Hemorheological Alterations and Physical Activity
Abstract
:1. Introduction
2. Topics and Results
2.1. Erythrocyte Aggregation
- -
- Lack of change in erythrocyte aggregability;
- -
- Increase in aggregation, associated or not with an increase in the plasma level of fibrinogen (Fb);
- -
- Reduction of erythrocyte aggregation.
- (1)
- The studied population (athletes or sedentary individuals, population with accompanying diseases);
- (2)
- The performed exercise and type of sport (cycling, running);
- (3)
- The method used to measure aggregation.
2.2. Change in Basic Blood Plasma Components
2.2.1. Fibrinogen
2.2.2. Albumins and Globulins
2.2.3. Testosterone
2.3. Blood Flow
2.3.1. Vasodilation
- Increasing the effective area for exchange of oxygen (O2) and other chemical compounds between erythrocytes and cells in the body;
- Improving tissue diffusion of oxygen (O2) and increasing the amount of oxygen received by the muscles [61].
2.3.2. Blood Viscosity as a Regulator of Vasodilation
2.4. Blood Volume
2.5. Changes in the Endothelial Cells of the Vascular Walls
2.6. Blood Pressure
2.7. Sport and Hypoxia
2.8. Hemorheological Changes and Their Interaction with Different Motor Activity
3. Conclusions
- -
- Erythrocyte deformability and aggregation;
- -
- Change in the concentration of basic plasma components—Fibrinogen, albumins, globulins, testosterone, etc.;
- -
- Changes in blood flow (through vasodilatation and change in overall blood viscosity);
- -
- Changes in blood volume;
- -
- Changes in the endothelial cells of the vascular walls;
- -
- Changes in blood pressure;
- -
- Changes as a result of tissue hypoxia;
- -
- Interacting, different in nature hemorheological changes.
- -
- oxidative and/or mechanical stress;
- -
- metabolic changes in cells and tissues (reduced pH, changes in tissue oxidation, accumulation of lactate);
- -
- changes in respiratory lung functions;
- -
- changes in the regulation and adaptation of vascular tone (for example, in changes in the mechanoreceptors of vascular endothelial cells, as well as in the synthesis of endothelial nitric oxide synthase).
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schild, M.; Eichner, G.; Beiter, T.; Zügel, M.; Krumholz-Wagner, I.; Hudemann, J.; Pilat, C.; Krüger, K.; Niess, A.M.; Steinacker, J.M.; et al. Effects of acute endur-ance exercise on plasma protein profiles of endurance-trained and untrained individuals over time. Mediators Inflamm. 2016, 2016, 4851935. [Google Scholar] [CrossRef] [Green Version]
- Walsh, N.P.; Gleeson, M.; Shephard, R.J.; Gleeson, M.; Woods, J.; Bishop, N.C.; Fleshner, M.; Green, C.; Pedersen, B.K.; Hoffman-Goetz, L.; et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011, 17, 6–63. [Google Scholar] [PubMed]
- Gokhale, R.; Chandrashekara, S.; VasanthaKumar, K. Cytokine response to strenuous exercise in athletes and non-athletes—An adaptive response. Cytokine 2007, 40, 123–127. [Google Scholar] [CrossRef]
- Huffman, K.M.; Slentz, C.A.; Bales, C.W.; Houmard, J.A.; Kraus, W.E. Relationships between adipose tissue and cytokine responses to a randomized controlled exercise training intervention. Metabolism 2008, 57, 577–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zvetkova, E.; Antonova, N.; Ivanov, I.; Savov, Y.; Gluhcheva, Y. Main hemorheological problems in disorders of social sig-nificance. Ser. Biomech. 2010, 25, 61–67. [Google Scholar]
- Antonova, N.; Riha, P.; Ivanov, I. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation. Clin. Hemorheol. Microcirc. 2008, 39, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Antonova, N.; Zvetkova, E.; Ivanov, I.; Savov, Y. Hemorheological changes and characteristic parameters derived from whole blood viscometry in chronic heroin addicts. Clin. Hemorheol. Microcirc. 2008, 39, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Connes, P.; Dufour, S.; Pichon, A.; Favret, F. Blood Rheology, Blood Flow, and Human Health. In Nutrition and Enhanced Sports Performance; Academic Press: Cambridge, MA, USA, 2019; pp. 359–369. [Google Scholar]
- Meiselman, H.J. Red blood cell aggregation: 45 years being curious. Biorheology 2009, 46, 1–19. [Google Scholar] [CrossRef]
