Figure 1.
Plots of the pdf for TLMW model at .
Figure 1.
Plots of the pdf for TLMW model at .
Figure 2.
Plots of the hrf for TLMW model at .
Figure 2.
Plots of the hrf for TLMW model at .
Figure 3.
Heatmaps of RB for parameters under different estimation methods.
Figure 3.
Heatmaps of RB for parameters under different estimation methods.
Figure 4.
Heatmaps of MSEr for parameters under different estimation methods.
Figure 4.
Heatmaps of MSEr for parameters under different estimation methods.
Figure 5.
Pdf for different models for COVID-19 data.
Figure 5.
Pdf for different models for COVID-19 data.
Figure 6.
Cdf for different models for COVID-19 data.
Figure 6.
Cdf for different models for COVID-19 data.
Figure 7.
PP and QQ for model for COVID-19 data.
Figure 7.
PP and QQ for model for COVID-19 data.
Figure 8.
Contour plot for parameters of model for COVID-19 data.
Figure 8.
Contour plot for parameters of model for COVID-19 data.
Figure 9.
MCMC plots for parameters of model for COVID-19 data.
Figure 9.
MCMC plots for parameters of model for COVID-19 data.
Figure 10.
ACF test plots for parameters of model for COVID-19 data.
Figure 10.
ACF test plots for parameters of model for COVID-19 data.
Figure 11.
Pdf for different models for Guinea Pigs data.
Figure 11.
Pdf for different models for Guinea Pigs data.
Figure 12.
Cdf for different models for Guinea Pigs data.
Figure 12.
Cdf for different models for Guinea Pigs data.
Figure 13.
PP and QQ for model for Guinea Pigs data.
Figure 13.
PP and QQ for model for Guinea Pigs data.
Figure 14.
Contour plot for parameters of model for Guinea Pigs data.
Figure 14.
Contour plot for parameters of model for Guinea Pigs data.
Figure 15.
MCMC plots for parameters of model for Guinea Pigs data.
Figure 15.
MCMC plots for parameters of model for Guinea Pigs data.
Figure 16.
ACF test plots for parameters of model for Guinea Pigs data.
Figure 16.
ACF test plots for parameters of model for Guinea Pigs data.
Figure 17.
Pdf for different models for waiting times.
Figure 17.
Pdf for different models for waiting times.
Figure 18.
Cdf for different models for waiting times.
Figure 18.
Cdf for different models for waiting times.
Figure 19.
PP and QQ for model for waiting times.
Figure 19.
PP and QQ for model for waiting times.
Figure 20.
Contour plot for parameters of model for waiting times.
Figure 20.
Contour plot for parameters of model for waiting times.
Figure 21.
MCMC plots for parameters of model for waiting times.
Figure 21.
MCMC plots for parameters of model for waiting times.
Figure 22.
ACF test plots for parameters of model for waiting times.
Figure 22.
ACF test plots for parameters of model for waiting times.
Figure 23.
Pdf for different models for single carbon fibers data.
Figure 23.
Pdf for different models for single carbon fibers data.
Figure 24.
Cdf for different models for single carbon fibers data.
Figure 24.
Cdf for different models for single carbon fibers data.
Figure 25.
PP and QQ for model for single carbon fibers data.
Figure 25.
PP and QQ for model for single carbon fibers data.
Figure 26.
Contour plot for parameters of model for single carbon fibers.
Figure 26.
Contour plot for parameters of model for single carbon fibers.
Figure 27.
MCMC plots for parameters of model for single carbon fibers.
Figure 27.
MCMC plots for parameters of model for single carbon fibers.
Figure 28.
ACF test plots for parameters of model for single carbon fibers.
Figure 28.
ACF test plots for parameters of model for single carbon fibers.
Table 1.
Quantiles for distribution.
Table 1.
Quantiles for distribution.
Parameters | Quantiles |
---|
| | | | Median | Skewness () | Kurtosis () |
---|
0.6 | 0.5 | 1.0 | 0.70 | 0.753263 | −0.311058 | 6.59101 |
| | | 1.0 | 0.667129 | −0.268271 | 5.19103 |
| | | 2.0 | 0.445061 | −0.123186 | 3.49902 |
| | | 7.0 | 0.0588123 | 0.49274 | 2.52725 |
1.0 | 1.0 | 2.0 | 0.70 | 0.838 | −0.391413 | 6.32248 |
| | | 1.0 | 0.77687 | −0.348819 | 4.99573 |
| | | 2.0 | 0.603527 | −0.202834 | 3.3833 |
| | | 7.0 | 0.17078 | 0.433166 | 2.46412 |
Table 2.
Moments for distribution at .
Table 2.
