Hydraulic Performance of Howell–Bunger and Butterfly Valves Used for Bottom Outlet in Large Dams under Flood Hazards
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Scenario I: Longitudinal Distance between Two Valves L = 2D (4 m)
3.2. Scenario II: Longitudinal Distance between Two Valves L = 3D (6 m)
3.3. Scenario III: Longitudinal Distance between Two Valves L = 4D (8 m)
3.4. Scenario IV: Longitudinal Distance between Two Valves L = 5D (10 m)
3.5. Evaluate the Results of Numerical
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, M.C.; Dham, R. Innovative Energy-Dissipating Hood. J. Hydraul. Eng. 2006, 132, 759–764. [Google Scholar] [CrossRef]
- Sazonov, Y.A.; Mokhov, M.A.; Gryaznova, I.V.; Voronova, V.V.; Tumanyan, K.A.; Frankov, M.A.; Balaka, N.N. Development and Prototyping of Jet Systems for Advanced Turbomachinery with Mesh Rotor. Emerg. Sci. J. 2021, 5, 775–801. [Google Scholar] [CrossRef]
- Liu, Y.L.; Lv, B.; Wei, W.L. Large Eddy Simulation of Gas-Liquid Two-Phase Flow for a Nested Type Fixed-Cone Valve. In Applied Mechanics and Materials; Trans Tech Publications Ltd: Stafa-Zurich, Switzerland, 2012; Volume 170, pp. 2458–2463. [Google Scholar]
- Lewin, J. Hydraulic Gates and Valves: In Free Surface Flow and Submerged Outlets; Thomas Telford: London, UK, 2001. [Google Scholar]
- Yamini, O.A.; Movahedi, A.; Mousavi, S.H.; Kavianpour, M.R.; Kyriakopoulos, G.L. Hydraulic Performance of Seawater Intake System Using CFD Modeling. J. Mar. Sci. Eng. 2022, 10, 988. [Google Scholar] [CrossRef]
- Ortiz, J.P.; Xavier, T.C.L. Three-Dimensional Simulations and Economical Solutions for Cavitation in Hollow-Jet Dispersive Valves. J. Appl. Fluid Mech. 2021, 14, 1399–1410. [Google Scholar]
- Alrwashdeh, S.S.; Ammari, H.; Madanat, M.A.; Al-Falahat, A.M. The Effect of Heat Exchanger Design on Heat transfer Rate and Temperature Distribution. Emerg. Sci. J. 2022, 6, 128–137. [Google Scholar] [CrossRef]
- Aminoroayaie Yamini, O.; Mousavi, S.H.; Kavianpour, M.R.; Safari Ghaleh, R. Hydrodynamic performance and cavitation analysis in bottom outlets of dam using CFD modelling. Adv. Civ. Eng. 2021, 2021, 5529792. [Google Scholar] [CrossRef]
- Amirante, R.; Distaso, E.; Tamburrano, P. Experimental and numerical analysis of cavitation in hydraulic proportional directional valves. Energy Convers. Manag. 2014, 87, 208–219. [Google Scholar] [CrossRef]
- Nzombo, D. A numerical Investigation of Cavitation in Valves and Techno-Economic Analysis of Pinewood Solvent Liquefaction. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2017. [Google Scholar]
- Liu, X.; Wu, Z.; Li, B.; Zhao, J.; He, J.; Li, W.; Zhang, C.; Xie, F. Influence of inlet pressure on cavitation characteristics in regulating valve. Eng. Appl. Comput. Fluid Mech. 2020, 14, 299–310. [Google Scholar] [CrossRef]
- Tabrizi, A.S.; Asadi, M.; Xie, G.; Lorenzini, G.; Biserni, C. Computational fluid-dynamics-based analysis of a ball valve performance in the presence of cavitation. J. Eng. Thermophys. 2014, 23, 27–38. [Google Scholar] [CrossRef]
- Li, J.-Y.; Gao, Z.-X.; Wu, H.; Jin, Z.-J. Numerical Investigation of Methodologies for Cavitation Suppression Inside Globe Valves. Appl. Sci. 2020, 10, 5541. [Google Scholar] [CrossRef]
