Optimizing Field Body Fat Percentage Assessment in Professional Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Body Fat Mass Measurement
2.2.1. Anthropometry
2.2.2. Bioelectric Impedance Analysis
2.2.3. Dual Energy X-ray Absorptiometry
2.2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devlin, B.L.; Kingsley, M.; Leveritt, M.D.; Belski, R. Seasonal changes in soccer players’ body composition and dietary intake practices. J. Strength Cond. Res. 2017, 31, 3319–3326. [Google Scholar] [CrossRef]
- Munguia-Izquierdo, D.; Suarez-Arrones, L.; Di Salvo, V.; Paredes-Hernandez, V.; Alcazar, J.; Ara, I.; Kreider, R.; Mendez-Villanueva, A. Validation of field methods to assess body fat percentage in elite youth soccer players. Int. J. Sports Med. 2018, 39, 349–354. [Google Scholar] [CrossRef]
- Milanese, C.; Cavedon, V.; Corradini, G.; De Vita, F.; Zancanaro, C. Seasonal DXA-measured body composition changes in professional male soccer players. J. Sports Sci. 2015, 33, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2020, 55, 416–442. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; Petri, C.; Maldonado, R.A.; Torreno, N.; Izquierdo, D.M.; Di Salvo, V.; Méndez-Villanueva, A. Body fat assessment in elite soccer players: Cross-validation of different field methods. Sci. Med. Footb. 2018, 2, 203–208. [Google Scholar] [CrossRef]
- López-Taylor, J.R.; González-Mendoza, R.G.; Gaytán-González, A.; Jiménez-Alvarado, J.A.; Villegas-Balcázar, M.; Jáuregui-Ulloa, E.E.; Torres-Naranjo, F. Accuracy of Anthropometric equations for estimating body fat in professional male soccer players compared with DXA. J. Sports Med. 2018, 2018, 6843792. [Google Scholar] [CrossRef] [Green Version]
- Reilly, T.; George, K.; Marfell-Jones, M.; Scott, M.; Sutton, L.; Wallace, J.A. How well do skinfold equations predict percent body fat in elite soccer players? Int. J. Sports Med. 2009, 30, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Mller, W. Current status of body composition assessment in sport: Review and position statement on behalf of the Ad Hoc research working group on body composition health and performance, under the auspices of the I.O.C. medical commission. Sport. Med. 2012, 42, 227–249. [Google Scholar] [CrossRef]
- Leão, C.; Simões, M.; Silva, B.; Clemente, F.; Bezerra, P.; Camões, M. Body composition evaluation issue among young elite football players: DXA assessment. Sports 2017, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Mala, L.; Maly, T.; Zahalka, F. Body composition differences in elite young soccer players based on playing position. Anthropology 2017, 27, 17–22. [Google Scholar] [CrossRef]
- Mala, L.; Maly, T.; Cabell, L.; Hank, M.; Bujnovsky, D.; Zahalka, F. Anthropometric, body composition, and morphological lower limb asymmetries in elite soccer players: A prospective cohort study. Int. J. Environ. Res. Public Health. 2020, 17, 1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mala, L.; Maly, T.; Zahalka, F.; Hrasky, P. Body composition of elite youth soccer players with respect to field position. J. Phys. Educ. Sport 2015, 15, 678–684. [Google Scholar] [CrossRef]
- Leão, C.; Camões, M.; Clemente, F.M.; Nikolaidis, P.T.; Lima, R.; Bezerra, P.; Rosemann, T.; Knechtle, B. Anthropometric profile of soccer players as a determinant of position specificity and methodological issues of body composition estimation. Int. J. Environ. Res. Publ. Health 2019, 16, 2386. [Google Scholar] [CrossRef] [Green Version]
