Inactivation of Contaminated Fungi in Rice Grains by Dielectric Heating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Samples Preparation and Fungal Strain
2.2. Measurement of Dielectric Properties of Fine Rice Powder and Aspergillus sp. BP17
2.3. Experimental Desing for Dielectric Heating System
2.3.1. Dielectric Heating System Setting
2.3.2. Determining the Optimal ISM Frequency Bands
2.3.3. The Study of Relative Electric Field Intensity and Temperature
2.3.4. Effect of Dielectric Heating on Fungal Growth
2.4. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Frequency Band under Dielectric Heating System
3.2. Study of Relative Electric Field Intensity and Temperature on Heating System
3.3. Effect of Dielectric Heating Condition on Fungal Growth
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savi, G.D.; Piacentini, K.C.; Rocha, L.O.; Carnielli-Queiroz, L.; Furtado, B.G.; Scussel, R.; Zanoni, E.T.; Machado-de-Ávila, R.A.; Corrêa, B.; Angioletto, E. Incidence of toxigenic fungi and zearalenone in rice grains from Brazil. Int. J. Food Microbiol. 2018, 270, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Rice Consumption Per Capita. Available online: https://www.helgilibrary.com/indicators/rice-consumption-per-capita (accessed on 5 October 2022).
- Gonçalves, A.; Gkrillas, A.; Dorne, J.L.; Dall’Asta, C.; Palumbo, R.; Lima, N.; Battilani, P.; Venâncio, A.; Giorni, P. Pre- and postharvest strategies to minimize mycotoxin contamination in the rice food chain. Compr. Rev. Food Sci. Food Saf. 2019, 18, 441–454. [Google Scholar] [CrossRef]
- Kittipong, S.; Kunya, C.; Kanjana, P.; Sa-ang, C.; Grissana, S.; Yotsaporn, T.; Rujira, P.; Witchuda, R.; Rasamee, D. Investigation on the Contamination of Aflatoxin B1 in Thai Rice. Thai Rice Res. J. 2018, 1, 30–36. [Google Scholar]
- Lee, S.H.; Park, S.Y.; Byun, K.H.; Chun, H.S.; Ha, S.D. Effects of microwaves on the reduction of Aspergillus flavus and Aspergillus parasiticus on brown rice (Oryza sativa L.) and barley (Hordeum vulgare L.). Food Addit. Contam. 2017, 34, 1193–1200. [Google Scholar] [CrossRef]
- Mannaa, M.; Kim, K.D. Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology 2017, 45, 240–254. [Google Scholar] [CrossRef]
- Trung, T.S.; Bailly, J.; Querin, A.; Le Bars, P.; Guerre, P. Fungal contamination of rice from south Vietnam, mycotoxinogenesis of selected strains and residues in rice. Rev. Médecine Vétérinaire 2001, 152, 555–560. [Google Scholar]
- Ali, N. Aflatoxins in rice: Worldwide occurrence and public health perspectives. Toxicol. Rep. 2019, 6, 1188–1197. [Google Scholar] [CrossRef]
- Akhila, P.P.; Sunooj, K.V.; Aaliya, B.; Navaf, M.; Sudheesh, C.; Sabu, S.; Khaneghah, A.M. Application of electromagnetic radiations for decontamination of fungi and mycotoxins in food products: A comprehensive review. Trends Food Sci. Technol. 2021, 114, 399–409. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Hajeb, P.; Ehsani, R.J. Application of ozone for degradation of mycotoxins in food: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1777–1808. [Google Scholar] [CrossRef]