- Connes, P.; Caillaud, C.; Py, G.; Mercier, J.; Hue, O.; Brun, J.-F. Maximal exercise and lactate do not change red blood cell aggregation in well trained athletes. Clin. Hemorheol. Microcirc. 2007, 36, 319–326. [Google Scholar]
- Connes, P.; Simmonds, M.J.; Brun, J.F.; Baskurt, O.K. Exercise hemorheology: Classical data, recent findings and unresolved issues. Clin. Hemorheol. Microcirc. 2013, 53, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Tripette, J.; Hardy-Dessources, M.-D.; Beltan, E.; Sanouiller, A.; Bangou, J.; Chalabi, T.; Chout, R.; Hedreville, M.; Broquere, C.; Nebor, D.; et al. Endurance running trial in tropical environment: A blood rheological study. Clin. Hemorheol. Microcirc. 2011, 47, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, O.; Erman, A.; Muratli, S.; Bor-Kucukatay, M.; Baskurt, O.K. Time course of hemorheological alterations after heavy anaerobic exercise in untrained human subjects. J. Appl. Physiol. 2003, 94, 997–1002. [Google Scholar] [CrossRef]
- Antonova, N.; Riha, P.; Ivanov, I.; Gluhcheva, Y. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology. Clin. Hemorheol. Microcirc. 2011, 49, 441–450. [Google Scholar] [CrossRef]
- Lara Fernandes, J.; Serrano, C.V.; Toledo, F.; Hunziker, M.F.; Zamperini, A.; Teo, F.H.; Oliveira, R.T.; Blotta, M.H.; Rondon, M.U.; Negrão, C.E. Acute and chronic effects of exercise on inflammatory markers and B-type natriuretic peptide in patients with coronary artery disease. Clin. Res. Cardiol. 2011, 100, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Tambalis, K.; Panagiotakos, D.B.; Kavouras, S.A.; Sidossis, L.S. Responses of blood lipids to aerobic, resistance, and com-bined aerobic with resistance exercise training: A systematic review of current evidence. Angiology 2009, 60, 614–632. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.D.; Arena, R.; Riebe, D.; Pescatello, L.S. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription. Curr. Sport. Med. Rep. 2013, 12, 215–217. [Google Scholar] [CrossRef]
- Kannel, W.B.; Wolf, P.A.; Castelli, W.P.; D’Agostino, R.B. Fibrinogen and risk of cardiovascular disease. The Framingham Study. JAMA 1987, 258, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Stuart, J.; Kenny, M.W. Blood rheology. J. Clin. Pathol. 1980, 33, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudaev, V.A.; Dyukov, I.V.; Borodkin, V.V. Change of the level of fibrinogen and its high molecular derivatives as a result of physical-training in chd patients. Ter. Arkhiv 1986, 58, 62–67. [Google Scholar]
- Lee, A.; Smith, W.; Lowe, G.; Tunstall-Pedoe, H. Plasma fibrinogen and coronary risk factors: The Scottish heart health study. J. Clin. Epidemiol. 1990, 43, 913–919. [Google Scholar] [CrossRef]
- Ernst, E. Regular exercise reduces fibrinogen levels: A review of longitudinal studies. Br. J. Sports Med. 1993, 27, 175–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratton, J.R.; Chandler, W.L.; Schwartz, R.S.; Cerqueira, M.D.; Levy, W.C.; Kahn, S.; Larson, V.G.; Cain, K.C.; Beard, J.C.; Abrass, I.B. Effects of physical conditioning on fibrinolytic variables and fibrinogen in young and old healthy adults. Circulation 1991, 83, 1692–1697. [Google Scholar] [CrossRef] [Green Version]
- Wosornu, D.; Allardyce, W.; Ballantyne, D.; Tansey, P. Influence of power and aerobic exercise training on haemostatic factors after coronary artery surgery. Heart 1992, 68, 181–186. [Google Scholar] [CrossRef]
- Ernst, E.; Daburger, L.; Saradeth, T. The kinetics of blood rheology during and after prolonged standardized exercise. Clin. Hemorheol. Microcirc. 1991, 11, 429–439. [Google Scholar] [CrossRef]