- Bernal-Orozco, M.F.; Posada-Falomir, M.; Quiñónez-Gastélum, C.M.; Plascencia-Aguilera, L.P.; Arana-Nuño, J.R.; Badillo-Camacho, N.; Márquez-Sandoval, F.; Holway, F.E.; Vizmanos-Lamotte, B. Anthropometric and body composition profile of young professional soccer players. J. Strength Cond. Res. 2020, 34, 1911–1923. [Google Scholar] [CrossRef]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Physical fitness, injuries, and team performance in soccer. Med. Sci. Sports Exerc. 2004, 36, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Carling, C.; Orhant, E. Variation in body composition in professional soccer players: Interseasonal and intraseasonal changes and the effects of exposure time and player position. J. Strength Cond. Res. 2010, 24, 1332–1339. [Google Scholar] [CrossRef] [Green Version]
- Kemper, G.L.J.; Van Der Sluis, A.; Brink, M.S.; Visscher, C.; Frencken, W.G.P.; Elferink-Gemser, M.T. Anthropometric injury risk factors in elite-standard youth soccer. Int. J. Sports Med. 2015, 36, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA—J. Am. Med. Assoc. 2013, 310, 2191–2194. [CrossRef] [Green Version]
- Slater, G.; Shaw, G.; Kerr, A. Athlete considerations for physique measurement. Best Pract. Protoc. Phys. Assess. Sport 2018, 47–60. [Google Scholar] [CrossRef]
- Stewart, A.; Marfell-Jones, M. International society for advancement of kinanthropometry. In International Standards for Anthropometric Assessment, 3rd ed.; ISAK: Lower Hutt, New Zealand, 2011; ISBN 9780620362078. [Google Scholar]
- Civar, S.; Aktop, A.; Tercan, E.; Ozdol, Y.; Ozer, K. Validity of leg-to-leg bioelectrical impedance measurement in highly active women. J. Strength Cond. Res. 2006, 20, 359–365. [Google Scholar] [CrossRef]
- Withers, R.T.; Craig, N.P.; Bourdon, P.C.; Norton, K.I. Relative body fat and anthropometric prediction of body density of male athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.M.; Rowe, D.A.; Misic, M.M.; Prior, B.M.; Arngrímsson, S.Á. Skinfold prediction equation for athletes developed using a four-component model. Med. Sci. Sports Exerc. 2005, 37, 2006–2011. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, H.; Sinning, W. The anthropometric estimation of body density and lean body weight of male athletes. Med. Sci. Sport. 1973, 5, 174–180. [Google Scholar] [CrossRef]
- Faulkner, J.A. Physiology of swimming. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1966, 37, 41–54. [Google Scholar] [CrossRef]
- Carter, J.E.L. Body Composition of Montreal Olympic Athletes. In Physical Structure of Olympic Athletes; Medicine and Sport Science; Jokl, E., Hebbelinck, M., Eds.; Karger Publishers: Basel, Switzerland, 1982; pp. 107–116. ISBN 0254-5020. [Google Scholar]
- Stewart, A.D.; Hannan, W.J. Prediction of fat and fat-free mass in male athletes using dual X-ray absorptiometry as the reference method. J. Sports Sci. 2000, 18, 263–274. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Mayhew, J.L.; Piper, F.C. Prediction of body composition in college football players. J. Sports Med. Phys. Fit. 1980, 20, 317–324. [Google Scholar]
- Lean, M.E.J.; Han, T.S.; Deurenberg, P. Predicting body composition by densitometry from simple anthropometric measurements. Am. J. Clin. Nutr. 1996, 63, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohman, T. Skinfolds and body density and their relation to body fatness: A review. Hum. Biol. 1981, 53, 185–225. [Google Scholar]
- Peterson, M.J.; Czerwinski, S.A.; Siervogel, R.M. Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am. J. Clin. Nutr. 2003, 77, 1186–1191. [Google Scholar] [CrossRef] [Green Version]
