Intelligent Data Analytics Framework for Precision Farming Using IoT and Regressor Machine Learning Algorithms
Abstract
:1. Introduction
- Design of a four-layer framework for an IoT-based intelligent farming system that can support the deployment of a low-cost farming system with smart solutions;
- Evaluation of the proposed precision analytics and decision-making model based on supervised regression machine learning performance through different experimentations.
2. Literature Review
2.1. IoT-Based Monitoring Systems
2.2. Artificial Intelligence Systems Based on the IoT
3. Methodology
3.1. Proposed Framework
3.1.1. Sensor Layer
3.1.2. Edge Layer
3.1.3. Fog Layer
- Data gathering by IoT devices, particularly sensors, which could collect data in real time or in small batches (temperature, humidity, camera vision, light intensity, etc.);
- Data collection and aggregation in a target database;
- Filtration of stored data: Algorithms could be used to clean and correct the data in this step;
- Data classification depended on its intended purpose;
- Computing: During this phase, calculations were performed on the classified data (e.g., the amount of water to pump);
- Making decisions based on predictions and visualizing data in the form of reports or dashboards.
3.1.4. Cloud Layer
3.2. Experimental Model
3.3. Analytics and Decision-Making Model
3.3.1. Dataset Creation and Access
3.3.2. Feature Engineering
3.3.3. Predictive Model Development
4. Model Deployment
Algorithm 1. Proposed Algorithms |
INPUT |
“Features Set”
|
OUTPUT |
Predicted output with label values (regression). |
Step1: Collect input data. |
Step2: Prepare the feature data and label data from raw dataset values from Datasets. |
Step3: Apply feature engineering to each feature data. |
Step4: Find the missing and unknown values, and replace the mean values. |
Step5: Calculate the normalized value of all features sets. |
Step6: Scale all feature data into a specific range. |
Step7: Select the machine learning model for regression, SVM, and MLP. |
Step8: Choose the range of possible values for hyperparameters of ML algorithms. |
Step9: Optimize the values of the hyperparameters using the Grid Search CV Optimization algorithm. |
Step10: Evaluate and find the best score and estimator for the selected classifier. |
Step11: Validate the model using K-Fold Validation Learning Method. |
Step12: Set best-selected hyperparameters tuned for the ML training process. |
Step13: Initialize the feature data and label data for the training dataset. |
Step14: Train the model for respective ML algorithms. |
Step15: Validate the model performance using the K-fold cross-validation method. |
Step16: If validation is successful, then save/deploy the trained model, and if not, repeat steps 2 or step 10. |
Step17: Initialize the feature data for the testing dataset. |
Step18: Load the trained model of ML algorithms. |
Step19: Predict the results for its label values (regression). |
Step20: Evaluate RMSE (Regression) to check system performance. |
5. Experimental Result and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L. Security and Privacy for Green IoT-Based Agriculture: Review, Blockchain Solutions, and Challenges. IEEE Access 2020, 8, 32031–32053. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, X.; Wang, Y.; Tang, W.; Chen, Y.; Li, D. Review of Intelligent Control Methods for Greenhouse Cluster Systems. In Proceedings of the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, GA, USA, 14–17 July 2019; pp. 235–239. [Google Scholar] [CrossRef]
- Gupta, M.; Abdelsalam, M.; Khorsandroo, S.; Mittal, S. Security and Privacy in Smart Farming: Challenges and Opportunities. IEEE Access 2020, 8, 34564–34584. [Google Scholar] [CrossRef]
- Navarro, E.; Costa, N.; Pereira, A. A Systematic Review of IoT Solutions for Smart Farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef]
- O’Donncha, F.; Grant, J. Precision Aquaculture. IEEE Internet Things Mag. 2019, 2, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.M.; Sakkaravarthi, R. Internet of things based smart agriculture system using predictive analytics. Asian J. Pharm. Clin. Res. 2017, 10, 148–152. [Google Scholar] [CrossRef]