- Weight, L.M.; Alexander, D.; Jacobs, P. Strenuous exercise: Analogous to the acute-phase response? Clin. Sci. 1991, 81, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Noakes, T.D.; Carter, J.W. The responses of plasma biochemical parameters to a 56-km race in novice and experienced ul-tra-marathon runners. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Liesen, H.; Dufaux, B.; Hollmann, W. Modifications of serum glycoproteins the days following a prolonged physical exer-cise and the influence of physical training. Eur. J. Appl. Physiol. Occup. Physiol. 1977, 37, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Bonifazi, M.; Bela, E.; Carli, G.; Lodi, L.; Martelli, G.; Zhu, B.; Lupo, C. Influence of training on the response of androgen plasma concentrations to exercise in swimmers. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Janssen, G.M.E.; Degenaar, C.P.; Menheere, P.P.C.A.; Habets, H.M.L.; Geurten, P. Plasma Urea, Creatinine, Uric Acid, Albumin, and Total Protein Concentrations Before and After 15-, 25-, and 42-km Contests. Endoscopy 1989, 10, S132–S138. [Google Scholar] [CrossRef]
- Riachy, R.; McKinney, K.; Tuvdendorj, D. Various Factors May Modulate the Effect of Exercise on Testosterone Levels in Men. J. Funct. Morphol. Kinesiol. 2020, 5, 81. [Google Scholar] [CrossRef] [PubMed]
- Vingren, J.L.; Kraemer, W.J.; Ratamess, N.A.; Anderson, J.M.; Volek, J.S.; Maresh, C.M. Testosterone Physiology in Resistance Exercise and Training. Sports Med. 2010, 40, 1037–1053. [Google Scholar] [CrossRef]
- Diver, M. Analytical and physiological factors affecting the interpretation of serum testosterone concentration in men. Ann. Clin. Biochem. Int. J. Lab. Med. 2006, 43, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Hisasue, S.I. Contemporary perspective and management of testosterone deficiency: Modifiable factors and variable man-agement. Int. J. Urol. 2015, 22, 1084–1095. [Google Scholar] [CrossRef]
- Adorni, M.P.; Zimetti, F.; Cangiano, B.; Vezzoli, V.; Bernini, F.; Caruso, D.; Corsini, A.; Sirtori, C.R.; Ecariboni, A.; Bonomi, M. High-density lipoprotein function is reduced in patients affected by genetic or idiopathic hypogonadism. J. Clin. Endocrinol. Metab. 2019, 104, 3097–3107. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, N.; Thakur, D.S.; Patidar, A. Male hypogonadism: Symptoms and treatment. J. Adv. Pharm. Technol. & Res. 2010, 1, 297. [Google Scholar]
- Devi, S.; Saxena, J.; Rastogi, D.; Goel, A.; Saha, S. Short Communication Effect of Short-term Physical Exercise on Serum Total Testosterone Levels in Young Adults. Indian J. Physiol. Pharmacol. 2014, 58, 178–181. [Google Scholar]
- Fahrner, C.; Hackney, A. Effects of Endurance Exercise on Free Testosterone Concentration and the Binding Affinity of Sex Hormone Binding Globulin (SHBG). Endoscopy 1998, 19, 12–15. [Google Scholar] [CrossRef]
- Calbet, J.A.L.; Lundby, C. Skeletal muscle vasodilatation during maximal exercise in health and disease. J. Physiol. 2012, 590, 6285–6296. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.; Saltin, B. Maximal perfusion of skeletal muscle in man. J. Physiol. 1985, 366, 233–249. [Google Scholar] [CrossRef]
- Bada, A.A.; Svendsen, J.H.; Secher, N.H.; Saltin, B.; Mortensen, S.P. Peripheral vasodilatation determines cardiac output in exercising humans: Insight from atrial pacing. J. Physiol. 2012, 590, 2051–2060. [Google Scholar] [CrossRef]
- Clifford, P.S.; Hellsten, Y. Vasodilatory mechanisms in contracting skeletal muscle. J. Appl. Physiol. 2004, 97, 393–403. [Google Scholar] [CrossRef]
- Kirby, B.S.; Carlson, R.E.; Markwald, R.; Voyles, W.F.; DiNenno, F.A. Mechanical influences on skeletal muscle vascular tone in humans: Insight into contraction-induced rapid vasodilatation. J. Physiol. 2007, 583, 861–874. [Google Scholar] [CrossRef]
- Clifford, P.S.; Kluess, H.A.; Hamann, J.J.; Buckwalter, J.B.; Jasperse, J.L. Mechanical compression elicits vasodilatation in rat skeletal muscle feed arteries. J. Physiol. 2006, 572, 561–567. [Google Scholar] [CrossRef]
- Mortensen, S.P.; Damsgaard, R.; Dawson, E.A.; Secher, N.H.; González-Alonso, J. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans. J. Physiol. 2008, 586, 2621–2635. [Google Scholar] [CrossRef]
- Casey, D.P.; Joyner, M.J. Compensatory vasodilatation during hypoxic exercise: Mechanisms responsible for matching ox-ygen supply to demand. J. Physiol. 2012, 590, 6321–6326. [Google Scholar] [CrossRef]
- Jones, A.M.; Krustrup, P.; Wilkerson, D.P.; Berger, N.J.; Calbet, J.A.; Bangsbo, J. Influence of exercise intensity on skeletal muscle blood flow, O2extraction and O2uptake on-kinetics. J. Physiol. 2012, 590, 4363–4376. [Google Scholar] [CrossRef]