- Yang, K.; Li, K.; Pan, L.; Luo, X.; Xing, J.; Wang, J.; Wang, L.; Wang, R.; Zhai, Y.; Chen, Z. Effect of Ozone and Electron Beam Irradiation on Degradation of Zearalenone and Ochratoxin, A. Toxins 2020, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Mishra, H.N. Ecofriendly nonchemical/nonthermal methods for disinfestation and control of pest/fungal infestation during storage of major important cereal grains: A review. Front. Nutr. 2021, 2, 93–105. [Google Scholar] [CrossRef]
- Wason, S.; Verma, T.; Subbiah, J. Validation of process technologies for enhancing the safety of low-moisture foods: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4950–4992. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Hu, J.; Xiong, S.; Zhao, S. Effect of low-dose microwave radiation on Aspergillus parasiticus. Food Control 2011, 22, 1078–1084. [Google Scholar] [CrossRef]
- Schmidt, M.; Zannini, E.; Arendt, E.K. Recent Advances in Physical Post-Harvest Treatments for Shelf-Life Extension of Cereal Crops. Foods 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, S.A.; Dar, B.; Shah, M.A.; Sofi, S.A.; Hamdani, A.M.; Oliveira, C.A.; Moosavi, M.H.; Khaneghah, A.M.; Sant’Ana, A.S. Application of New Technologies in Decontamination of Mycotoxins in Cereal Grains: Challenges, and Perspectives. Food Chem. Toxicol. 2021, 148, 111976. [Google Scholar] [CrossRef]
- Chandravarnan, P.; Agyei, D.; Ali, A. Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends Food Sci. Technol. 2022, 124, 278–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Pandiselvam, R.; Zhu, H.; Su, D.; Wang, H.; Ai, Z.; Kothakota, A.; Khaneghah, A.M.; Liu, Y. Impact of Radio Frequency Treatment on Textural Properties of Food Products: An Updated Review. Trends Food Sci. Technol. 2022, 124, 154–166. [Google Scholar] [CrossRef]
- Vearasilp, S.; Thobunluepop, P.; Thanapornpoonpong, S.N.; Pawelzik, E.; von Hörsten, D. Radio frequency heating on lipid peroxidation, decreasing oxidative stress and aflatoxin B1 reduction in Perilla frutescens L. highland oil seed. Agric. Agric. Sci. Procedia 2015, 5, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Jiao, S.; Zhong, Y.; Deng, Y. Hot air-assisted radio frequency heating effects on wheat and corn seeds: Quality change and fungi inhibition. J. Stored Prod. Res. 2016, 69, 265–271. [Google Scholar] [CrossRef]
- Hou, L.X.; Kou, X.X.; Li, R.; Wang, S.J. Thermal inactivation of fungi in chestnuts by hot air assisted radio frequency treatments. Food Control 2018, 93, 297–304. [Google Scholar] [CrossRef]
- da Silva, A.C.; Sarturi, H.J.; Dall’Oglio, E.L.; Soares, M.A.; de Sousa, P.T.; Gomes de Vasconcelos, L.; Kuhnen, C.A. Microwave drying and disinfestation of Brazil nut seeds. Food Control 2016, 70, 119–129. [Google Scholar] [CrossRef]
- Zheng, A.J.; Zhang, L.H.; Wang, S.J. Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains. Int. J. Food Microbiol. 2017, 249, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Yin, Y.; Tang, J. Microwave drying of food and agricultural materials: Basics and heat and mass transfer modeling. Food Eng. Rev. 2012, 4, 89–106. [Google Scholar] [CrossRef]
- Höhlig, B.; Schmidt, D.; Mechtcherine, V.; Hempel, S.; Schrofl, C.; Trommler, U.; Roland, U. Effects of dielectric heating of fresh concrete on its microstructure and strength in the hardened state. Constr. Build. Mater. 2015, 81, 24–34. [Google Scholar] [CrossRef]