- Aleotti, J.; Amoretti, M.; Nicoli, A.; Caselli, S. A Smart Precision-Agriculture Platform for Linear Irrigation Systems. In Proceedings of the 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 13–15 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Brunelli, D.; Albanese, A.; D’Acunto, D.; Nardello, M. Energy Neutral Machine Learning Based IoT Device for Pest Detection in Precision Agriculture. IEEE Internet Things Mag. 2019, 2, 10–13. [Google Scholar] [CrossRef]
- Khriji, S.; El Houssaini, D.; Kammoun, I.; Besbes, K.; Kanoun, O. Energy-Efficient Routing Algorithm Based on Localization and Clustering Techniques for Agricultural Applications. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 56–66. [Google Scholar] [CrossRef]
- Monteleone, S.; de Moraes, E.A.; Maia, R.F. Analysis of the variables that affect the intention to adopt Precision Agriculture for smart water management in Agriculture 4.0 context. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar]
- Pandey, A.K.; Chauhan, M. IOT Based Smart Polyhouse System using Data Analysis. In Proceedings of the 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 27–28 September 2019; Vloume 1, pp. 1–5. [Google Scholar] [CrossRef]
- Rajeswari, S.; Suthendran, K.; Rajakumar, K. A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics. In Proceedings of the International Conference on Intelligent Computing and Control (I2C2), Coimbatore, India, 23–24 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; Iqbal, N.; Zaidi, S.M.H.; Hussain, I.; Mahmood, Z. A Multi-Modal Approach for Crop Health Mapping Using Low Altitude Remote Sensing, Internet of Things (IoT) and Machine Learning. IEEE Access 2020, 8, 112708–112724. [Google Scholar] [CrossRef]
- Stamatescu, G.; Dragana, C.; Stamatescu, I.; Ichim, L.; Popescu, D. IoT-Enabled Distributed Data Processing for Precision Agriculture. In Proceedings of the 2019 27th Mediterranean Conference on Control and Automation (MED), Akko, Israel, 1–4 July 2019; pp. 286–291. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.; Stewart, R.; Kennedy, S. Internet of Things—Propagation modelling for precision agriculture applications. In Proceedings of the Wireless Telecommunications Symposium, Chicago, IL, USA, 26–28 April 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, Q.; Ren, J.; Barclay, D.; Thomson, W. Combining Image Analysis and Smart Data Mining for Precision Agriculture in Livestock Farming. In Proceedings of the Combining Image Analysis and Smart Data Mining for Precision Agriculture in Livestock Farming, Exeter, UK, 21–23 June 2017; pp. 1065–1069. [Google Scholar] [CrossRef]
- Temprilho, A.; Nobrega, L.; Pedreiras, P.; Goncalves, P.; Silva, S. M2M Communication Stack for Intelligent Farming. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Yashaswini, L.S.; Vani, H.U.; Sinchana, H.N.; Kumar, N. Smart automated irrigation system with disease prediction. In Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017; pp. 422–427. [Google Scholar] [CrossRef]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart farming IoT platform based on edge and cloud computing. Biosyst. Eng. 2018, 177, 4–17. [Google Scholar] [CrossRef]
- Subahi, A.F.; Bouazza, K.E. An Intelligent IoT-Based System Design for Controlling and Monitoring Greenhouse Temperature. IEEE Access 2020, 8, 125488–125500. [Google Scholar] [CrossRef]
- Kour, V.P.; Arora, S. Recent Developments of the Internet of Things in Agriculture: A Survey. IEEE Access 2020, 8, 129924–129957. [Google Scholar] [CrossRef]
- Carrasquilla-Batista, A.; Chacon-Rodriguez, A. Standalone Fuzzy Logic Controller Applied to Greenhouse Horticulture Using Internet of Things. In Proceedings of the 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), Panama, Panama, 9–11 October 2019; pp. 574–579. [Google Scholar] [CrossRef]
- Angadi, S.; Katagall, R. Agrivigilance: A Security System For Intrusion Detection In Agriculture Using Raspberry Pi And Opencv. Int. J. Sci. Technol. Res. 2019, 8, 1260–1267. [Google Scholar]
- Codeluppi, G.; Cilfone, A.; Davoli, L.; Ferrari, G. VegIoT Garden: A modular IoT Management Platform for Urban Vegetable Gardens. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 121–126. [Google Scholar] [CrossRef]
- Ahmed, N.; De, D.; Hussain, I. Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas. IEEE Internet Things J. 2018, 5, 4890–4899. [Google Scholar] [CrossRef]