- Wu, J.; Utturkar, Y.; Senocak, I.; Shyy, W.; Arakere, N. Impact of turbulence and compressibility modeling on three-dimensional cavitating flow computations. In Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, FL, USA, 23–26 June 2003; p. 4264. [Google Scholar]
- Wang, G.; Liu, S.; Shintani, M.; Ikohagi, T. Study on cavitation damage characteristics around a hollow-jet valve. JSME Int. J. Ser. B Fluids Therm. Eng. 1999, 42, 649–657. [Google Scholar] [CrossRef]
- Tsukiji, T.; Noguchi, E.; Yoshida, F. Development of Oil Hydraulic Components Using a Flow Visualization Technique. Int. J. Autom. Technol. 2012, 6, 410–417. [Google Scholar] [CrossRef]
- Cao, B.; Guo, M. Analysis of boundary element of flow field in poppet valve. Mach. Tool Hydraul. 1991, 2, 2–10. [Google Scholar]
- Cao, B.; Shi, W. Experimental study on flow force and pressure distribution on the poppet of a converged flow poppet valve. J. Xi’an Jiaotong Univ. 1995, 7, 7–13. [Google Scholar]
- Gao, D. Investigation of Flow Structure Inside Spool Valve with Fem and Piv Methods. Int. J. Fluid Power 2004, 5, 51–66. [Google Scholar] [CrossRef]
- Jalil, J.M.; Ahmed, S.T.; Xue, Y.; Ghadhban, S.A. Experimental and numerical investigation of fluid flow of truncated conical poppet valve. Int. J. Fluid Power 2015, 16, 25–34. [Google Scholar] [CrossRef]
- Yi, D.; Lu, L.; Zou, J.; Fu, X. Interactions between poppet vibration and cavitation in relief valve. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 1447–1461. [Google Scholar] [CrossRef]
- Li, S.; Aung, N.Z.; Zhang, S.; Cao, J.; Xue, X. Experimental and numerical investigation of cavitation phenomenon in flapper–nozzle pilot stage of an electrohydraulic servo-valve. Comput. Fluids 2013, 88, 590–598. [Google Scholar] [CrossRef]
- Adamkowski, A.; Lewandowski, M. Cavitation Characteristics of Shutoff Valves in Numerical Modeling of Transients in Pipelines with Column Separation. J. Hydraul. Eng. 2015, 141, 04014077. [Google Scholar] [CrossRef]
- Zeng, L.F.; Liu, G.W.; Mao, J.R.; Wang, S.S.; Yuan, Q.; Yuan, H.; Wang, K.G.; Zhang, J.J.; Xu, Y.T. Flow-induced vibration and noise in control valve. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 3368–3377. [Google Scholar] [CrossRef]
- Saha, B.K.; Chattopadhyay, H.; Mandal, P.B.; Gangopadhyay, T. Dynamic simulation of a pressure regulating and shut-off valve. Comput. Fluids 2014, 101, 233–240. [Google Scholar] [CrossRef]
- Tran, P.D. Pressure Transients Caused by Tilting-Disk Check-Valve Closure. J. Hydraul. Eng. 2015, 141, 04014081. [Google Scholar] [CrossRef]
- Beune, A.; Kuerten, J.; van Heumen, M. CFD analysis with fluid–structure interaction of opening high-pressure safety valves. Comput. Fluids 2012, 64, 108–116. [Google Scholar] [CrossRef]
- Hős, C.J.; Champneys, A.; Paul, K.; McNeely, M. Dynamic behavior of direct spring loaded pressure relief valves in gas service: Model development, measurements and instability mechanisms. J. Loss Prev. Process Ind. 2014, 31, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Hős, C.; Champneys, A.; Paul, K.; McNeely, M. Dynamic behaviour of direct spring loaded pressure relief valves in gas service: II reduced order modelling. J. Loss Prev. Process Ind. 2015, 36, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Posa, A.; Oresta, P.; Lippolis, A. Analysis of a directional hydraulic valve by a Direct Numerical Simulation using an immersed-boundary method. Energy Convers. Manag. 2013, 65, 497–506. [Google Scholar] [CrossRef]
