Safe and Scalable Polyethylene Glycol-Assisted Hydrothermal Synthesis and Laser Cooling of 10%Yb3+:LiLuF4 Crystals
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skripka, A.; Karabanovas, V.; Jarockyte, G.; Marin, R.; Tam, V.; Cerruti, M.; Rotomskis, R.; Vetrone, F. Decoupling theranostics with rare earth doped nanoparticles. Adv. Funct. Mater. 2019, 29, 1807105. [Google Scholar] [CrossRef]
- Huang, P.; Zheng, W.; Zhou, S.; Tu, D.; Chen, Z.; Zhu, H.; Li, R.; Ma, E.; Huang, M.; Chen, X. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew. Chem. Int. Ed. 2014, 53, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.-S.; Zhang, P.-Z.; Sun, L.-D.; Shi, S.; Chen, N.-X.; Dong, H.; Zheng, X.-Y.; Li, L.-M.; Yan, C.-H. Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging. Nanoscale 2017, 9, 4660–4664. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, T.; Shimamura, K. Temperature sensitive near-infrared luminescence of Er3+ ions in LiYF4. Phys. Status Solidi C 2011, 8, 2833–2836. [Google Scholar] [CrossRef]
- Skripka, A.; Morinvil, A.; Matulionyte, M.; Cheng, T.; Vetrone, F. Advancing neodymium single-band nanothermometry. Nanoscale 2019, 11, 11322–11330. [Google Scholar] [CrossRef]
- Meijer, M.S.; Rojas-Gutierrez, P.A.; Busko, D.; Howard, I.A.; Frenzel, F.; Würth, C.; Resch-Genger, U.; Richards, B.S.; Turshatov, A.; Capobianco, J.A.; et al. Absolute upconversion quantum yields of blue-emitting LiYF4:Yb3+, Tm3+ upconverting nanoparticles. Phys. Chem. Chem. Phys. 2018, 20, 22556–22562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.; Zheng, W.; Tu, D.; Shang, X.; Zhang, M.; Li, R.; Xu, J.; Liu, Y.; Chen, X. Unraveling the electronic structures of neodymium in LiLuF4 nanocrystals for ratiometric temperature sensing. Adv. Sci. 2019, 6, 1802282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Kyhm, J.-H.; Hong, A.-R.; Song, J.D.; Lee, K.; Ko, H.; Jang, H.S. Multicolor tunable upconversion luminescence from sensitized seed-mediated grown LiGdF4:Yb, Tm-based core/triple-shell nanophosphors for transparent displays. Chem. Mater. 2018, 30, 8457–8464. [Google Scholar] [CrossRef]
- Kim, S.Y.; Won, Y.-H.; Jang, H.S. A strategy to enhance Eu3+ emission from LiYF4:Eu nanophosphors and green-to-orange multicolor tunable, transparent nanophosphor-polymer composites. Sci. Rep. 2015, 5, 7866. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Wang, R.; Han, Q.; Dong, J.; Yan, L.; Zheng, H. Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle. J. Phys. Chem. C 2015, 119, 2349–2355. [Google Scholar] [CrossRef]
- Cheng, T.; Marin, R.; Skripka, A.; Vetrone, F. Small and bright lithium-based upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 12890–12899. [Google Scholar] [CrossRef]
- Chen, X.; Xu, W.; Song, H.; Chen, C.; Xia, H.; Zhu, Y.; Zhou, D.; Cui, S.; Dai, Q.; Zhang, J. Highly efficient LiYF4:Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application. ACS Appl. Mater. Interfaces 2016, 8, 9071–9079. [Google Scholar] [CrossRef]
- Mahalingam, V.; Naccache, R.; Vetrone, F.; Capobianco, J.A. Sensitized Ce3+ and Gd3+ ultraviolet emissions by Tm3+ in colloidal LiYF4 nanocrystals. Chem.–A Eur. J. 2009, 15, 9660–9663. [Google Scholar] [CrossRef] [PubMed]
- Seletskiy, D.V.; Melgaard, S.D.; Bigotta, S.; Di Lieto, A.; Tonelli, M.; Sheik-Bahae, M. Laser cooling of solids to cryogenic temperatures. Nat. Photonics 2010, 4, 161. [Google Scholar] [CrossRef]
- Melgaard, S.D.; Seletskiy, D.V.; Di Lieto, A.; Tonelli, M.; Sheik-Bahae, M. Optical refrigeration to 119 K, below national institute of standards and technology cryogenic temperature. Opt. Lett. 2013, 38, 1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, A.A.; Barker, P. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals. Nat. Photonics 2017, 11, 634. [Google Scholar] [CrossRef]
- Roder, P.B.; Smith, B.E.; Zhou, X.; Crane, M.J.; Pauzauskie, P.J. Laser refrigeration of hydrothermal nanocrystals in physiological media. Proc. Natl. Acad. Sci. USA 2015, 112, 15024–15029. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Pant, A.; Davis, E.J.; Pauzauskie, P.J. Design of a radiation-balanced fiber laser via optically active composite cladding materials. J. Opt. Soc. Am. B 2019, 36, 3307–3314. [Google Scholar] [CrossRef]