- Saltin, B. Exercise hyperaemia: Magnitude and aspects on regulation in humans. J. Physiol. 2007, 583, 819–823. [Google Scholar] [CrossRef]
- Mortensen, S.P.; Dawson, E.A.; Yoshiga, C.C.; Dalsgaard, M.K.; Damsgaard, R.; Secher, N.H.; González-Alonso, J. Limita-tions to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J. Physiol. 2005, 566, 273–285. [Google Scholar] [CrossRef]
- Grocott, M.P.; Martin, D.S.; Levett, D.Z.; McMorrow, R.; Windsor, J.; Montgomery, H.E. Arterial Blood Gases and Oxygen Content in Climbers on Mount Everest. N. Engl. J. Med. 2009, 360, 140–149. [Google Scholar] [CrossRef] [Green Version]
- González-Alonso, J.; Richardson, R.S.; Saltin, B. Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen. J. Physiol. 2001, 530, 331–341. [Google Scholar] [CrossRef]
- Juel, C.; Klarskov, C.; Nielsen, J.J.; Krustrup, P.; Mohr, M.; Bangsbo, J. Effect of high-intensity intermittent training on lac-tate and H+ release from human skeletal muscle. Am. J. Physiol. -Endocrinol. Metab. 2004, 286, E245–E251. [Google Scholar] [CrossRef] [Green Version]
- Roca, J.; Agusti, A.G.; Alonso, A.; Poole, D.C.; Viegas, C.; Barbera, J.A.; Rodriguez-Roisin, R.; Ferrer, A.; Wagner, P.D. Effects of training on muscle O2 transport at VO2max. J. Appl. Physiol. 1992, 73, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.S.; Poole, D.C.; Knight, D.R.; Kurdak, S.S.; Hogan, M.C.; Grassi, B.; Johnson, E.C.; Kendrick, K.F.; Erickson, B.K.; Wagner, P.D. High muscle blood flow in man: Is maximal O2 extraction compromised? J. Appl. Physiol. 1993, 75, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- Snell, P.G.; Martin, W.H.; Buckey, J.C.; Blomqvist, C.G. Maximal vascular leg conductance in trained and untrained men. J. Appl. Physiol. 1987, 62, 606–610. [Google Scholar] [CrossRef]
- Simon, M.; LeBlanc, P.; Jobin, J.; Desmeules, M.; Sullivan, M.J.; Maltais, F. Limitation of lower limbVo2 during cycling exer-cise in COPD patients. J. Appl. Physiol. 2001, 90, 1013–1019. [Google Scholar] [CrossRef]
- Kingwell, B.A.; Formosa, M.; Muhlmann, M.; Bradley, S.J.; McConell, G.K. Type 2 diabetic individuals have impaired leg blood flow responses to exercise: Role of endothelium-dependent vasodilation. Diabetes Care 2003, 26, 899–904. [Google Scholar] [CrossRef] [Green Version]
- Esposito, F.; Reese, V.; Shabetai, R.; Wagner, P.D.; Richardson, R.S. Isolated Quadriceps Training Increases Maximal Exercise Capacity in Chronic Heart Failure: The Role of Skeletal Muscle Convective and Diffusive Oxygen Transport. J. Am. Coll. Cardiol. 2011, 58, 1353–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blomstrand, E.; Krustrup, P.; Sondergaard, H.; Radegran, G.; Calbet, J.A.; Saltin, B. Exercise training induces similar eleva-tions in the activity of oxoglutarate dehydrogenase and peak oxygen uptake in the human quadriceps muscle. Pflugers Arch 2011, 462, 257–265. [Google Scholar] [PubMed]
- Hepple, R.T. Skeletal muscle: Microcirculatory adaptation to metabolic demand. Med. Sci. Sports Exerc. 2000, 32, 117–123. [Google Scholar] [CrossRef]
- Mathieu-Costello, O.; Hepple, R.T. Muscle Structural Capacity for Oxygen Flux from Capillary to Fiber Mitochondria. Exerc. Sport Sci. Rev. 2002, 30, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Antonova, N.; Ivanov, I.; Gluhcheva, Y.; Zvetkova, E. Rheological and Electrical Properties of RBC suspensions in Dextran 70. Changes in RBC Morphology. In Proceedings of the XII Mediterranean Conference on Medical and Biological Engineering and Computing, Chalkidiki, Greece, 27–30 May 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 647–650. [Google Scholar]
- Van Oss, C.J.; Coakley, W.T. Mechanisms of successive modes of erythrocyte stability and instability in the presence of various polymers. Cell Biophys. 1988, 13, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.M. Shape Memory of Human Red Blood Cells. Biophys. J. 2004, 86, 3304–3313. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, W.H.; Singh-Marchetti, M.; Straub, P.W. The influence of erythrocyte shape on suspension viscosities. Eur. J. Clin. Investig. 1992, 22, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L. On the shape of human red blood cells interacting with flat artificial surfaces—The “glass effect”. Biochim Biophys Acta 1990, 1036, 193–201. [Google Scholar] [CrossRef]