- Araby, A.A.; Elhameed, M.M.A.; Magdy, N.M.; Said, L.A.; Abdelaal, N.; Allah, Y.T.A.; Darweesh, M.S.; Fahim, M.A.; Mostafa, H. Smart IoT Monitoring System for Agriculture with Predictive Analysis. In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies, Thessaloniki, Greece, 13–15 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Arakeri, M.P.; Kumar, B.P.V.; Barsaiya, S.; Sairam, H.V. Computer vision based robotic weed control system for precision agriculture. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 1201–1205. [Google Scholar] [CrossRef]
- Baghrous, M.; Ezzouhairi, A.; Benamar, N. Towards Autonomous Farms Based on Fog Computing. In Proceedings of the 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM), Manama, Bahrain, 19–21 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Belista, F.C.L.; Go, M.P.C.; Lucenara, L.L.; Policarpio, C.J.G.; Tan, X.J.M.; Baldovino, R.G. A Smart Aeroponic Tailored for IoT Vertical Agriculture using Network Connected Modular Environmental Chambers. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, W.-L.; Lin, Y.-B.; Ng, F.-L.; Liu, C.-Y.; Lin, Y.-W. RiceTalk: Rice Blast Detection Using Internet of Things and Artificial Intelligence Technologies. IEEE Internet Things J. 2019, 7, 1001–1010. [Google Scholar] [CrossRef]
- Chen, W.-L.; Lin, Y.-B.; Lin, Y.-W.; Chen, R.; Liao, J.-K.; Ng, F.-L.; Chan, Y.-Y.; Liu, Y.-C.; Wang, C.-C.; Chiu, C.-H.; et al. AgriTalk: IoT for Precision Soil Farming of Turmeric Cultivation. IEEE Internet Things J. 2019, 6, 5209–5223. [Google Scholar] [CrossRef]
- Farhan, L.; Kharel, R.; Kaiwartya, O.; Quiroz-Castellanos, M.; Raza, U.; Teay, S.H. LQOR: Link Quality-Oriented Route Selection on Internet of Things Networks for Green Computing. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Foughali, K.; Fathallah, K.; Frihida, A. A Cloud-IOT Based Decision Support System for Potato Pest Prevention. Procedia Comput. Sci. 2019, 160, 616–623. [Google Scholar] [CrossRef]
- Gnanaraj, A.A.; Jayanthi, J.G. An Application Framework for IoTs Enabled Smart Agriculture Waste Recycle Management System. In Proceedings of the 2017 World Congress on Computing and Communication Technologies (WCCCT), Budapest, Hungary, 18–20 July 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Gutierrez, S.; Martinez, I.; Varona, J.; Cardona, M.; Espinosa, R. Smart Mobile LoRa Agriculture System based on Internet of Things. In Proceedings of the 2019 IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX), Guatemala City, Guatemala, 20–22 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Hirsch, C.; Bartocci, E.; Grosu, R. Capacitive Soil Moisture Sensor Node for IoT in Agriculture and Home. In Proceedings of the 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona, Italy, 19–21 June 2019; pp. 97–102. [Google Scholar] [CrossRef]
- Horng, G.-J.; Liu, M.-X.; Chen, C.-C. The Smart Image Recognition Mechanism for Crop Harvesting System in Intelligent Agriculture. IEEE Sensors J. 2019, 20, 2766–2781. [Google Scholar] [CrossRef]
- Pooja, S.; Uday, D.V.; Nagesh, U.B.; Talekar, S.G. Application of MQTT protocol for real time weather monitoring and precision farming. In Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 15–16 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Prabha, R.; Sinitambirivoutin, E.; Passelaigue, F.; Ramesh, M.V. Design and Development of an IoT Based Smart Irrigation and Fertilization System for Chilli Farming. In Proceedings of the 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Sadowski, S.; Spachos, P. Solar-Powered Smart Agricultural Monitoring System Using Internet of Things Devices. In Proceedings of the 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2018; pp. 18–23. [Google Scholar] [CrossRef]
- Sarangi, S.; Naik, V.; Choudhury, S.B.; Jain, P.; Kosgi, V.; Sharma, R.; Bhatt, P.; Srinivasu, P. An Affordable IoT Edge Platform for Digital Farming in Developing Regions. In Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; pp. 556–558. [Google Scholar] [CrossRef]
- Sureephong, P.; Wiangnak, P.; Wicha, S. The comparison of soil sensors for integrated creation of IOT-based Wetting front detector (WFD) with an efficient irrigation system to support precision farming. In Proceedings of the 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), Chiang Mai, Thailand, 1–4 March 2017; pp. 132–135. [Google Scholar] [CrossRef]