- Ling, B.; Liu, X.; Zhang, L.; Wang, S. Effects of temperature, moisture, and metal salt content on dielectric properties of rice bran associated with radio frequency heating. Sci. Rep. 2018, 8, 4427. [Google Scholar] [CrossRef] [Green Version]
- Ling, B.; Cheng, T.; Wang, S. Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Crit. Rev. Food Sci. Nutr. 2019, 60, 2622–2642. [Google Scholar] [CrossRef]
- Goñi, S.M.; d’Amore, M.; Della Valle, M.; Olivera, D.F.; Salvadori, V.O.; Marra, F. Effect of Load Spatial Configuration on the Heating of Chicken Meat Assisted by Radio Frequency at 40.68 MHz. Foods 2022, 11, 1096. [Google Scholar] [CrossRef]
- Sosa-Morales, M.E.; Valerio-Junco, L.; López-Malo, A.; García, H.S. Dielectric properties of foods: Reported data in the 21st century and their potential applications. LWT Food Sci. Technol. 2010, 43, 1169–1179. [Google Scholar] [CrossRef]
- Nelson, S.O.; Trabelsi, S. Factors Influencing the Dielectric Properties of Agricultural and Food Products. J. Microware Power Electromagn. Energy 2012, 46, 93–107. [Google Scholar] [CrossRef]
- Nelson, S.O. Dielectric Properties of Agricultural Materials and Their Applications, 1st ed.; Academic Press: Amsterdam, The Netherlands, 2015; p. 33. [Google Scholar]
- Zhou, L.; Ling, B.; Zheng, A.; Zhang, B.; Wang, S. Developing radio frequency technology for postharvest insect control in milled rice. J. Stored Prod. Res. 2015, 62, 22–31. [Google Scholar] [CrossRef]
- Hou, L.; Johnson, J.A.; Wang, S. Radio frequency heating for postharvest control of pests in agricultural products: A review. Postharvest Biol. Technol. 2016, 113, 106–118. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, Y.; Tang, Y.; Yang, R.; Yan, W.; Zhao, W. Radio frequency heating as a disinfestation method against Corcyra cephalonica and its effect on properties of milled rice. J. Stored Prod. Res. 2018, 77, 112–121. [Google Scholar] [CrossRef]
- Hou, L.; Liu, Q.; Wang, S. Efficiency of industrial-scale radio frequency treatments to control Rhyzopertha dominica (fabricius) in rough, brown, and milled rice. Biosyst. Eng. 2019, 186, 246–258. [Google Scholar] [CrossRef]
- Cui, M.; Sun, W.; Xia, L.; Wang, Z.; Cao, Y.; Wu, Y. Effect of radio frequency heating on the mortality of Rhizopertha dominica (F.) and its impact on grain quality. J. Stored Prod. Res. 2020, 89, 101695. [Google Scholar] [CrossRef]
- Hou, L.; Wu, Y.; Kou, X.; Li, R.; Wang, S. Developing high-temperature-short-time radio frequency disinfestation treatments in coix seeds: Insect mortality, product quality and energy consumption. Biosyst. Eng. 2022, 215, 262–270. [Google Scholar] [CrossRef]
- Mohamad, S.N.H.; Muhamad, I.I.; Mohd Jusoh, Y.M.; Khairuddin, N. Dielectric properties for selected wall material in the development of microwave-encapsulation-drying. J. Food Sci. Technol. 2018, 55, 5161–5165. [Google Scholar] [CrossRef]
- Hussein, M.I.; Jithin, D.; Rajmohan, I.J.; Sham, A.; Saeed, E.E.M.; AbuQamar, S.F. Microwave characterization of hydrophilic and hydrophobic plant pathogenic fungi using open-ended coaxial probe. IEEE Access 2019, 7, 45841–45849. [Google Scholar] [CrossRef]
- Cheng, E.M.; You, K.Y.; Lee, K.Y.; Abbas, Z.; Rahim, H.A.; Khor, S.F.; Zakaria, Z.; Lee, Y.S. Dielectric spectroscopy technique for carbohydrate characterization of fragrant rice, brown rice and white rice. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; pp. 205–209. [Google Scholar] [CrossRef]
