Application of Oyster Mushroom Cultivation Residue as an Upcycled Ingredient for Developing Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oyster Mushroom Cultivation
2.2. Laboratory Analyses
2.3. Bread Prototype Development
2.4. Statistical Analyses
3. Results
3.1. Mushroom Production and Properties of Cultivation Residue
3.2. Nutritional Characteristics
3.2.1. Protein and Amino Acid Profile
3.2.2. Vitamin Bs, Lutein and Zeaxanthin
3.2.3. Fibre and Beta-Glucan
3.3. Bread Prototype Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumla, J.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules 2020, 25, 2811. [Google Scholar] [CrossRef] [PubMed]
- Wan Mahari, W.A.; Peng, W.; Nam, W.L.; Yang, H.; Lee, X.Y.; Lee, Y.K.; Liew, R.K.; Ma, N.L.; Mohammad, A.; Sonne, C.; et al. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J. Hazard. Mater. 2020, 400, 123156. [Google Scholar] [CrossRef] [PubMed]
- Rinker, D.L. Spent mushroom substrate uses. Edible Med. Mushrooms Technol. Appl. 2017, 1, 427–454. [Google Scholar]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and Medicinal Mushrooms; Wiley: Hoboken, NJ, USA, 2017; pp. 5–13. [Google Scholar]
- Sánchez, C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 2010, 85, 1321–1337. [Google Scholar] [CrossRef]
- Muthukumarappan, K.; Misra, N. Sustainable Brewing. In Sustainable Food Processing; Wiley Online Library: Hoboken, NJ, USA, 2013; pp. 295–312. [Google Scholar]
- Philippoussis, A. Production of Mushrooms Using Agro-Industrial Residues as Substrates. In Biotechnology for Agro-Industrial Residues Utilisation; Springer: Dordrecht, The Netherlands, 2009; pp. 163–196. [Google Scholar]
- Moshtaghian, H.; Bolton, K.; Rousta, K. Challenges for Upcycled Foods: Definition, Inclusion in the Food Waste Management Hierarchy and Public Acceptability. Foods 2021, 10, 2874. [Google Scholar] [CrossRef]
- The Upcycled Foods Definition Task Force. Defining Upcycled Foods. Available online: https://www.chlpi.org/wp-content/uploads/2013/12/Upcycled-Food_Definition.pdf (accessed on 15 January 2021).
- Wang, D.; Sakoda, A.; Suzuki, M. Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour. Technol. 2001, 78, 293–300. [Google Scholar] [CrossRef]
- Fărcaş, A.; Tofană, M.; Socaci, S.; Mudura, E.; Scrob, S.; Salanţă, L.; Mureşan, V. Brewers’ spent grain—A new potential ingredient for functional foods. J. Agroaliment. Process. Technol. 2014, 20, 137–141. [Google Scholar]
- Stevenson, L.; Phillips, F.; O’Sullivan, K.; Walton, J. Wheat bran: Its composition and benefits to health, a European perspective. Int. J. Food Sci. Nutr. 2012, 63, 1001–1013. [Google Scholar] [CrossRef] [Green Version]
- Jay, A.J.; Parker, M.L.; Faulks, R.; Husband, F.; Wilde, P.; Smith, A.C.; Faulds, C.B.; Waldron, K.W. A systematic micro-dissection of brewers’ spent grain. J. Cereal Sci. 2008, 47, 357–364. [Google Scholar] [CrossRef]
- Steiner, J.; Procopio, S.; Becker, T. Brewer’s spent grain: Source of value-added polysaccharides for the food industry in reference to the health claims. Eur. Food Res. Technol. 2015, 241, 303–315. [Google Scholar] [CrossRef]
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, K.-L.; Chi-Keung Cheung, P. Non-digestible long chain beta-glucans as novel prebiotics. Bioact. Carbohydr. Diet. Fibre 2013, 2, 45–64. [Google Scholar] [CrossRef]
- Golak-Siwulska, I.; Kałużewicz, A.; Spiżewski, T.; Siwulski, M.; Sobieralski, K. Bioactive compounds and medicinal properties of Oyster mushrooms (sp.). Folia Hortic. 2018, 30, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Deepalakshmi, K.; Sankaran, M. Pleurotus ostreatus: An oyster mushroom with nutritional and medicinal properties. J. Biochem. Technol. 2014, 5, 718–726. [Google Scholar]