- Antonova, N.; Riha, P.; Ivanov, I. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent. Clin. Hemorheol. Microcirc. 2010, 45, 253–261. [Google Scholar] [CrossRef]
- Vázquez, B.Y.S.; Cabrales, P.; Tsai, A.G.; Intaglietta, M. Nonlinear cardiovascular regulation consequent to changes in blood viscosity. Clin. Hemorheol. Microcirc. 2011, 49, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, B.Y.S. Blood pressure and blood viscosity are not correlated in normal healthy subjects. Vasc. Health Risk Manag. 2011, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schuler, B.; Arras, M.; Keller, S.; Rettich, A.; Lundby, C.; Vogel, J.; Gassmann, M. Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin-treated mice. Proc. Natl. Acad. Sci. USA 2009, 107, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Connes, P. Hemorheology and exercise: Effects of warm environments and potential consequences for sickle cell trait carriers. Scand. J. Med. Sci. Sport. 2010, 20, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Karsheva, M.; Dinkova, P.; Pentchev, I. Shortterm blood rheological effects in regylarly training volleyball players. Comptes Rendus L’académie Bulg. Sci. Sci. Mathématiques Nat. 2011, 64, 1279–1284. [Google Scholar]
- Brun, J.F.; Khaled, S.; Raynaud, E.; Bouix, D.; Micallef, J.P.; Orsetti, A. The triphasic effects of exercise on blood rheology: Which relevance to physiology and pathophysiology? Clin. Hemorheol. Microcirc. 1998, 19, 89–104. [Google Scholar] [PubMed]
- Khaled, S.; Brun, J.F.; Micallel, J.P.; Bardet, L.; Cassanas, G.; Monnier, J.F.; Orsetti, A. Serum zinc and blood rheology in sportsmen (football players). Clin. Hemorheol. Microcirc. 1997, 17, 47–58. [Google Scholar] [PubMed]
- Khaled, S.; Brun, J.F.; Wagner, A.; Mercier, J.; Bringer, J.; Préfaut, C. Increased blood viscosity in iron-depleted elite athletes. Clin. Hemorheol. Microcirc. 1998, 18, 309–318. [Google Scholar]
- Szanto, S.; Mody, T.; Gyurcsik, Z.; Babjak, L.B.; Somogyi, V.; Barath, B.; Varga, A.; Matrai, A.A.; Nemeth, N. Alterations of Selected Hemorheolog-ical and Metabolic Parameters Induced by Physical Activity in Untrained Men and Sportsmen. Metabolites 2021, 11, 870. [Google Scholar] [CrossRef]
- Nemeth, N.; Peto, K.; Magyar, Z.; Klarik, Z.; Varga, G.; Oltean, M.; Mantas, A.; Czigany, Z.; Tolba, R.H. Hemorheological and Microcirculatory Factors in Liver Ischemia-Reperfusion Injury—An Update on Pathophysiology, Molecular Mechanisms and Protective Strategies. Int. J. Mol. Sci. 2021, 22, 1864. [Google Scholar] [CrossRef] [PubMed]
- Krüger-Genge, A.; Sternitzky, R.; Pindur, G.; Rampling, M.; Franke, R.; Jung, F. Erythrocyte aggregation in relation to plasma proteins and lipids. J. Cell. Biotechnol. 2019, 5, 65–70. [Google Scholar] [CrossRef]
- Brun, J.-F.; Varlet-Marie, E.; Connes, P.; Aloulou, I. Hemorheological alterations related to training and overtraining. Biorheology 2010, 47, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Varlet-Marie, E.; Maso, F.; Lac, G.; Brun, J.-F. Hemorheological disturbances in the overtraining syndrome. Clin. Hemorheol. Microcirc. 2004, 30, 211–218. [Google Scholar]
- Convertino, V.A. Blood volume: Its adaptation to endurance training. Med. Sci. Sports Exerc. 1991, 23, 1338–1348. [Google Scholar] [CrossRef]
- Sawka, M.N.; Convertino, V.A.; Eichner, E.R.; Schnieder, S.M.; Young, A.J. Blood volume: Importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med. Sci. Sports Exerc. 2000, 32, 332–348. [Google Scholar] [CrossRef]
- Sawka, M.N.; Coyle, E.F. Influence of body water and blood volume on thermoregulation and exercise performance in the heat. Exerc. Sport Sci. Rev. 1999, 27, 167–218. [Google Scholar]
- Altman, P.I. Blood and Other Body Fluids; Federation of American Societies for Experimental Biology: Washington, DC, USA, 1961. [Google Scholar]
- Sawka, M.N.; Young, A.J.; Pandolf, K.B.; Dennis, R.C.; Valeri, C.R. Erythrocyte, plasma, and blood volume of healthy young men. Med. Sci. Sport. Exerc. 1992, 24, 447–453. [Google Scholar] [CrossRef]