- Durnin, J.V.G.A.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Durnin, J.V.G.A.; Rahaman, M.M. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br. J. Nutr. 1967, 21, 681–689. [Google Scholar] [CrossRef]
- Wilmore, J.H.; Behnke, A.R. An anthropometric estimation of body density and lean body weight in young men. J. Appl. Physiol. 1969, 27, 25–31. [Google Scholar] [CrossRef]
- Eston, R.G.; Rowlands, A.V.; Charlesworth, S.; Davies, A.; Hoppitt, T. Prediction of DXA-determined whole body fat from skinfolds: Importance of including skinfolds from the thigh and calf in young, healthy men and women. Eur. J. Clin. Nutr. 2005, 59, 695–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siri, W.E. The gross composition of the body. Adv. Biol. Med. Phys. 1956, 4, 239–280. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Maughan, R.; Hardy, L. Body fat consensus statement of the steering groups of the British Olympic Association. Sport. Exerc. Inj. 1996, 2, 46–49. [Google Scholar]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Ulijaszek, S.J.; Kerr, D.A. Anthropometric measurement error and the assessment of nutritional status. Br. J. Nutr. 1999, 82, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batterham, A.M.; Hopkins, W.G. Making meaningful inferences about magnitudes. Int. J. Sports Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef]
- Sutton, L.; Scott, M.; Wallace, J.; Reilly, T. Body composition of English Premier League soccer players: Influence of playing position, international status, and ethnicity. J. Sports Sci. 2009, 27, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Milsom, J.; Naughton, R.; O’Boyle, A.; Iqbal, Z.; Morgans, R.; Drust, B.; Morton, J.P. Body composition assessment of English Premier League soccer players: A comparative DXA analysis of first team, U21 and U18 squads. J. Sports Sci. 2015, 33, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Bilsborough, J.C.; Greenway, K.; Opar, D.; Livingstone, S.; Cordy, J.; Coutts, A.J. The accuracy and precision of DXA for assessing body composition in team sport athletes. J. Sports Sci. 2014, 32, 1821–1828. [Google Scholar] [CrossRef] [PubMed]
Mean | SD | Minimum | Maximum | |
---|---|---|---|---|
Age (years) | 26.3 | 3.7 | 22.2 | 35.5 |
Weight (kg) | 77.4 | 6.1 | 64.9 | 89.2 |
Height (cm) | 181.2 | 6.7 | 169.0 | 193.0 |
BMI (kg/m2) | 23.6 | 1.2 | 21.0 | 25.6 |
SKF (mm): | ||||
Triceps | 5.7 | 1.9 | 3.0 | 10.50 |
Subscapular | 8.1 | 2.0 | 6.0 | 15.0 |
Biceps | 2.5 | 0.8 | 1.5 | 4.5 |
Iliac crest | 9.6 | 2.8 | 6.5 | 17.0 |
Supraspinale | 5.2 | 1.7 | 3.5 | 9.0 |
Abdominal | 11.5 | 5.0 | 5.5 | 26.5 |
Calf | 7.7 | 3.0 | 5.0 | 16.5 |
Thigh | 3.9 | 1.1 | 2.0 | 6.5 |
DXA (%BF) | 15.3 | 2.0 | 11.9 | 18.9 |
BIA (%BF) | 13.0 | 2.5 | 7.6 | 17.5 |
EQUATIONS (%BF) | ||||
Carter (1982) | 7.0 | 1.3 | 5.4 | 10.5 |
Civar et al. (2006) | 10.6 | 2.1 | 8.1 | 15.6 |
Evans et al. (2005) | 8.8 | 2.3 | 6.2 | 14.3 |
Faulkner (1966) | 10.4 | 1.4 | 8.7 | 13.8 |
Forsyth and Sinning (1973) | 10.6 | 3.6 | 5.8 | 19.6 |
Munguia-Izquierdo et al. (2018) | 9.2 | 1.7 | 7.3 | 13.4 |
Stewart and James Hannan (2000) | 7.8 | 3.2 | 3.7 | 16.4 |
Suarez-Arrones et al. (2018) | 15.0 | 2.0 | 12.7 | 19.9 |
White et al. (1980) | 7.2 | 1.6 | 5.5 | 11.4 |
Withers et al. (1987) | 7.9 | 2.3 | 5.1 | 14.0 |
Eston et al. (2005) | 8.9 | 2.1 | 6.5 | 15.0 |
Durnin and Rahaman (1967) | 11.6 | 2.6 | 7.9 | 17.8 |
Durnin and Womersley (1974) | 11.4 | 2.7 | 7.7 | 16.8 |
Lean et al. (1996) | 10.7 | 2.7 | 6.4 | 16.3 |
Lohman (1981) | 11.9 | 4.4 | 6.8 | 22.7 |
Peterson et al. (2003) | 14.5 | 2.4 | 11.4 | 19.6 |
Wilmore and Behnke (1969) | 11.7 | 2.3 | 8.9 | 18.5 |