Moments for distribution at .
| | | | | | | | |
---|
0.5 | 0.4 | 0.215 | 0.250 | 0.522 | 1.566 | 0.204 | 4.128 | 4.128 |
0.8 | 0.383 | 0.481 | 1.028 | 3.112 | 0.335 | 3.037 | 3.037 |
1.2 | 0.520 | 0.696 | 1.519 | 4.637 | 0.425 | 2.578 | 2.578 |
1.6 | 0.636 | 0.897 | 1.997 | 6.144 | 0.492 | 2.317 | 2.317 |
2.0 | 0.737 | 1.086 | 2.462 | 7.632 | 0.544 | 2.148 | 2.148 |
2.4 | 0.825 | 1.265 | 2.915 | 9.104 | 0.585 | 2.027 | 2.027 |
2.8 | 0.904 | 1.436 | 3.358 | 10.559 | 0.618 | 1.938 | 1.938 |
3.2 | 0.976 | 1.599 | 3.792 | 11.999 | 0.646 | 1.868 | 1.868 |
3.6 | 1.041 | 1.754 | 4.215 | 13.424 | 0.670 | 1.812 | 1.812 |
4.0 | 1.101 | 1.903 | 4.631 | 14.834 | 0.691 | 1.766 | 1.766 |
4.4 | 1.157 | 2.047 | 5.038 | 16.231 | 0.709 | 1.727 | 1.727 |
4.8 | 1.208 | 2.185 | 5.437 | 17.614 | 0.725 | 1.694 | 1.694 |
5.2 | 1.257 | 2.319 | 5.830 | 18.985 | 0.739 | 1.666 | 1.666 |
1.5 | 0.4 | 0.285 | 0.214 | 0.238 | 0.338 | 0.133 | 2.092 | 2.092 |
0.8 | 0.460 | 0.388 | 0.452 | 0.658 | 0.176 | 1.507 | 1.507 |
1.2 | 0.585 | 0.536 | 0.649 | 0.962 | 0.194 | 1.276 | 1.276 |
1.6 | 0.680 | 0.664 | 0.831 | 1.254 | 0.202 | 1.153 | 1.153 |
2.0 | 0.757 | 0.778 | 1.000 | 1.533 | 0.205 | 1.079 | 1.079 |
2.4 | 0.821 | 0.881 | 1.159 | 1.802 | 0.207 | 1.030 | 1.030 |
2.8 | 0.875 | 0.974 | 1.310 | 2.062 | 0.207 | 0.996 | 0.996 |
3.2 | 0.923 | 1.060 | 1.452 | 2.313 | 0.207 | 0.971 | 0.971 |
3.6 | 0.966 | 1.139 | 1.588 | 2.557 | 0.207 | 0.952 | 0.952 |
4.0 | 1.003 | 1.213 | 1.717 | 2.793 | 0.206 | 0.938 | 0.938 |
4.4 | 1.038 | 1.282 | 1.842 | 3.023 | 0.205 | 0.926 | 0.926 |
4.8 | 1.069 | 1.347 | 1.961 | 3.247 | 0.204 | 0.917 | 0.917 |
5.2 | 1.098 | 1.408 | 2.075 | 3.465 | 0.203 | 0.910 | 0.910 |
3.0 | 0.4 | 0.301 | 0.215 | 0.210 | 0.250 | 0.124 | 1.627 | 1.627 |
0.8 | 0.480 | 0.383 | 0.394 | 0.481 | 0.152 | 1.077 | 1.077 |
1.2 | 0.602 | 0.520 | 0.557 | 0.696 | 0.158 | 0.862 | 0.862 |
1.6 | 0.692 | 0.636 | 0.704 | 0.897 | 0.157 | 0.752 | 0.752 |
2.0 | 0.763 | 0.737 | 0.839 | 1.086 | 0.154 | 0.690 | 0.690 |
2.4 | 0.822 | 0.825 | 0.962 | 1.265 | 0.150 | 0.653 | 0.653 |
2.8 | 0.871 | 0.904 | 1.077 | 1.436 | 0.146 | 0.629 | 0.629 |
3.2 | 0.913 | 0.976 | 1.184 | 1.599 | 0.143 | 0.613 | 0.613 |
3.6 | 0.950 | 1.041 | 1.285 | 1.754 | 0.139 | 0.603 | 0.603 |
4.0 | 0.982 | 1.101 | 1.380 | 1.903 | 0.136 | 0.596 | 0.596 |
4.4 | 1.011 | 1.157 | 1.469 | 2.047 | 0.134 | 0.592 | 0.592 |
4.8 | 1.038 | 1.208 | 1.555 | 2.185 | 0.131 | 0.589 | 0.589 |
5.2 | 1.062 | 1.257 | 1.636 | 2.319 | 0.129 | 0.588 | 0.588 |
Table 3.
Moments for distribution at .
Table 3.
Moments for distribution at .