- Axsom, J.E. Hematological changes in response to a drastic increase in training volume in recreational cyclists. Sr. Honor. Proj. 2016, 2010–2019, 197. [Google Scholar]
- Kjellberg, S.R.; Rudhe, U.; Sjöstrand, T. Increase of the Amount of Hemoglobin and Blood Volume in Connection with Physical Training. Acta Physiol. Scand. 1949, 19, 146–151. [Google Scholar] [CrossRef]
- Oscai, L.B.; Williams, B.T.; Hertig, B.A. Effect of exercise on blood volume. J. Appl. Physiol. 1968, 24, 622–624. [Google Scholar] [CrossRef]
- Ray, C.A.; Cureton, K.J.; Ouzts, H.G. Postural specificity of cardiovascular adaptations to exercise training. J. Appl. Physiol. 1990, 69, 2202–2208. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, A.; Daryanoosh, F.; Amirazodi, M.; Babaee Baigi, M.A.; Divsalar, K. Effect of eight weeks low intensity aerobic exercise on endothelin-1 plasma level, blood pressure and heart rate in healthy people and patients with coronary artery disease. Rep. Health Care 2015, 1, 109–113. [Google Scholar]
- Nazar Ali, P. Advanced Cardiovascular Exercise Physiology; Hatmi Publications Inc.: Tehran, Iran, 2011; pp. 139–150. (In Persian) [Google Scholar]
- Dargahi, L. Historical review: Endothelin. Razi J. 2008, 19, 24–32. (In Persian) [Google Scholar]
- Hickey, K.A.; Rubanyi, G.; Paul, R.J.; Highsmith, R.F. Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am. J. Physiol. Physiol. 1985, 248, C550–C556. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstric-tor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Kedzierski, R.M.; Yanagisawa, M. Endothelin System: The Double-Edged Sword in Health and Disease. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 851–876. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.O.; Long, C.; Kalinyak, J.E.; Li, H.-T.; Karliner, J.S. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β1 and endothelin-1 from fibroblasts. Cardiovasc. Res. 1998, 40, 352–363. [Google Scholar] [CrossRef]
- Maeda, S.; Miyauchi, T.; Goto, K.; Matsuda, M. Alteration of plasma endothelin-1 by exercise at intensities lower and higher than ventilatory threshold. J. Appl. Physiol. 1994, 77, 1399–1402. [Google Scholar] [CrossRef] [PubMed]
- Kopeć, G.; Tyrka, A.; Miszalski-Jamka, T.; Mikołajczyk, T.; Waligóra, M.; Guzik, T.; Podolec, P. Changes in exercise capacity and cardiac performance in a series of patients with Eisenmenger’s syndrome transitioned from selective to dual endothelin receptor antagonist. Heart Lung Circ. 2012, 21, 671–678. [Google Scholar] [CrossRef]
- Boghrabadi, V.; Hejazi, S.M.; Peeri, M.; Nejatpour, S. The effect of aerobic exercise on endohelin-1 concentration in old women atherosclerosis suplements. Ofogh-e-Danesh 2012, 4, 69–76. (In Persian) [Google Scholar]
- Maeda, S.; Miyauchi, T.; Iemitsu, M.; Sugawara, J.; Nagata, Y.; Goto, K. Resistance exercise training reduces plasma endo-thelin-1 concentration in healthy young humans. J. Cardiovasc. Pharmacol. 2004, 44, S443–S446. [Google Scholar] [CrossRef] [PubMed]
- Cosenzi, A.; Sacerdote, A.; Bocin, E.; Molino, R.; Plazzotta, N.; Seculin, P.; Bellini, G. Neither physical exercise nor α1- and β-adrenergic blockade affect plasma endothelin concentrations. Am. J. Hypertens. 1996, 9, 819–822. [Google Scholar] [CrossRef] [Green Version]
- Callaerts-Végh, Z.; Wenk, M.; Goebbels, U.; Dziekan, G.; Myers, J.; Dubach, P.; Haefeli, W. Influence of Intensive Physical Training on Urinary Nitrate Elimination and Plasma Endothelin-1 Levels in Patients With Congestive Heart Failure. J. Cardiopulm. Rehabilitation 1998, 18, 450–457. [Google Scholar] [CrossRef]
- Lelbach, A.; Koller, A. Mechanisms underlying exercise-induced modulation of hypertension. J. Hypertens Res. 2017, 3, 35–43. [Google Scholar]
- Baskurt, O.K.; Ulker, P.; Meiselman, H.J. Nitric oxide, erythrocytes and exercise. Clin. Hemorheol. Microcirc. 2011, 49, 175–181. [Google Scholar] [CrossRef]
- Yamashita, N.; Hoshida, S.; Otsu, K.; Asahi, M.; Kuzuya, T.; Hori, M. Exercise Provides Direct Biphasic Cardioprotection via Manganese Superoxide Dismutase Activation. J. Exp. Med. 1999, 189, 1699–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.L.; Mestril, R.; Hilal-Dandan, R.; Brunton, L.L.; Dillmann, W.H. Small Heat Shock Proteins and Protection Against Ischemic Injury in Cardiac Myocytes. Circulation 1997, 96, 4343–4348. [Google Scholar] [CrossRef] [PubMed]