- Chang, S.T.; Lau, O.W.; Cho, K.Y. The cultivation and nutritional value of Pleurotus sajor-caju. Eur. J. Appl. Microbiol. Biotechnol. 1981, 12, 58–62. [Google Scholar] [CrossRef]
- Madan, M.; Vasudevan, P.; Sharma, S. Cultivation of Pleurotus sajor-caju on different wastes. Biol. Wastes 1987, 22, 241–250. [Google Scholar] [CrossRef]
- Bradstreet, R.B. The Kjeldahl Method for Organic Nitrogen; Academic Press: Cambridge, MA, USA, 1965. [Google Scholar]
- Arauzo, P.J.; Du, L.; Olszewski, M.P.; Meza Zavala, M.F.; Alhnidi, M.J.; Kruse, A. Effect of protein during hydrothermal carbonization of brewer’s spent grain. Bioresour. Technol. 2019, 293, 122117. [Google Scholar] [CrossRef]
- Mathias, T.R.d.S.; Alexandre, V.M.F.; Cammarota, M.C.; de Mello, P.P.M.; Sérvulo, E.F.C. Characterization and determination of brewer’s solid wastes composition. J. Inst. Brew. 2015, 121, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Megazyme. Total Dietary Fiber Assay Procedure. Available online: https://www.megazyme.com/documents/Assay_Protocol/K-TDFR-200A_DATA.pdf (accessed on 2 March 2022).
- Megazyme. Mushroom and Yeast Beta Glucan Assay Procedure. Available online: https://www.megazyme.com/documents/Assay_Protocol/K-YBGL_DATA.pdf (accessed on 2 March 2022).
- Rudder, A.; Ainsworth, P.; Holgate, D. New food product development: Strategies for success? Br. Food J. 2001, 103, 657–671. [Google Scholar] [CrossRef]
- Megazyme. Total, Soluble and Insoluble Dietary Fibre (K-TDFR)-Determination. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.megazyme.com%2Fdocuments%2FData_Calculator%2FK-TDFR-200A_CALC.xlsx&wdOrigin=BROWSELINK (accessed on 2 March 2022).
- Megazyme. Yeast and Mushroom β-Glucan (K-YBGL)-Instructions. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.megazyme.com%2Fdocuments%2FData_Calculator%2FK-YBGL_CALC.xlsx&wdOrigin=BROWSELINK (accessed on 2 March 2022).
- Ritota, M.; Manzi, P. Pleurotus spp. Cultivation on Different Agri-Food By-Products: Example of Biotechnological Application. Sustainability 2019, 11, 5049. [Google Scholar] [CrossRef] [Green Version]
- Tarko, D.B.; Sirna, A.M. Substrate optimization for cultivation of Pleurotus ostreatus on lignocellulosic wastes (coffee, sawdust, and sugarcane bagasse) in Mizan Tepi University, Tepi Campus, Tepi Town. J. Appl. Biol. Biotechnol. 2018, 6, 14–20. [Google Scholar]
- Fanadzo, M.; Zireva, D.; Dube, E.; Mashingaidze, A.B. Evaluation of various substrates and supplements for biological efficiency of Pleurotus sajor-caju and Pleurotus ostreatus. Afr. J. Biotechnol. 2010, 9, 2756–2761. [Google Scholar]
- Kabbaj, W.; Breheret, S.; Guimberteau, J.; Talou, T.; Olivier, J.; Sobal, M.; Bensoussan, M.; Roussos, S. Pleurotus Ostreatus Volatile Aroma Compounds Identified from Fruit-Body and from Mycelium Grown in Submerged and Solid-State Cultures. In New Horizons in Biotechnology; Springer: Berlin/Heidelberg, Germany, 2003; pp. 371–377. [Google Scholar]
- Tontisirin, K.; MacLean, W.C.; Warwick, P. Food Energy: Methods of Analysis and Conversion Factors: Report of a Technical Workshop, Rome, 3–6 December 2002; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- U.S. Department of Agriculture. Flour, Wheat, All-Purpose, Unenriched, Unbleached. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/790018/nutrients (accessed on 11 January 2022).