| | | | | | | | |
---|
0.5 | 0.4 | 0.061 | 0.024 | 0.018 | 0.019 | 0.020 | 4.751 | 4.751 |
0.8 | 0.110 | 0.046 | 0.035 | 0.038 | 0.034 | 3.495 | 3.495 |
1.2 | 0.152 | 0.067 | 0.051 | 0.056 | 0.044 | 2.962 | 2.962 |
1.6 | 0.187 | 0.087 | 0.068 | 0.075 | 0.052 | 2.658 | 2.658 |
2.0 | 0.218 | 0.106 | 0.084 | 0.093 | 0.059 | 2.457 | 2.457 |
2.4 | 0.246 | 0.124 | 0.099 | 0.111 | 0.064 | 2.314 | 2.314 |
2.8 | 0.271 | 0.142 | 0.115 | 0.129 | 0.068 | 2.206 | 2.206 |
3.2 | 0.294 | 0.158 | 0.130 | 0.147 | 0.072 | 2.121 | 2.121 |
3.6 | 0.315 | 0.174 | 0.145 | 0.165 | 0.075 | 2.052 | 2.052 |
4.0 | 0.334 | 0.190 | 0.160 | 0.182 | 0.078 | 1.996 | 1.996 |
4.4 | 0.352 | 0.205 | 0.174 | 0.199 | 0.081 | 1.948 | 1.948 |
4.8 | 0.369 | 0.219 | 0.188 | 0.217 | 0.083 | 1.907 | 1.907 |
5.2 | 0.385 | 0.233 | 0.202 | 0.234 | 0.085 | 1.872 | 1.872 |
1.5 | 0.4 | 0.137 | 0.051 | 0.029 | 0.021 | 0.032 | 2.196 | 2.196 |
0.8 | 0.223 | 0.093 | 0.055 | 0.041 | 0.044 | 1.589 | 1.589 |
1.2 | 0.284 | 0.129 | 0.079 | 0.060 | 0.049 | 1.347 | 1.347 |
1.6 | 0.331 | 0.161 | 0.101 | 0.078 | 0.051 | 1.218 | 1.218 |
2.0 | 0.369 | 0.189 | 0.122 | 0.095 | 0.052 | 1.139 | 1.139 |
2.4 | 0.402 | 0.214 | 0.142 | 0.112 | 0.053 | 1.086 | 1.086 |
2.8 | 0.429 | 0.238 | 0.161 | 0.128 | 0.053 | 1.049 | 1.049 |
3.2 | 0.453 | 0.259 | 0.178 | 0.144 | 0.054 | 1.021 | 1.021 |
3.6 | 0.474 | 0.279 | 0.195 | 0.160 | 0.054 | 1.000 | 1.000 |
4.0 | 0.494 | 0.297 | 0.212 | 0.174 | 0.053 | 0.984 | 0.984 |
4.4 | 0.511 | 0.314 | 0.227 | 0.189 | 0.053 | 0.971 | 0.971 |
4.8 | 0.527 | 0.331 | 0.242 | 0.203 | 0.053 | 0.961 | 0.961 |
5.2 | 0.542 | 0.346 | 0.257 | 0.217 | 0.053 | 0.952 | 0.952 |
3.0 | 0.4 | 0.171 | 0.074 | 0.043 | 0.030 | 0.045 | 1.608 | 1.608 |
0.8 | 0.278 | 0.134 | 0.082 | 0.058 | 0.056 | 0.980 | 0.980 |
1.2 | 0.352 | 0.182 | 0.115 | 0.083 | 0.058 | 0.705 | 0.705 |
1.6 | 0.408 | 0.224 | 0.146 | 0.107 | 0.058 | 0.550 | 0.550 |
2.0 | 0.452 | 0.260 | 0.173 | 0.129 | 0.056 | 0.453 | 0.453 |
2.4 | 0.487 | 0.291 | 0.199 | 0.150 | 0.053 | 0.390 | 0.390 |
2.8 | 0.517 | 0.319 | 0.222 | 0.170 | 0.051 | 0.346 | 0.346 |
3.2 | 0.543 | 0.344 | 0.244 | 0.188 | 0.049 | 0.316 | 0.316 |
3.6 | 0.565 | 0.367 | 0.264 | 0.206 | 0.047 | 0.296 | 0.296 |
4.0 | 0.585 | 0.388 | 0.283 | 0.223 | 0.045 | 0.281 | 0.281 |
4.4 | 0.603 | 0.407 | 0.301 | 0.239 | 0.044 | 0.271 | 0.271 |
4.8 | 0.618 | 0.425 | 0.318 | 0.255 | 0.042 | 0.265 | 0.265 |
5.2 | 0.633 | 0.441 | 0.334 | 0.270 | 0.041 | 0.261 | 0.261 |
Table 4.
ML, MPS, Bayes estimation methods: RB, MSE, LACI and LCCI at first combination.
Table 4.
ML, MPS, Bayes estimation methods: RB, MSE, LACI and LCCI at first combination.
First Combination | ML | MPS | Bayesian |
---|
| n | | RB | MSEr | LACI | RB | MSEr | LACI | RB | MSEr | LCCI |
0.6 | 30 | | 0.5590 | 0.2732 | 1.7321 | 0.1053 | 0.1775 | 1.6392 | 0.3274 | 0.1398 | 1.1151 |
| 0.1203 | 0.7663 | 3.4215 | −0.0980 | 0.2442 | 1.9244 | 0.0753 | 0.1159 | 1.2911 |
| 0.7338 | 6.2504 | 7.9380 | 0.1212 | 0.9189 | 3.6374 | 0.2537 | 1.6512 | 4.3075 |
| 0.3275 | 0.1739 | 1.4427 | 0.0594 | 0.0747 | 1.0626 | 0.2622 | 0.0982 | 0.7599 |
80 | | 0.5217 | 0.1971 | 1.4090 | 0.1017 | 0.1266 | 1.3764 | 0.2279 | 0.0912 | 0.9666 |
| −0.1170 | 0.3119 | 2.1839 | −0.0919 | 0.1483 | 1.4949 | 0.0483 | 0.0626 | 1.0571 |
| 0.5274 | 3.7303 | 6.3455 | 0.0638 | 0.5940 | 2.9812 | 0.1550 | 0.9555 | 3.2180 |
| 0.2829 | 0.1035 | 1.0716 | 0.0486 | 0.0487 | 0.8417 | 0.2037 | 0.0634 | 0.5619 |
150 | | 0.5051 | 0.1140 | 0.8791 | 0.0923 | 0.0598 | 0.8492 | 0.1554 | 0.0322 | 0.6493 |
| −0.0971 | 0.0702 | 0.8203 | −0.0916 | 0.0474 | 0.7690 | −0.0266 | 0.0209 | 0.5862 |