- Pant, A.; Xia, X.; Davis, E.J.; Pauzauskie, P.J. Solid-state laser refrigeration of a composite semiconductor Yb:YLiF4 optomechanical resonator. Nat. Commun. 2020, 11, 3235. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Pant, A.; Ganas, A.S.; Jelezko, F.; Pauzauskie, P.J. Quantum point defects for solid-state laser refrigeration. Adv. Mater. 2021, 33, 1905406. [Google Scholar] [CrossRef]
- Yasyukevich, A.S.; Mandrik, A.V.; Kuleshov, N.V.; Gordeev, E.Y.; Korableva, S.L.; Naumov, A.K.; Semashko, V.V.; Popov, P.A. Spectral kinetic properties of Yb3+:Na4Y6F22 and Yb3+:LiLuF4 crystals. J. Appl. Spectrosc. 2007, 74, 844–850. [Google Scholar] [CrossRef]
- Zhou, X.; Smith, B.E.; Roder, P.B.; Pauzauskie, P.J. Laser refrigeration of ytterbium-doped sodium–yttrium–fluoride nanowires. Adv. Mater. 2016, 28, 8658–8662. [Google Scholar] [CrossRef]
- Xia, X.; Pant, A.; Zhou, X.; Dobretsova, E.A.; Bard, A.B.; Lim, M.B.; Roh, J.Y.D.; Gamelin, D.R.; Pauzauskie, P.J. Hydrothermal synthesis and solid-state laser refrigeration of ytterbium-doped potassium-lutetium-fluoride (KLF) microcrystals. Chem. Mater. 2021, 33, 4417–4424. [Google Scholar] [CrossRef]
- Dobretsova, E.A.; Xia, X.; Pant, A.; Lim, M.B.; De Siena, M.C.; Boldyrev, K.N.; Molchanova, A.D.; Novikova, N.N.; Klimin, S.A.; Popova, M.N. Hydrothermal synthesis of Yb3+: LuLiF4 microcrystals and laser refrigeration of Yb3+: LuLiF4/silicon-nitride composite nanostructures. Laser Photonics Rev. 2021, 15, 2100019. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, B. Hydrothermal synthesis and characterization of LiREF4 (RE = Y, Tb−Lu) nanocrystals and their core−shell nanostructures. Inorg. Chem. 2010, 49, 6834–6839. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Huang, W.; Ni, Y.; Xu, Z. Hydrothermal synthesis and luminescence properties of octahedral LiYbF4:Er3+ microcrystals. Mater. Res. Bull. 2011, 46, 216–221. [Google Scholar] [CrossRef]
- Huang, W.; Lu, C.; Jiang, C.; Jin, J.; Ding, M.; Ni, Y.; Xu, Z. Rare earth doped LiYbF4 phosphors with controlled morphologies: Hydrothermal synthesis and luminescent properties. Mater. Res. Bull. 2012, 47, 1310–1315. [Google Scholar] [CrossRef]
- Luo, R.; Li, T.; Chen, Y.; Ning, Z.; Zhao, Y.; Liu, M.; Lai, X.; Zhong, C.; Wang, C.; Bi, J.; et al. Na(1-x)Lix(Gd0.39Y0.39Yb0.2Er0.02)f4 (0 ≤ x ≤ 1) solid solution microcrystals: Li/Na ratio-induced transition of crystalline phase and morphology and their enhanced upconversion emission. Cryst. Growth Des. 2018, 18, 6581–6590. [Google Scholar] [CrossRef]
- Littleford, T.E.; Jackson, R.A.; Read, M.S.D. An atomistic simulation study of the effect of dopants on the morphology of YLiF4. Phys. Status Solidi C 2013, 10, 156–159. [Google Scholar] [CrossRef]
- Littleford, T.E.; Jackson, R.A.; Read, M.S. An atomistic surface simulation study predicting morphologies and segregation in yttrium lithium fluoride. Surf. Sci. 2012, 606, 1550–1555. [Google Scholar] [CrossRef]
- Azzurra, V.; Giovanni, C.; Alberto Di, L.; Arlete, C.; Hans, P.J.; Mauro, T. Investigation of yb-doped LiLuF4 single crystals for optical cooling. Opt. Eng. 2016, 56, 1–5. [Google Scholar]
- Fedorov, P.P.; Aleksandrov, V.B.; Bondareva, O.S.; Buchinskaya, I.I.; Val’Kovskii, M.D.; Sobolev, B.P. Concentration dependences of the unit-cell parameters of nonstoichiometric fluorite-type Na0.5−xR0.5+xF2+2x phases (R = rare-earth elements). Crystallogr. Rep. 2001, 46, 239–245. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobretsova, E.A.; Pant, A.; Xia, X.; Gariepy, R.E.; Pauzauskie, P.J. Safe and Scalable Polyethylene Glycol-Assisted Hydrothermal Synthesis and Laser Cooling of 10%Yb3+:LiLuF4 Crystals. Appl. Sci. 2022, 12, 774. https://doi.org/10.3390/app12020774
Dobretsova EA, Pant A, Xia X, Gariepy RE, Pauzauskie PJ. Safe and Scalable Polyethylene Glycol-Assisted Hydrothermal Synthesis and Laser Cooling of 10%Yb3+:LiLuF4 Crystals. Applied Sciences. 2022; 12(2):774. https://doi.org/10.3390/app12020774
Chicago/Turabian StyleDobretsova, Elena A., Anupum Pant, Xiaojing Xia, Rachel E. Gariepy, and Peter J. Pauzauskie. 2022. "Safe and Scalable Polyethylene Glycol-Assisted Hydrothermal Synthesis and Laser Cooling of 10%Yb3+:LiLuF4 Crystals" Applied Sciences 12, no. 2: 774. https://doi.org/10.3390/app12020774
APA StyleDobretsova, E. A., Pant, A., Xia, X., Gariepy, R. E., & Pauzauskie, P. J. (2022). Safe and Scalable Polyethylene Glycol-Assisted Hydrothermal Synthesis and Laser Cooling of 10%Yb3+:LiLuF4 Crystals. Applied Sciences, 12(2), 774. https://doi.org/10.3390/app12020774