- Flow Science, Inc. Flow-3D User Manual v11. 2; Flow Science, Inc.: Santa Fe, NM, USA, 2018. [Google Scholar]
- Imanian, H.; Mohammadian, A. Numerical simulation of flow over ogee crested spillways under high hydraulic head ratio. Eng. Appl. Comput. Fluid Mech. 2019, 13, 983–1000. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Teng, P.; Zhang, H. Experiments and CFD modeling of high-velocity two-phase flows in a large chute aerator facility. Eng. Appl. Comput. Fluid Mech. 2018, 13, 48–66. [Google Scholar] [CrossRef] [Green Version]
- Khalifehei, K.; Azizyan, G.; Shafai-Bajestan, M.; Chau, K.W. Experimental Modeling and Evaluation Sediment Scouring in Riverbeds around Downstream in Flip Buckets. Int. J. Eng. 2020, 33, 1904–1916. [Google Scholar]
- Ghaleh, R.S.; Yamini, O.A.; Mousavi, S.H.; Kavianpour, M.R. Numerical Modeling of Failure Mechanisms in Articulated Concrete Block Mattress as a Sustainable Coastal Protection Structure. Sustainability 2021, 13, 12794. [Google Scholar] [CrossRef]
- Del Toro, A. Computational Fluid Dynamics Analysis of Butterfly Valve Performance Factors. Master’s Thesis, School of Mechanical Engineering, Utah State University, Logan, UT, USA, 2012. [Google Scholar]
- Tao, J.; Lin, Z.; Zhang, G.; Su, J.; Zhu, Z. A Numerical and Experimental Study of the Time Averaged and Transient Flow Downstream of a Butterfly Valve. J. Fluids Eng. 2022, 144, 051202. [Google Scholar] [CrossRef]
- Reynolds, O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. A 1883, 174, 935–982. [Google Scholar]
Hydrodynamic Parameters | |||
---|---|---|---|
Experimental Modeling | 17.8 | 24,571 | 56.25 |
Numerical Modeling | 16.74 | 25,837 | 54.83 |
Error % | 5.95 | 5.15 | 2.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakopoulos, G.L.; Aminpour, Y.; Yamini, O.A.; Movahedi, A.; Mousavi, S.H.; Kavianpour, M.R. Hydraulic Performance of Howell–Bunger and Butterfly Valves Used for Bottom Outlet in Large Dams under Flood Hazards. Appl. Sci. 2022, 12, 10971. https://doi.org/10.3390/app122110971
Kyriakopoulos GL, Aminpour Y, Yamini OA, Movahedi A, Mousavi SH, Kavianpour MR. Hydraulic Performance of Howell–Bunger and Butterfly Valves Used for Bottom Outlet in Large Dams under Flood Hazards. Applied Sciences. 2022; 12(21):10971. https://doi.org/10.3390/app122110971
Chicago/Turabian StyleKyriakopoulos, Grigorios L., Younes Aminpour, Omid Aminoroayaie Yamini, Azin Movahedi, S. Hooman Mousavi, and Mohammad Reza Kavianpour. 2022. "Hydraulic Performance of Howell–Bunger and Butterfly Valves Used for Bottom Outlet in Large Dams under Flood Hazards" Applied Sciences 12, no. 21: 10971. https://doi.org/10.3390/app122110971
APA StyleKyriakopoulos, G. L., Aminpour, Y., Yamini, O. A., Movahedi, A., Mousavi, S. H., & Kavianpour, M. R. (2022). Hydraulic Performance of Howell–Bunger and Butterfly Valves Used for Bottom Outlet in Large Dams under Flood Hazards. Applied Sciences, 12(21), 10971. https://doi.org/10.3390/app122110971