| 0.3542 | 1.2459 | 3.3828 | 0.0583 | 0.2675 | 1.9763 | 0.0823 | 0.2894 | 1.8616 |
| 0.1991 | 0.0232 | 0.3701 | 0.0411 | 0.0116 | 0.3331 | 0.1266 | 0.0214 | 0.2629 |
3 | 30 | | −0.3465 | 0.3909 | 2.3600 | −0.1871 | 0.1166 | 1.2902 | 0.2722 | 0.1569 | 1.3391 |
| 0.4070 | 0.4790 | 2.5440 | 0.1221 | 0.1776 | 1.6305 | −0.0107 | 0.0946 | 1.1588 |
| 0.2691 | 2.1451 | 5.3509 | 0.0877 | 0.8827 | 3.6258 | 0.1040 | 2.0391 | 4.1324 |
| 0.1716 | 0.7055 | 2.6072 | 0.0834 | 0.4865 | 2.7104 | 0.6100 | 0.6178 | 2.1479 |
80 | | −0.3088 | 0.2280 | 1.7118 | −0.1726 | 0.0775 | 0.9703 | 0.2377 | 0.1492 | 1.3171 |
| 0.3988 | 0.3053 | 1.8913 | 0.1206 | 0.1237 | 1.2377 | −0.0105 | 0.0937 | 1.0953 |
| 0.0229 | 0.7876 | 3.4767 | −0.0533 | 0.3438 | 2.2618 | 0.0253 | 0.6873 | 4.1040 |
| 0.1708 | 0.4688 | 1.7817 | 0.0789 | 0.2192 | 1.5084 | 0.1632 | 0.3885 | 1.2829 |
150 | | −0.2340 | 0.1448 | 1.3348 | −0.1528 | 0.0608 | 0.7914 | 0.2133 | 0.1394 | 1.3147 |
| 0.3963 | 0.1912 | 1.4394 | 0.1130 | 0.0946 | 0.9834 | −0.0105 | 0.0926 | 1.0638 |
| −0.0215 | 0.3284 | 2.2118 | −0.0495 | 0.1860 | 1.5192 | 0.0248 | 0.2511 | 2.1610 |
| 0.1422 | 0.2973 | 1.3326 | 0.0719 | 0.1340 | 0.9922 | 0.1157 | 0.2876 | 1.1344 |
Table 5.
ML, MPS, Bayes estimation methods: RB, MSE, LACI and LCCI at second combination.
Table 5.
ML, MPS, Bayes estimation methods: RB, MSE, LACI and LCCI at second combination.
Second Combination | ML | MPS | Bayesian |
---|
| n | | RB | MSEr | LACI | RB | MSEr | LACI | RB | MSEr | LCCI |
0.6 | 30 | | 0.0522 | 0.7978 | 3.4654 | −0.1353 | 0.5969 | 2.7241 | 0.0647 | 0.6412 | 3.0449 |
| 0.4818 | 5.4029 | 7.7970 | −0.1623 | 1.2504 | 4.3427 | 0.1431 | 2.7290 | 5.1650 |
| 0.1569 | 1.1422 | 4.0067 | 0.0574 | 0.6810 | 3.2363 | 0.1401 | 0.9200 | 3.5975 |
| 0.3607 | 0.3920 | 2.3041 | 0.1261 | 0.1188 | 1.3187 | 0.2241 | 0.0651 | 0.6844 |
80 | | 0.0519 | 0.4446 | 2.4706 | −0.0449 | 0.2686 | 1.9845 | 0.0461 | 0.4260 | 2.7081 |
| 0.2506 | 2.7740 | 6.0522 | −0.1008 | 0.6870 | 3.0968 | 0.1159 | 2.0343 | 4.1043 |
| 0.1486 | 0.9200 | 3.4686 | −0.0231 | 0.4395 | 2.5936 | 0.1341 | 0.5857 | 3.4668 |
| 0.1701 | 0.0571 | 0.8477 | 0.0858 | 0.0310 | 0.6605 | 0.1206 | 0.0536 | 0.3728 |
150 | | 0.0511 | 0.2902 | 1.8065 | 0.0179 | 0.1315 | 1.4220 | 0.0398 | 0.2408 | 2.3326 |
| 0.0757 | 1.1985 | 4.2289 | −0.1001 | 0.4458 | 2.3754 | 0.0815 | 0.9543 | 4.0975 |
| 0.1406 | 0.6086 | 2.7733 | −0.0160 | 0.3022 | 2.1524 | 0.1234 | 0.4019 | 2.8139 |
| 0.1307 | 0.0297 | 0.6024 | 0.0778 | 0.0113 | 0.3746 | 0.1142 | 0.0246 | 0.2978 |
3 | 30 | | 0.0812 | 0.6413 | 3.0382 | −0.0879 | 0.1829 | 1.4388 | 0.1867 | 0.5994 | 3.7191 |
| 0.9488 | 9.9629 | 11.1623 | −0.0559 | 0.9944 | 3.9028 | 0.0683 | 3.4979 | 6.6266 |
| 0.4438 | 4.0650 | 7.0998 | −0.1749 | 0.5279 | 2.7885 | 0.4153 | 1.9234 | 2.5075 |
| 0.4687 | 4.5403 | 6.2792 | 0.1385 | 0.9111 | 3.6076 | 0.3847 | 4.3673 | 5.8477 |
80 | | 0.0810 | 0.5377 | 2.6483 | −0.0613 | 0.0993 | 1.0804 | 0.1129 | 0.4705 | 2.3959 |
| 0.6072 | 7.9721 | 10.1275 | −0.0524 | 0.4115 | 2.4892 | 0.0502 | 2.5630 | 5.3703 |
| 0.3501 | 2.9367 | 6.1343 | −0.1180 | 0.3605 | 2.1970 | 0.3746 | 1.7163 | 2.2962 |
| 0.3784 | 2.2022 | 3.7487 | 0.1162 | 0.4354 | 2.1976 | 0.3197 | 1.1285 | 3.2517 |
150 | | 0.0713 | 0.5263 | 2.6758 | −0.0581 | 0.0960 | 1.0735 | 0.1024 | 0.3765 | 2.2545 |
| 0.5767 | 2.4764 | 9.9199 | −0.0421 | 0.3822 | 2.3893 | 0.0359 | 1.4837 | 5.2883 |
| 0.3062 | 2.9222 | 6.0752 | −0.1105 | 0.3461 | 2.1383 | 0.3080 | 0.4832 | 2.1480 |
| 0.3768 | 2.1278 | 3.6165 | 0.1017 | 0.4165 | 2.1209 | 0.2867 | 1.1131 | 3.1202 |
Table 6.