- Kavazis, A.N.; Alvarez, S.; Talbert, E.; Lee, Y.; Powers, S.K. Exercise training induces a cardioprotective phenotype and al-terations in cardiac subsarcolemmal and intermyofibrillar mitochondrial proteins. Am. J. Physiol. -Heart Circ. Physiol. 2009, 297, H144–H152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.-Y.; Kim, J.-W.; Nam, S.-S. Metabolic, Cardiac, and Hemorheological Responses to Submaximal Exercise under Light and Moderate Hypobaric Hypoxia in Healthy Men. Biology 2022, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Faiss, R.; Léger, B.; Vesin, J.M.; Fournier, P.E.; Eggel, Y.; Dériaz, O.; Millet, G.P. Significant molecular and systemic adapta-tions after repeated sprint training in hypoxia. PLoS ONE 2013, 8, e56522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galvin, H.M.; Cooke, K.; Sumners, D.P.; Mileva, K.N.; Bowtell, J.L. Repeated sprint training in normobaric hypoxia. Br. J. Sports Med. 2013, 47, i74–i79. [Google Scholar] [CrossRef]
- Park, H.-Y.; Lim, K. Effects of Hypoxic Training versus Normoxic Training on Exercise Performance in Competitive Swimmers. J. Sports Sci. Med. 2017, 16, 480–488. [Google Scholar]
- Park, H.-Y.; Shin, C.; Lim, K. Intermittent hypoxic training for 6 weeks in 3000 m hypobaric hypoxia conditions enhances exercise economy and aerobic exercise performance in moderately trained swimmers. Biol. Sport 2017, 34, 49–56. [Google Scholar] [CrossRef]
- Feriche, B.; García-Ramos, A.; Morales-Artacho, A.J.; Padial, P. Resistance training using different hypoxic training strategies: A basis for hypertrophy and muscle power development. Sports Med. -Open 2017, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Brocherie, F.; Girard, O.; Faiss, R.; Millet, G.P. Effects of Repeated-Sprint Training in Hypoxia on Sea-Level Performance: A Meta-Analysis. Sports Med. 2017, 47, 1651–1660. [Google Scholar] [CrossRef]
- El-Sayed, M.S.; Ali, N.; El-Sayed Ali, Z. Haemorheology in Exercise and Training. Sports Med. 2005, 35, 649–670. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.S. Effects of Exercise on Blood Coagulation, Fibrinolysis and Platelet Aggregation. Sports Med. 1996, 22, 282–298. [Google Scholar] [CrossRef]
- Leal, J.K.F.; Lazari, D.; Bongers, C.C.; Hopman, M.T.; Brock, R.; Bosman, G.J. Red Blood Cell Aging as a Homeostatic Response to Exercise-Induced Stress. Appl. Sci. 2019, 9, 4827. [Google Scholar] [CrossRef] [Green Version]
- Pospieszna, B.; Kusy, K.; Slominska, E.M.; Zieliński, J. Life-long sports engagement enhances adult erythrocyte adenylate energetics. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mairbäurl, H. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Front. Physiol. 2013, 4, 332. [Google Scholar] [CrossRef]
- Paraiso, L.F.; Gonçalves-E-Oliveira, A.F.M.; Cunha, L.M.; Neto, O.P.D.A.; Pacheco, A.G.; Araújo, K.B.G.; Filho, M.D.S.G.; Neto, M.B.; Penha-Silva, N. Effects of acute and chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers. PLoS ONE 2017, 12, e0171318. [Google Scholar] [CrossRef] [Green Version]
- Pollock, M.L.; Foster, C.; Knapp, D.; Rod, J.L.; Schmidt, D.H. Effect of age and training on aerobic capacity and body composition of master athletes. J. Appl. Physiol. 1987, 62, 725–731. [Google Scholar] [CrossRef]
- Bizjak, D.A.; Tomschi, F.; Bales, G.; Nader, E.; Romana, M.; Connes, P.; Bloch, W.; Grau, M. Does endurance training improve red blood cell aging and hemorheology in moderate-trained healthy individuals? J. Sport Health Sci. 2019, 9, 595–603. [Google Scholar] [CrossRef]
- Mohandas, N.; Groner, W. Cell Membrane and Volume Changes during Red Cell Development and Aging. Ann. N. Y. Acad. Sci. 1989, 554, 217–224. [Google Scholar] [CrossRef]
- Bosch, F.H.; Werre, J.M.; Roerdinkholder-Stoelwinder, B.; Huls, T.H.; Willekens, F.L.; Halie, M.R. Characteristics of red blood cell populations fractionated with a combination of counterflow centrifugation and Percoll separation. Blood 1992, 79, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Sossdorf, M.; Otto, G.P.; Claus, R.A.; Gabriel, H.H.; Lösche, W. Cell-derived microparticles promote coagulation after mod-erate exercise. Med. Sci. Sport. Exerc. 2011, 43, 1169–1176. [Google Scholar] [CrossRef]