- Chirinang, P.; Intarapichet, K.-O. Amino acids and antioxidant properties of the oyster mushrooms, Pleurotus ostreatus and Pleurotus sajor-caju. Sci. Asia 2009, 35, 326–331. [Google Scholar] [CrossRef]
- McDermott, E.E.; Pace, J. The content of amino-acids in white flour and bread. Br. J. Nutr. 1957, 11, 446–452. [Google Scholar] [CrossRef] [Green Version]
- MacKay, D.; Hathcock, J.; Guarneri, E. Niacin: Chemical forms, bioavailability, and health effects. Nutr. Rev. 2012, 70, 357–366. [Google Scholar] [CrossRef]
- United States Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; The National Academies Press: Washington, DC, USA, 1998; p. 592. [Google Scholar]
- U.S. Department of Agriculture. Wheat Bran, Crude. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169722/nutrients (accessed on 29 March 2022).
- U.S. Department of Agriculture. Barley Malt Flour. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169740/nutrients (accessed on 29 March 2022).
- Mattioli, S.; Castellini, C.; Mancini, S.; Roscini, V.; Cartoni Mancinelli, A.; Cotozzolo, E.; Pauselli, M.; Dal Bosco, A. Effect of trub and/or linseed dietary supplementation on in vivo oxidative status and some quality traits of rabbit meat. Meat Sci. 2020, 163, 108061. [Google Scholar] [CrossRef]
- Havrlentova, M.; Kraic, J. Content of β-D-glucan in cereal grains. J. Food Nutr. Res. 2006, 45, 97–103. [Google Scholar]
- Ahmad, A.; Anjum, F.M.; Zahoor, T.; Nawaz, H.; Dilshad, S.M.R. Beta Glucan: A Valuable Functional Ingredient in Foods. Crit. Rev. Food Sci. Nutr. 2012, 52, 201–212. [Google Scholar] [CrossRef]
- Laforteza, J.C.; Reyes, R.G.; Trinidad, T.P. Dietary Fiber Contents and Its Fermentability In Vitro of Pleurotus ostreatus cv. Florida Mycelia (Agaricomycetes). Int. J. Med. Mushrooms 2020, 22, 651–657. [Google Scholar] [CrossRef]
- Stelick, A.; Sogari, G.; Rodolfi, M.; Dando, R.; Paciulli, M. Impact of sustainability and nutritional messaging on Italian consumers’ purchase intent of cereal bars made with brewery spent grains. J. Food Sci. 2021, 86, 531–539. [Google Scholar] [CrossRef]
- Petrovic, J.; Pajin, B.; Tanackov-Kocic, S.; Pejin, J.; Fistes, A.; Bojanic, N.; Lončarević, I. Quality properties of cookies supplemented with fresh brewer’s spent grain. Food Feed Res. 2017, 44, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Schettino, R.; Verni, M.; Acin-Albiac, M.; Vincentini, O.; Krona, A.; Knaapila, A.; Cagno, R.D.; Gobbetti, M.; Rizzello, C.G.; Coda, R. Bioprocessed Brewers’ Spent Grain Improves Nutritional and Antioxidant Properties of Pasta. Antioxidants 2021, 10, 742. [Google Scholar] [CrossRef]
- Waters, D.M.; Jacob, F.; Titze, J.; Arendt, E.K.; Zannini, E. Fibre, protein and mineral fortification of wheat bread through milled and fermented brewer’s spent grain enrichment. Eur. Food Res. Technol. 2012, 235, 767–778. [Google Scholar] [CrossRef]