ML, MPS, Bayes estimation methods: RB, MSE, LACI and LCCI at third combination.
Table 6.
ML, MPS, Bayes estimation methods: RB, MSE, LACI and LCCI at third combination.
Third Combination | ML | MPS | Bayesian |
---|
| n | | RB | MSEr | LACI | RB | MSEr | LACI | RB | MSEr | LCCI |
0.5 | 30 | | −0.5339 | 0.2959 | 1.8619 | −0.7322 | 0.3911 | 1.9920 | 0.2594 | 0.1048 | 1.0879 |
| 0.8263 | 0.5700 | 2.4824 | 0.8859 | 0.5946 | 2.4794 | −0.0114 | 0.1073 | 1.1189 |
| 0.5756 | 0.9740 | 3.4866 | 0.1481 | 0.2823 | 2.0410 | 0.1133 | 0.1671 | 1.5405 |
| 0.3481 | 1.5059 | 3.9699 | 0.2444 | 0.7759 | 2.8788 | 0.3253 | 0.9005 | 3.0823 |
80 | | −0.4666 | 0.2516 | 1.4708 | −0.6415 | 0.2177 | 1.3290 | 0.1847 | 0.0738 | 0.8989 |
| 0.5956 | 0.5079 | 2.0725 | 0.8127 | 0.3687 | 1.7698 | −0.0073 | 0.0947 | 1.0480 |
| 0.2204 | 0.1608 | 1.4329 | 0.1200 | 0.0525 | 0.8260 | 0.1083 | 0.1601 | 1.3924 |
| 0.3090 | 1.3619 | 3.4023 | 0.2062 | 0.6508 | 2.4033 | 0.3155 | 0.8023 | 2.6051 |
150 | | −0.3593 | 0.1666 | 1.0996 | −0.6019 | 0.1648 | 1.0687 | 0.0998 | 0.0505 | 0.7902 |
| 0.4854 | 0.3347 | 1.5321 | 0.7994 | 0.2898 | 1.4141 | 0.0035 | 0.0669 | 0.9360 |
| 0.1072 | 0.0351 | 0.6638 | 0.0725 | 0.0167 | 0.4591 | 0.0926 | 0.0234 | 0.5941 |
| 0.2345 | 0.8632 | 2.4374 | 0.1846 | 0.5588 | 1.9010 | 0.2360 | 0.7415 | 1.8685 |
3 | 30 | | 1.0510 | 3.1518 | 4.9250 | 1.4816 | 1.4329 | 3.6877 | 0.4612 | 0.3538 | 1.8668 |
| 0.5033 | 3.9465 | 5.0629 | 0.3231 | 1.5708 | 3.1161 | 0.5670 | 1.4974 | 3.8887 |
| 0.3385 | 0.4865 | 2.5479 | 0.1994 | 0.0549 | 0.7076 | 0.2919 | 0.1676 | 2.2720 |
| 0.7493 | 5.0224 | 6.5419 | 1.1926 | 6.5029 | 3.5369 | 0.7382 | 4.8340 | 5.9546 |
80 | | 0.9208 | 1.3430 | 2.5436 | 1.3559 | 0.9532 | 2.3051 | 0.2860 | 0.2647 | 1.6196 |
| 0.3678 | 1.5569 | 2.2854 | 0.3032 | 1.0617 | 1.8992 | 0.3258 | 1.2887 | 2.1018 |
| 0.1766 | 0.2832 | 0.4069 | 0.1677 | 0.0262 | 0.4000 | 0.1607 | 0.1545 | 0.3666 |
| 0.6748 | 3.5248 | 7.1293 | 0.9328 | 4.5597 | 2.8017 | 0.6817 | 2.6870 | 4.4917 |
150 | | 0.8160 | 1.3064 | 2.7226 | 0.9961 | 0.8072 | 1.5698 | 0.2892 | 0.2370 | 1.5071 |
| 0.3576 | 1.2649 | 2.7693 | 0.2941 | 0.8905 | 1.3131 | 0.3148 | 0.8488 | 2.0209 |
| 0.1575 | 0.1372 | 0.3922 | 0.1571 | 0.0226 | 0.3097 | 0.1332 | 0.1354 | 0.2539 |
| 0.4965 | 1.2215 | 4.9840 | 0.9337 | 2.5183 | 2.3962 | 0.4603 | 1.0261 | 3.0571 |
Table 7.