- Smith, J.A.; Martin, D.T.; Telford, R.D.; Ballas, S.K. Greater erythrocyte deformability in world-class endurance athletes. Am. J. Physiol. -Heart Circ. Physiol. 1999, 276, H2188–H2193. [Google Scholar] [CrossRef] [PubMed]
- Tomschi, F.; Bizjak, D.; Bloch, W.; Latsch, J.; Predel, H.G.; Grau, M. Deformability of different red blood cell populations and viscosity of differently trained young men in response to intensive and moderate running. Clin. Hemorheol. Microcirc. 2018, 69, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Bizjak, D.A.; Brinkmann, C.; Bloch, W.; Grau, M. Increase in Red Blood Cell-Nitric Oxide Synthase Dependent Nitric Oxide Production during Red Blood Cell Aging in Health and Disease: A Study on Age Dependent Changes of Rheologic and Enzymatic Properties in Red Blood Cells. PLoS ONE 2015, 10, e0125206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemkov, T.; Skinner, S.C.; Nader, E.; Stefanoni, D.; Robert, M.; Cendali, F.; Stauffer, E.; Cibiel, A.; Boisson, C.; Connes, P.; et al. Acute cycling exercise induces changes in red blood cell deformability and membrane lipid remodeling. Int. J. Mol. Sci. 2021, 22, 896. [Google Scholar] [CrossRef] [PubMed]
- Waltz, X.; Hardy-Dessources, M.-D.; Lemonne, N.; Mougenel, D.; Lalanne-Mistrih, M.-L.; Lamarre, Y.; Tarer, V.; Tressières, B.; Etienne-Julan, M.; Hue, O.; et al. Is there a relationship between the hematocrit-to-viscosity ratio and microvascular oxygenation in brain and muscle? Clin. Hemorheol. Microcirc. 2015, 59, 37–43. [Google Scholar] [CrossRef]
- Sakaguchi, C.A.; Nieman, D.C.; Signini, E.F.; Abreu, R.M.; Catai, A.M. Metabolomics-based studies assessing exer-cise-induced alterations of the human metabolome: A systematic review. Metabolites 2019, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A. Exercise, Training and Red Blood Cell Turnover. Sports Med. 1995, 19, 9–31. [Google Scholar] [CrossRef] [PubMed]
- You, J. A Study on the Effect of a Regular Exercise Habit on Health-Related Quality of Life in Adults with Cerebral Palsy. Appl. Sci. 2022, 12, 9068. [Google Scholar] [CrossRef]
- Sirufo, M.M.; Ginaldi, L.; De Martinis, M. Nailfold capillaroscopic findings in a semi-professional volleyball player. Clin. Hemorheol. Microcirc. 2020, 74, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Filar-Mierzwa, K.; Marchewka, A.; Dąbrowski, Z.; Bac, A.; Marchewka, J. Effects of dance movement therapy on the rheo-logical properties of blood in elderly women. Clin. Hemorheol. Microcirc. 2019, 72, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Stupin, M.; Kibel, A.; Stupin, A.; Selthofer-Relatić, K.; Matić, A.; Mihalj, M.; Mihaljevic, Z.; Jukic, I.; Drenjančević, I. The physiological effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) intake and exercise on hemorheology, microvascular function, and physical performance in health and cardiovascular diseases; Is there an interaction of exercise and dietary n-3 PUFA intake? Front. Physiol. 2019, 10, 1129. [Google Scholar] [PubMed] [Green Version]
- Härtel, J.A.; Müller, N.; Herberg, U.; Breuer, J.; Bizjak, D.A.; Bloch, W.; Grau, M. Altered Hemorheology in Fontan Patients in Normoxia and After Acute Hypoxic Exercise. Front. Physiol. 2019, 10, 1443. [Google Scholar] [CrossRef]
- Nemeth, N. Hemorheology and Metabolism; MDPI: Basel, Switzerland, 2022. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, I. Hemorheological Alterations and Physical Activity. Appl. Sci. 2022, 12, 10374. https://doi.org/10.3390/app122010374
Ivanov I. Hemorheological Alterations and Physical Activity. Applied Sciences. 2022; 12(20):10374. https://doi.org/10.3390/app122010374
Chicago/Turabian StyleIvanov, Ivan. 2022. "Hemorheological Alterations and Physical Activity" Applied Sciences 12, no. 20: 10374. https://doi.org/10.3390/app122010374
APA StyleIvanov, I. (2022). Hemorheological Alterations and Physical Activity. Applied Sciences, 12(20), 10374. https://doi.org/10.3390/app122010374