşilkanat, C.M.; Aliu, H.; Hodolli, G. Radioactivity in Soils of Kosovo and Radiological Implications. Appl. Sci. 2022, 12, 9520. https://doi.org/10.3390/app12199520
Kadiri S, Dizman S, Yeşilkanat CM, Aliu H, Hodolli G. Radioactivity in Soils of Kosovo and Radiological Implications. Applied Sciences. 2022; 12(19):9520. https://doi.org/10.3390/app12199520
Chicago/Turabian StyleKadiri, Sehad, Serdar Dizman, Cafer M. Yeşilkanat, Hamdi Aliu, and Gezim Hodolli. 2022. "Radioactivity in Soils of Kosovo and Radiological Implications" Applied Sciences 12, no. 19: 9520. https://doi.org/10.3390/app12199520
APA StyleKadiri, S., Dizman, S., Yeşilkanat, C. M., Aliu, H., & Hodolli, G. (2022). Radioactivity in Soils of Kosovo and Radiological Implications. Applied Sciences, 12(19), 9520. https://doi.org/10.3390/app12199520