Correlation (90% CI) | Bias (±LoA) | Standardized Differences (90% CL) | Qualitative Assessment | ||
---|---|---|---|---|---|
BIA | 0.42 (0.05–0.68) | −2.30 * (±4.91) | −1.09 (0.45) | Almost certainly | 0/0/100 |
Equations: Carter (1982) | 0.78 (0.58–0.89) | −8.30 * (±2.53) | −5.65 (0.30) | Almost certainly | 0/0/100 |
Civar et al. (2006) | 0.72 (0.47–0.86) | −4.68 * (±3.02) | −2.68 (0.35) | Almost certainly | 0/0/100 |
Evans et al. (2005) | 0.79 (0.59–0.90) | −6.51 * (±2.81) | −4.11 (0.42) | Almost certainly | 0/0/100 |
Faulkner (1966) | 0.79 (0.59–0.90) | −4.87 * (±2.45) | −2.74 (0.23) | Almost certainly | 0/0/100 |
Forsyth and Sinning (1973) | 0.73 (0.49–0.86) | −4.73 * (±4.92) | −2.93 (0.62) | Almost certainly | 0/0/100 |
Munguia-Izquierdo et al. (2018) | 0.82 (0.64–0.91) | −6.15 * (±2.28) | −3.72 (0.27) | Almost certainly | 0/0/100 |
Suarez-Arrones et al. (2018) | 0.79 (0.60–0.90) | −0.30 (±2.56) | −0.14 (0.23) | Possibly | 1/67/32 |
Stewart and James Hannan (2000) | 0.73 (0.50–0.87) | −7.52 * (±4.36) | −5.30 (0.81) | Almost certainly | 0/0/100 |
Reilly et al. (2009) | 0.78 (0.58–0.89) | −5.86 * (±2.46) | −3.47 (0.25) | Almost certainly | 0/0/100 |
White et al. (1980) | 0.80 (0.61–0.90) | −8.13 * (±2.46) | −5.52 (0.35) | Almost certainly | 0/0/100 |
Withers et al. (1987) | 0.78 (0.58–0.89) | −7.38 * (±2.88) | −4.89 (0.48) | Almost certainly | 0/0/100 |
Eston et al. (2005) | 0.75 (0.53–0.88) | −6.41 * (±2.80) | −3.98 (0.37) | Almost certainly | 0/0/100 |
Durnin and Rahaman (1967) | 0.84 (0.67–0.92) | −3.75 * (±2.76) | −2.10 (0.33) | Almost certainly | 0/0/100 |
Durnin and Womersley (1974) | 0.74 (0.51–0.87) | −3.92 * (±3.52) | −1.86 (0.32) | Almost certainly | 0/0/100 |
Lean et al. (1996) | 0.81 (0.62–0.91) | −4.65 * (±3.06) | −2.74 (0.43) | Almost certainly | 0/0/100 |
Lohman (1981) | 0.78 (0.58–0.89) | −3.42 * (±6.14) | −2.15 (0.65) | Almost certainly | 0/0/100 |
Peterson et al. (2003) | 0.80 (0.61–0.90) | −0.81 * (±2.83) | −0.38 (0.26) | Likely | 0/11/88 |
Wilmore and Behnke (1969) | 0.75 (0.52–0.87) | −3.60 * (±3.17) | −1.98 (0.34) | Almost certainly | 0/0/100 |
Skinfold | Correlation | Significance (p) |
---|---|---|
Triceps (T) | 0.81 | <0.001 |
Subscapular (Sb) | 0.42 | 0.061 |
Biceps (B) | 0.51 | 0.017 |
Iliac crest (IC) | 0.75 | <0.001 |
Supraspinale (Sp) | 0.76 | <0.001 |
Abdominal (Ab) | 0.74 | <0.001 |
Thigh (Th) | 0.69 | 0.001 |
Calf (Ca) | 0.50 | 0.022 |
Sum of 4 (T, Ab, Th, Ca) | 0.78 | <0.001 |
Sum of 4 (T, Sb, B, IC) | 0.80 | <0.001 |
Sum of 4 (T, Sb, Sp, Ab) | 0.82 | <0.001 |
Sum of 5 (T, Sb, B, IC, Th) | 0.81 | <0.001 |
Sum of 6 (Sb, T, Sp, Ab, Th, Ca) | 0.79 | <0.001 |
Sum of 7 (B, Sb, T, Sp, Ab, Th, Ca) | 0.78 | <0.001 |
Sum of 8 (B, Sb, T, IC, Sp, Ab, Th, Ca) | 0.81 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Ferran, M.; Rafei, E.; Romero-Morales, C.; Pérez-Ruiz, M.; Lam-Meléndez, A.; Munguia-Izquierdo, D.; Pareja-Galeano, H. Optimizing Field Body Fat Percentage Assessment in Professional Soccer Players. Appl. Sci. 2022, 12, 727. https://doi.org/10.3390/app12020727
Martinez-Ferran M, Rafei E, Romero-Morales C, Pérez-Ruiz M, Lam-Meléndez A, Munguia-Izquierdo D, Pareja-Galeano H. Optimizing Field Body Fat Percentage Assessment in Professional Soccer Players. Applied Sciences. 2022; 12(2):727. https://doi.org/10.3390/app12020727
Chicago/Turabian StyleMartinez-Ferran, Maria, Eleh Rafei, Carlos Romero-Morales, Margarita Pérez-Ruiz, Alberto Lam-Meléndez, Diego Munguia-Izquierdo, and Helios Pareja-Galeano. 2022. "Optimizing Field Body Fat Percentage Assessment in Professional Soccer Players" Applied Sciences 12, no. 2: 727. https://doi.org/10.3390/app12020727