- El-Maaty, A.; El-Nemr, S.E.; El-Shourbagy, G.; Galal, G.A. Effect of Addition Oyster Mushroom and Red Beet Root by-Products on Quality of Pan Bread. Zagazig J. Agric. Res. 2016, 43, 507–517. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Duda, A.; Poliszko, N.; Różańska, M.B.; Jeżowski, P.; Tomkowiak, A.; Mildner-Szkudlarz, S.; Baranowska, H.M. Wheat bread enriched with raspberry and strawberry oilcakes: Effects on proximate composition, texture and water properties. Eur. Food Res. Technol. 2019, 245, 2591–2600. [Google Scholar] [CrossRef] [Green Version]
- Sayed Ahmad, B.; Talou, T.; Straumite, E.; Sabovics, M.; Kruma, Z.; Saad, Z.; Hijazi, A.; Merah, O. Protein Bread Fortification with Cumin and Caraway Seeds and By-Product Flour. Foods 2018, 7, 28. [Google Scholar] [CrossRef]
Substrate (g/100 g) | Cultivation Residue after 2nd Flush (g/100 g) | |
---|---|---|
Tryptophane | 0.26 | 0.12 |
Alanine | 0.82 | 0.74 |
Arginine | 0.88 | 0.91 |
Aspartic acid | 1.17 | 1.16 |
Glutamic acid | 2.54 | 1.34 |
Glycine | 0.77 | 0.72 |
Histidine | 0.37 | 0.30 |
Hydroxyproline | <0.20 | <0.20 |
Isoleucine | 0.51 | 0.46 |
Leucine | 1.00 | 0.78 |
Lysine | 0.72 | 0.51 |
Ornithine | <0.05 | <0.05 |
Phenylalanine | 0.71 | 0.56 |
Proline | 0.94 | 0.60 |
Serin | 0.63 | 0.57 |
Threonine | 0.58 | 0.63 |
Tyrosine | 0.45 | 0.28 |
Valine | 0.79 | 0.68 |
Cysteine + Cystine | 0.34 | 0.31 |
Methionine | 0.27 | 0.18 |
Substrate (mg/100 g) | Cultivation Residue after 2nd Flush (mg/100 g) | |
---|---|---|
Thiamine | 0.47 | 0.04 |
Riboflavin | 0.14 | 0.57 |
Niacin | 3.01 | 42.4 |
Pyridoxine | 0.47 | 0.24 |
Lutein | <0.02 | <0.02 |
Zeaxanthin | <0.02 | <0.02 |
Bread Prototype Median (Min–Max) | White Bread Median (Min–Max) | p-Value * | |
---|---|---|---|
Appearance liking | 4.00 (3–5) | 4.00 (3–5) | 0.792 |
Texture liking | 3.00 (2–5) | 4.00 (2–5) | 0.366 |
Flavour liking | 3.00 (1–4) | 4.00 (2–5) | 0.019 |
Aroma liking | 3.00 (1–4) | 4.00 (2–5) | 0.072 |
Overall liking | 3.00 (2–5) | 4.00 (2–5) | 0.141 |
Acceptability | 3.00 (2–5) | 4.00 (3–5) | 0.248 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshtaghian, H.; Parchami, M.; Rousta, K.; Lennartsson, P.R. Application of Oyster Mushroom Cultivation Residue as an Upcycled Ingredient for Developing Bread. Appl. Sci. 2022, 12, 11067. https://doi.org/10.3390/app122111067
Moshtaghian H, Parchami M, Rousta K, Lennartsson PR. Application of Oyster Mushroom Cultivation Residue as an Upcycled Ingredient for Developing Bread. Applied Sciences. 2022; 12(21):11067. https://doi.org/10.3390/app122111067
Chicago/Turabian StyleMoshtaghian, Hanieh, Mohsen Parchami, Kamran Rousta, and Patrik R. Lennartsson. 2022. "Application of Oyster Mushroom Cultivation Residue as an Upcycled Ingredient for Developing Bread" Applied Sciences 12, no. 21: 11067. https://doi.org/10.3390/app122111067
APA StyleMoshtaghian, H., Parchami, M., Rousta, K., & Lennartsson, P. R. (2022). Application of Oyster Mushroom Cultivation Residue as an Upcycled Ingredient for Developing Bread. Applied Sciences, 12(21), 11067. https://doi.org/10.3390/app122111067