- Bansal, N.; Dhaliwal, A.S.; Mann, K.S. Dielectric characterization of rapeseed (Brassica napus L.) from 10 to 3000 MHz. Biosyst. Eng. 2016, 143, 1–8. [Google Scholar] [CrossRef]
- Ozturk, S.; Kong, F.B.; Singh, R.K.; Kuzy, J.D.; Li, C.Y.; Trabelsi, S. Dielectric properties, heating rate, and heating uniformity of various seasoning spices and their mixtures with radio frequency heating. J. Food Eng. 2018, 228, 128–141. [Google Scholar] [CrossRef]
- Nelson, S.O. Fundamentals of dielectric properties measurements and agricultural applications. J. Microw. Power Electromagn. Energy 2010, 44, 98–113. [Google Scholar] [CrossRef]
- Jiao, Y.; Tang, J.; Wang, Y.; Koral, T.L. Radio-frequency applications for food processing and safety. Annu. Rev. Food Sci. Technol. 2018, 9, 105–127. [Google Scholar] [CrossRef] [PubMed]
- Saran, S.; Gurjar, M.; Baronia, A.; Sivapurapu, V.; Ghosh, P.S.; Raju, G.M.; Maurya, I. Heating, ventilation and air conditioning (HVAC) in intensive care unit. Crit. Care 2020, 24, 194. [Google Scholar] [CrossRef] [PubMed]
- François, A.; Tong, C.; Thomas, C.; Jean, J.F.; Mary, P.; David, D.; Katia, G. Microwaving biological cells: Intracellular analysis with microwave dielectric spectroscopy. IEEE Microw. Mag. 2015, 16, 87–96. [Google Scholar] [CrossRef]
- Qi, S.; Han, J.; Lagnika, C.; Jiang, N.; Qian, C.; Liu, C.; Li, D.; Tao, Y.; Yu, Z.; Wang, L.; et al. Dielectric properties of edible fungi powder related to radio-frequency and microwave drying. Food Prod. Process. Nutr. 2021, 3, 15. [Google Scholar] [CrossRef]
- Wasusathien, W.; Santalunai, S.; Thosdeekoraphat, T.; Thongsopa, C. Rice Types Classification by Using Dielectric Properties Measurement with Saline Water Increasing Technique. In Proceedings of the 2020 International Symposium on Electrical Insulating Materials (ISEIM), Tokyo, Japan, 13–17 September 2020; pp. 433–438. [Google Scholar]
- Cao, X.; Zhang, M.; Chitrakar, B.; Mujumdar, A.S.; Zhong, Q.; Wang, Z.; Wang, L. Radio frequency heating for powder pasteurization of barley grass: Antioxidant substances, sensory quality, microbial load and energy consumption. J. Sci. Food Agric. 2019, 99, 4460–4467. [Google Scholar] [CrossRef]
- El Khaled, D.; Castellano, N.; Gázquez, J.; Perea-Moreno, A.-J.; Manzano-Agugliaro, F. Dielectric Spectroscopy in Biomaterials: Agrophysics. Materials 2016, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Birla, S.L.; Wang, S.; Tang, J.; Tiwari, G. Characterization of radio frequency heating of fresh fruits influenced by dielectric properties. J. Food Eng. 2008, 89, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Sagong, H.G.; Choi, S.H.; Ryu, S.; Kang, D.H. Radio-frequency heating to inactivate Salmonella Typhimurium and Escherichia coli O157:H7 on black and red pepper spice. Int. J. Food Microbiol. 2012, 153, 171–175. [Google Scholar] [CrossRef]
- Bedane, T.F.; Chen, L.; Marra, F.; Wang, S. Experimental study of radio frequency (RF) thawing of foods with movement on conveyor belt. J. Food Eng. 2017, 201, 17–25. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Hu, Y.; Wang, L. Microwaves, a potential treatment for bacteria: A review. Front. Microbiol. 2022, 13, 1–14. [Google Scholar] [CrossRef]