MLE for parameters of and comparative models for COVID-19 data.
Table 7.
MLE for parameters of and comparative models for COVID-19 data.
Models | | | | | |
---|
TLMW | estimates | 0.0106 | 0.0101 | 1.2689 | 1.2680 |
SE | 0.0740 | 0.0276 | 0.2493 | 1.0647 |
KW | estimates | 1.2083 | 2.3127 | 0.0326 | 1.1786 |
SE | 0.9050 | 6.4453 | 0.0641 | 0.6493 |
GMW | estimates | 0.0370 | 1.2290 | 0.0015 | 1.1750 |
SE | 0.0939 | 0.9993 | 0.0140 | 0.7523 |
WL | estimates | 0.1965 | 1.4744 | 0.8391 | 4.3238 |
SE | 4.4704 | 0.8668 | 0.5010 | 70.5703 |
OLLMW | estimates | 2.5199 | 0.0168 | 0.1754 | 0.3704 |
SE | 0.9641 | 0.0256 | 0.1080 | 0.2135 |
Table 8.
Discrimination criteria and KS test of the TLMW model parameters for COVID-19 data.
Table 8.
Discrimination criteria and KS test of the TLMW model parameters for COVID-19 data.
Models | AKIC | BIC | CAKIC | HQIC | KSD | PVKS |
---|
TLMW | 663.9288 | 673.7924 | 664.4166 | 667.9005 | 0.0740 | 0.7280 |
KW | 663.9298 | 673.7984 | 664.4256 | 667.9996 | 0.0752 | 0.7090 |
GMW | 663.9839 | 673.9776 | 664.9517 | 667.9857 | 0.0768 | 0.6834 |
WL | 663.9706 | 673.8712 | 664.5954 | 667.9879 | 0.0750 | 0.7125 |
OLLMW | 664.8357 | 674.6994 | 665.3235 | 668.8075 | 0.0764 | 0.7059 |
Table 9.
MLE and Bayesian estimation methods of the model parameters for COVID-19 data.
Table 9.
MLE and Bayesian estimation methods of the model parameters for COVID-19 data.
| MLE | Bayesian |
---|
| Estimates | SE | Lower | Upper | Estimates | SE | Lower | Upper |
| 0.0106 | 0.0740 | 0.0062 | 0.0831 | 0.0106 | 0.0005 | 0.0096 | 0.0115 |
| 0.0101 | 0.0276 | 0.0017 | 0.0371 | 0.0100 | 0.0014 | 0.0076 | 0.0129 |
| 1.2689 | 0.2493 | 1.0246 | 1.5133 | 1.2689 | 0.0125 | 1.2440 | 1.2936 |
| 1.2680 | 1.0647 | 0.2246 | 2.3114 | 1.2676 | 0.0531 | 1.1618 | 1.3672 |
Table 10.
MLE for parameters of TLMW and comparative models for Guinea Pigs data.
Table 10.
MLE for parameters of TLMW and comparative models for Guinea Pigs data.
Models | | | | | | |
---|
TLMW | estimates | 0.2497 | 0.2004 | 1.2916 | 2.7723 | |
SE | 0.9087 | 0.7554 | 0.7622 | 1.5924 | |
KW | estimates | 2.4052 | 0.7823 | 0.9365 | 1.2522 | |
SE | 1.1901 | 0.1516 | 0.3952 | 0.8752 | |
WL | estimates | 11.2147 | 2.8862 | 0.2501 | 0.6035 | |
SE | 27.0764 | 2.3091 | 0.2095 | 2.0505 | |
MOAPEW | estimates | 0.0106 | 0.6961 | 0.9662 | 0.4619 | 0.0332 |
SE | 0.0144 | 0.3549 | 0.1980 | 0.4283 | 0.0079 |
EGAPEx | estimates | 2.8371 | 3.2962 | 16.2875 | 0.1090 | |
SE | 0.9711 | 1.0053 | 2.9542 | 0.0265 | |
Table 11.
Discrimination criteria and KS test of the TLMW model parameters for Guinea Pigs data.
Table 11.
Discrimination criteria and KS test of the TLMW model parameters for Guinea Pigs data.
Models | AKIC | BIC | CAKIC | HQIC | KSD | PVKS |
---|
TLMW | 196.1265 | 205.2332 | 196.7235 | 199.7519 | 0.0885 | 0.6253 |
KW | 196.2290 | 205.3357 | 196.8260 | 199.8544 | 0.0922 | 0.5737 |
WL | 196.8496 | 205.9562 | 197.4466 | 200.4750 | 0.0955 | 0.5277 |
MOAPEW | 210.8167 | 222.2000 | 211.7258 | 215.3484 | 0.1359 | 0.1398 |
EGAPEx | 196.3202 | 205.4268 | 196.9172 | 199.9456 | 0.0907 | 0.5948 |
Table 12.
MLE and Bayesian estimation methods of the model parameters for Guinea Pigs data.
Table 12.
