Foreword to the Special Issue on Thulium-Doped Fiber Lasers
Funding
Conflicts of Interest
References
- Scholle, K.; Lamrini, S.; Koopmann, P.; Fuhrberg, P. 2 µm Laser Sources and Their Possible Applications. In Frontiers in Guided Wave Optics and Optoelectronics; Pal, B., Ed.; InTech: Rijeka, Croatia, 2010; pp. 471–500. [Google Scholar]
- Traxer, O.; Sierra, A.; Corrales, M. Which Is the Best Laser for Lithotripsy? Thulium Fiber Laser. Eur. Urol. Open Sci. 2022, 44, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jivraj, J.; Zhou, J.; Ramjist, J.; Wong, R.; Gu, X. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications. Opt. Express 2016, 24, 16674. [Google Scholar] [CrossRef] [PubMed]
- Mingareev, I.; Weirauch, F.; Olowinsky, A.; Shah, L.; Kadwani, P.; Richardson, M. Welding of polymers using a 2 μm thulium fiber laser. Opt. Laser Technol. 2012, 44, 2095–2099. [Google Scholar] [CrossRef]
- Kneis, C.; Donelan, B.; Manek-Hönninger, I.; Robin, T.; Cadier, B.; Eichhorn, M.; Kieleck, C. High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber. Opt. Lett. 2016, 41, 2545–2548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, J.; Sheng, Q.; Fu, S.; Shi, W.; Yao, J. High-efficiency Thulium-doped fiber laser at 1.7 μm. Opt. Laser Technol. 2022, 152, 108180. [Google Scholar] [CrossRef]
- Clarkson, W.A.; Barnes, N.P.; Turner, P.W.; Nilsson, J.; Hanna, D.C. High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm. Opt. Lett. 2002, 27, 1989–1991. [Google Scholar] [CrossRef] [PubMed]
- Rudy, C.W.; Digonnet, M.J.; Byer, R.L. Advances in 2-µm Tm-doped mode-locked fiber lasers. Opt. Fiber Technol. 2014, 20, 642–649. [Google Scholar] [CrossRef]
- Kirsch, D.C.; Chen, S.; Sidharthan, R.; Chen, Y.; Yoo, S.; Chernysheva, M. Short-wave IR ultrafast fiber laser systems: Current challenges and prospective applications. J. Appl. Phys. 2020, 128, 180906. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, P.; Wang, X.; Ma, Y.; Rongtao, S.; Xiao, H.; Si, L.; Liu, Z. 108 W coherent beam combining of two single-frequency Tm-doped fiber MOPAs. Laser Phys. Lett. 2014, 11, 105101. [Google Scholar] [CrossRef]
- Sincore, A.; Bradford, J.D.; Cook, J.; Shah, L.; Richardson, M.C. High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Jackson, S.D. Cross relaxation and energy transfer upconversion process relevant to the functioning of 2 µm, Tm3+-doped silica fibre laser. Opt. Commun. 2004, 230, 197–203. [Google Scholar] [CrossRef]
- Ramírez-Martínez, N.J.; Núñez-Velázquez, M.; Umnikov, A.; Sahu, J.K. Highly efficient thulium-doped high-power laser fibers fabricated by MCVD. Opt. Express 2019, 27, 196–201. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalska, M. Foreword to the Special Issue on Thulium-Doped Fiber Lasers. Appl. Sci. 2022, 12, 11267. https://doi.org/10.3390/app122111267
Michalska M. Foreword to the Special Issue on Thulium-Doped Fiber Lasers. Applied Sciences. 2022; 12(21):11267. https://doi.org/10.3390/app122111267
Chicago/Turabian StyleMichalska, Maria. 2022. "Foreword to the Special Issue on Thulium-Doped Fiber Lasers" Applied Sciences 12, no. 21: 11267. https://doi.org/10.3390/app122111267