- Kavanagh, J.; Larchet, N.; Stuart, M. Occurrence of a heat-resistant species of Aspergillus in canned strawberries. Nature 1963, 198, 1322. [Google Scholar] [CrossRef]
- Splittstoesser, D.F.; Splittstoesser, C.M. Ascospores of Byssochlamys fulva compared with those of a heat resistant Aspergillus. J. Food Sci. 1977, 42, 685–688. [Google Scholar] [CrossRef]
- Naka, J.; Vearasilp, S.; Thanapornpoonpong, S.N. Effects of radio frequency heat treatment to control of Aspergillus flavus aflatoxin B1 and quality in rice var. KDML 105 in different bagging densities. Warasan Kaset 2013, 29, 1–12. [Google Scholar]
- Dijksterhuis, J. Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage. Food Microbiol. 2019, 81, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Cain, C.A. A theoretical basis for microwave and RF field effects on excitable cellular membranes. IEEE Trans. Microw. Theory Tech. 1980, 2, 142–147. [Google Scholar] [CrossRef]
- Müller, W.A.; Pasin, M.V.A.; Sarkis, J.R.; Marczak, L.D.F. Effect of pasteurization on Aspergillus fumigatus in apple juice: Analysis of the thermal and electric effects. Int. J. Food Microbiol. 2021, 338, 108993. [Google Scholar] [CrossRef] [PubMed]
- Müller, W.A.; Marczak, L.D.F.; Sarkis, J.R. Thermal and kinetic integrated models applied for Aspergillus fumigatus inactivation during ohmic and conventional juice pasteurization. J. Food Eng. 2022, 319, 110907. [Google Scholar] [CrossRef]
- Yıldız, H.; Baysal, T. Effects of alternative current heating treatment on Aspergillus niger, pectin methylesterase and pectin content in tomato. J. Food Eng. 2006, 75, 327–332. [Google Scholar] [CrossRef]
- Orsat, V.; Raghavan, G.V. Radio-Frequency Processing. In Emerging Technologies for Food Processing, 2nd ed.; Da-Wen, S., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 385–398. [Google Scholar] [CrossRef]
Mean ± SD | Dielectric Constant | Dielectric Loss | ||||
---|---|---|---|---|---|---|
Frequency (MHz) | ||||||
40.68 | 915 | 2450 | 40.68 | 915 | 2450 | |
Aspergillus sp. BP17 (A) | 31.574 ± 0.333 | 18.356 ± 0.449 | 16.794 ± 0.166 | 48.92 ± 0.466 | 5.042 ± 0.117 | 4.412 ± 0.106 |
Rice powder (B) | 4.754 ± 0.123 | 3.774 ± 0.044 | 3.343 ± 0.064 | 0.251 ± 0.036 | 0.551 ± 0.022 | 0.582 ± 0.019 |
Ratio A:B | 6.641 | 4.863 | 5.024 | 194.900 | 9.151 | 7.580 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutacha, C.; Santalunai, S.; Thongsopa, C.; Thosdeekoraphat, T.; Penkhrue, W. Inactivation of Contaminated Fungi in Rice Grains by Dielectric Heating. Appl. Sci. 2022, 12, 10478. https://doi.org/10.3390/app122010478
Sutacha C, Santalunai S, Thongsopa C, Thosdeekoraphat T, Penkhrue W. Inactivation of Contaminated Fungi in Rice Grains by Dielectric Heating. Applied Sciences. 2022; 12(20):10478. https://doi.org/10.3390/app122010478
Chicago/Turabian StyleSutacha, Chalermkiat, Samran Santalunai, Chanchai Thongsopa, Thanaset Thosdeekoraphat, and Watsana Penkhrue. 2022. "Inactivation of Contaminated Fungi in Rice Grains by Dielectric Heating" Applied Sciences 12, no. 20: 10478. https://doi.org/10.3390/app122010478
APA StyleSutacha, C., Santalunai, S., Thongsopa, C., Thosdeekoraphat, T., & Penkhrue, W. (2022). Inactivation of Contaminated Fungi in Rice Grains by Dielectric Heating. Applied Sciences, 12(20), 10478. https://doi.org/10.3390/app122010478