MLE and Bayesian estimation methods of the model parameters for Guinea Pigs data.
| MLE | Bayesian |
---|
| Estimates | SE | Lower | Upper | Estimates | SE | Lower | Upper |
| 0.2497 | 0.9087 | 0.0378 | 0.4615 | 0.2501 | 0.0046 | 0.2410 | 0.2593 |
| 0.2004 | 0.7554 | 0.1326 | 0.2682 | 0.2146 | 0.0231 | 0.1838 | 0.2669 |
| 1.2916 | 0.7622 | 0.1723 | 2.4109 | 1.2962 | 0.0341 | 1.2292 | 1.3696 |
| 2.7723 | 1.5924 | 0.5117 | 5.0330 | 2.7819 | 0.0719 | 2.6330 | 2.9210 |
Table 13.
Waiting times (in minutes) before service of 100 bank customers.
Table 13.
Waiting times (in minutes) before service of 100 bank customers.
0.8 | 0.8 | 1.3 | 1.5 | 1.8 | 1.9 | 1.9 | 2.1 | 2.6 | 2.7 | 2.9 | 3.1 | 3.2 | 3.3 | 3.5 |
3.6 | 4.0 | 4.1 | 4.2 | 4.2 | 4.3 | 4.3 | 4.4 | 4.4 | 4.6 | 4.7 | 4.7 | 4.8 | 4.9 | 4.9 |
5.0 | 5.3 | 5.5 | 5.7 | 5.7 | 6.1 | 6.2 | 6.2 | 6.2 | 6.3 | 6.7 | 6.9 | 7.1 | 7.1 | 7.1 |
7.1 | 7.4 | 7.6 | 7.7 | 8.0 | 8.2 | 8.6 | 8.6 | 8.6 | 8.8 | 8.8 | 8.9 | 8.9 | 9.5 | 9.6 |
9.7 | 9.8 | 10.7 | 10.9 | 11.0 | 11.0 | 11.1 | 11.2 | 11.2 | 11.5 | 11.9 | 12.4 | 12.5 | 12.9 | 13.0 |
13.1 | 13.3 | 13.6 | 13.7 | 13.9 | 14.1 | 15.4 | 15.4 | 17.3 | 17.3 | 18.1 | 18.2 | 18.4 | 18.9 | 19.0 |
19.9 | 20.6 | 21.3 | 21.4 | 21.9 | 23.0 | 27.0 | 31.6 | 33.1 | 38.5 | | | | | |
Table 14.
Summary statistics of the Waiting times data set.
Table 14.
Summary statistics of the Waiting times data set.
Median | | | Kurtosis | Skewness |
---|
8.1 | 9.872 | 52.0875 | 1.44713 | 7.21717 |
Table 15.
MLE for parameters of and comparative models for waiting times.
Table 15.
MLE for parameters of and comparative models for waiting times.
Models | | | | | | |
---|
| estimates | 0.0253 | 0.0905 | 0.8581 | 2.7331 | |
SE | 0.6659 | 0.4810 | 1.9559 | 3.3520 | |
KW | estimates | 2.3386 | 0.3121 | 0.3319 | 1.1292 | |
SE | 1.1505 | 0.7742 | 0.4551 | 0.4184 | |
GMW | estimates | 0.0934 | 1.7029 | 0.0070 | 1.1990 | |
SE | 0.1679 | 1.3278 | 0.0216 | 0.6518 | |
EOWL | estimates | 2.2848 | 0.0719 | 0.4028 | 2.2202 | |
SE | 2.9676 | 0.5081 | 1.0659 | 11.9778 | |
WL | estimates | 1.0497 | 2.0639 | 0.4387 | 2.8458 | |
SE | 0.2157 | 0.3553 | 0.1099 | 0.4097 | |
MOAPEW | estimates | 0.2806 | 0.2616 | 0.5192 | 0.0064 | 0.0507 |
SE | 0.0956 | 0.0097 | 0.2034 | 0.0021 | 0.0423 |
EGAPEx | estimates | 1.2516 | 2.0969 | 0.2248 | 0.7042 | |
SE | 0.1157 | 0.3196 | 0.0399 | 0.0967 | |
Table 16.
Discrimination criteria and KS test of the model parameters for waiting times.
Table 16.
Discrimination criteria and KS test of the model parameters for waiting times.
Models | AKIC | BIC | CAKIC | HQIC | KSD | PVKS |
---|
| 642.067 | 652.488 | 642.489 | 646.285 | 0.036 | 0.999 |
KW | 641.950 | 652.371 | 642.371 | 646.167 | 0.038 | 0.999 |
GMW | 642.387 | 652.808 | 642.808 | 646.605 | 0.041 | 0.996 |
EOWL | 642.231 | 652.652 | 642.652 | 646.449 | 0.038 | 0.999 |
WL | 642.533 | 652.954 | 642.954 | 646.751 | 0.041 | 0.995 |
MOAPEW | 652.324 | 665.350 | 652.963 | 657.596 | 0.082 | 0.509 |
EGAPEx | 642.184 | 652.604 | 642.605 | 646.401 | 0.040 | 0.997 |
Table 17.
MLE and Bayesian estimation methods of the model parameters for waiting times.
Table 17.
MLE and Bayesian estimation methods of the model parameters for waiting times.