- Khalaf, O.I.; Ogudo, K.A.; Singh, M. A fuzzy-based optimization technique for the energy and spectrum efficiencies trade-off in cognitive radio-enabled 5G network. Symmetry 2021, 13, 47. [Google Scholar] [CrossRef]
- Walia, G.S.; Singh, P.; Singh, M.; Abouhawwash, M.; Park, H.J.; Kang, B.G.; Mahajan, S.; Pandit, A.K. Three-Dimensional Optimum Node Localiza-tion in Dynamic Wireless Sensor Networks. CMC-Comput. Mater. Contin. 2022, 70, 305–321. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, M.; Malhotra, J. Energy efficient cognitive body area network (CBAN) using lookup table and energy harvesting. J. Intell. Fuzzy Syst. 2018, 35, 1253–1265. [Google Scholar] [CrossRef]
- Hassan, M.; Singh, M.; Hamid, K. Survey on NOMA and Spectrum Sharing Techniques in 5G. In Proceedings of the 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 28–30 April 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Rokade, A.; Singh, M. Analysis of Precise Green House Management System using Machine Learning based Internet of Things (IoT) for Smart Farming. In Proceedings of the In Proceedings of the 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 21–28. [Google Scholar] [CrossRef]
- Kadu, A.; Singh, M. Comparative Analysis of e-Health Care Telemedicine System Based on Internet of Medical Things and Artificial Intelligence. In Proceedings of the 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 1768–1775. [Google Scholar] [CrossRef]
- Hassan, M.; Singh, M.; Hamid, K. Impact Of Power And Bandwidth On The Capacity Rate And Number Of Users In Sc-Noma. Harbin Gongye Daxue Xuebao/J. Harbin Inst. Technol. 2021, 53, 118–124. [Google Scholar]
- Hassan, M.; Singh, M.; Hamid, K. Overview of Cognitive Radio Networks. In Journal of Physics: Conference Series; IOP Publishing: Dhanbad, India, 2021; Volume 1831. [Google Scholar]
- Roy, S.K.; Singh, M.; Sharma, K.K.; Bhargava, C.; Singh, B.P. Mathematical Modelling of Simple Passive RC Filters Using Floating Admittance Technique. In Proceedings of the 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangluru, India, 6–8 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
Parameters | References | |||||
---|---|---|---|---|---|---|
Subahi et.al. [2] | A. Carrasquilla-Batista et al. [4] | Codeluppi et al. [6] | A. A. Araby et al. [8] | Proposed Model | ||
Sensors Used | Temperature | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 |
Humidity | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | |
Soil Moisture | 🗸 | 🗸 | 🗸 | |||
Light Intensity | 🗸 | |||||
CO2 | 🗸 | 🗸 | ||||
Technology Used | IoT | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 |
ML | 🗸 | 🗸 | ||||
Precision Agriculture | 🗸 | 🗸 |
Prediction Algorithm (Regression) | Model Parameter | Range Searched | Range Selected |
---|---|---|---|
SVM Regressor | kernel | rbf, poly, sigmoid | poly |
max_iter | 10, 30, 50 | 10 | |
MLP Regressor | Hidden_layer_size | 10, 50, 100 | 100 |
max_iter | 100, 200, 300 | 200 |
Phase | Regression | |
---|---|---|
SVMR | MLPR | |
Training | 315.78 | 446.27 |
Testing | 72.95 | 75.21 |
Regressor | RMSE (avg) |
---|---|
SVM | 0.11 |
MLP | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rokade, A.; Singh, M.; Malik, P.K.; Singh, R.; Alsuwian, T. Intelligent Data Analytics Framework for Precision Farming Using IoT and Regressor Machine Learning Algorithms. Appl. Sci. 2022, 12, 9992. https://doi.org/10.3390/app12199992
Rokade A, Singh M, Malik PK, Singh R, Alsuwian T. Intelligent Data Analytics Framework for Precision Farming Using IoT and Regressor Machine Learning Algorithms. Applied Sciences. 2022; 12(19):9992. https://doi.org/10.3390/app12199992
Chicago/Turabian StyleRokade, Ashay, Manwinder Singh, Praveen Kumar Malik, Rajesh Singh, and Turki Alsuwian. 2022. "Intelligent Data Analytics Framework for Precision Farming Using IoT and Regressor Machine Learning Algorithms" Applied Sciences 12, no. 19: 9992. https://doi.org/10.3390/app12199992
APA StyleRokade, A., Singh, M., Malik, P. K., Singh, R., & Alsuwian, T. (2022). Intelligent Data Analytics Framework for Precision Farming Using IoT and Regressor Machine Learning Algorithms. Applied Sciences, 12(19), 9992. https://doi.org/10.3390/app12199992