Method | | | | | |
---|
MLE | estimates | 0.0253 | 0.0905 | 0.8581 | 2.7331 |
SE | 0.6659 | 0.4810 | 1.9559 | 3.3520 |
Lower | 0.0005 | 0.0419 | 0.4747 | 0.7041 |
upper | 1.3305 | 1.0334 | 4.6917 | 9.3031 |
Bayes | estimates | 0.0252 | 0.0903 | 0.8580 | 2.7328 |
SE | 0.0050 | 0.0158 | 0.0652 | 0.1118 |
Lower | 0.0155 | 0.0608 | 0.7276 | 2.5096 |
upper | 0.0347 | 0.1227 | 0.9873 | 2.9423 |
Table 18.
Tensile strength (with unit in GPa) for single carbon fibers.
Table 18.
Tensile strength (with unit in GPa) for single carbon fibers.
0.312 | 0.944 | 1.063 | 1.272 | 1.434 | 1.566 | 1.697 | 1.848 | 2.128 |
0.314 | 0.958 | 1.098 | 1.274 | 1.435 | 1.57 | 1.726 | 1.88 | 2.233 |
0.479 | 0.966 | 1.14 | 1.301 | 1.478 | 1.586 | 1.77 | 1.954 | 2.433 |
0.552 | 0.997 | 1.179 | 1.301 | 1.49 | 1.629 | 1.773 | 2.012 | 2.585 |
0.7 | 1.006 | 1.224 | 1.359 | 1.511 | 1.633 | 1.8 | 2.067 | 2.585 |
0.803 | 1.021 | 1.24 | 1.382 | 1.514 | 1.642 | 1.809 | 2.084 | |
0.861 | 1.027 | 1.253 | 1.382 | 1.535 | 1.648 | 1.818 | 2.09 | |
0.865 | 1.055 | 1.27 | 1.426 | 1.554 | 1.684 | 1.821 | 2.096 | |
Table 19.
MLE for parameters of and comparative models for single carbon fibers data.
Table 19.
MLE for parameters of and comparative models for single carbon fibers data.
Models | | | | | | |
---|
| estimates | 0.2145 | 0.1057 | 3.2053 | 2.2749 | |
SE | 0.1081 | 0.0346 | 0.7106 | 1.1533 | |
OLLMW | estimates | 28.7708 | 0.0560 | 0.6093 | 0.0125 | |
SE | 39.8918 | 0.0814 | 0.1193 | 0.0310 | |
KW | estimates | 1.3752 | 0.1402 | 1.2141 | 3.0059 | |
SE | 0.0409 | 0.0194 | 0.0306 | 0.0194 | |
GMW | estimates | 0.4864 | 4.4323 | 0.8582 | 0.3467 | |
SE | 0.7405 | 8.6912 | 0.2825 | 1.0545 | |
EOWL | estimates | 2.6361 | 0.1152 | 8.7047 | 19.2595 | |
SE | 0.4997 | 0.2885 | 4.9097 | 10.6442 | |
WL | estimates | 0.1399 | 2.5597 | 2.0355 | 2.1477 | |
SE | 4.5871 | 2.4273 | 6.7471 | 31.2428 | |
MAOPEW | estimates | 0.8564 | 3.0230 | 0.0117 | 1.5489 | 0.0055 |
SE | 1.3615 | 0.8091 | 0.0091 | 0.3239 | 0.0036 |
EGAPEx | estimates | 141.1326 | 2.4787 | 17.2979 | 0.4888 | |
SE | 52.8014 | 0.9138 | 12.7006 | 0.1625 | |
Table 20.
Discrimination criteria and KS test of the model parameters for single carbon fibers.
Table 20.
Discrimination criteria and KS test of the model parameters for single carbon fibers.
Models | AKIC | BIC | CAKIC | HQIC | KSD | PVKS |
---|
| 105.1709 | 114.1073 | 105.7959 | 108.7163 | 0.0406 | 0.9999 |
OLLMW | 106.6756 | 115.6121 | 107.3006 | 110.2210 | 0.0468 | 0.9982 |
KW | 107.4852 | 116.4217 | 108.1102 | 111.0306 | 0.0514 | 0.9932 |
GMW | 105.4391 | 114.3755 | 106.0641 | 108.9844 | 0.0423 | 0.9997 |
EOWL | 105.5875 | 114.5240 | 106.2125 | 109.1329 | 0.0435 | 0.9995 |
WL | 105.6961 | 114.6326 | 106.3211 | 109.2415 | 0.0473 | 0.9978 |
MAOPEW | 107.4438 | 118.6144 | 108.3962 | 111.8756 | 0.0496 | 0.9957 |
EGAPEx | 107.0651 | 116.0015 | 107.6901 | 110.6105 | 0.0561 | 0.9817 |
Table 21.
LE and Bayesian estimation methods of the model parameters for single carbon fibers.
Table 21.
LE and Bayesian estimation methods of the model parameters for single carbon fibers.
Method | | | | | |
---|
MLE | estimates | 0.2145 | 0.1057 | 3.2053 | 2.2749 |
SE | 0.1081 | 0.0346 | 0.7106 | 1.1533 |
Lower | 0.1897 | 0.0571 | 2.8219 | 0.2459 |
upper | 0.2393 | 0.1543 | 3.5887 | 4.3039 |
Bayes | estimates | 0.2144 | 0.1057 | 3.2053 | 2.2745 |
SE | 0.0050 | 0.0039 | 0.0355 | 0.0866 |
Lower | 0.2048 | 0.0984 | 3.1342 | 2.1021 |
upper | 0.2242 | 0.1137 | 3.2757 | 2.4367 |