Late Deep Fusion of Color Spaces to Enhance Finger Photo Presentation Attack Detection in Smartphones
Abstract
:1. Introduction
2. Related Work
3. Spoofness by Integrating Different Representations of Colors
3.1. Conversion of RGB Images into Different Color Spaces
3.2. Correlation Analysis between Color Spaces
4. The Proposed Finger Photo Color Net (FPCN)
4.1. Finger Photo Segmentation
4.2. Finger Photo Enhancement and Generation of Patches
4.3. The Deep Fusion Layer
4.4. Statistical Test for Comparing Classification Algorithms
5. Experimental Results
5.1. Dataset
5.2. Evaluation Procedure
- Attack Presentation Classification Error Rate (APCER): Proportion of attack presentations incorrectly classified as normal presentations, i.e., false acceptance of spoof samples.
- Normal Presentation Classification Error Rate (NPCER): Proportion of normal presentations incorrectly classified as attack presentations, i.e., false rejection of live samples.
- Equal Error Rate (EER): The intersection point of the percentage of normal presentation classification error rate and attack presentation classification error rate.
- Receiver Operating Characteristic (ROC) curves to assess the accuracy.
5.3. Results
Mcnemar’s Test
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PA | presentation attack |
PAD | presentation attack detection |
CNN | convolutional neural network |
PCC | person’s correlation coefficient |
ROI | region of interest |
CN | crossing number |
LUCID | locally uniform comparison image descriptor |
BSIF | Binarized Statistical Image Features |
LBP | local binary patterns |
LPQ | Local Phase Quantization |
HIG | Histograms of Invariant Gradients |
FT | Fourier Transform |
CENTRIST | Census Transform Histogram |
POEM | Patterns of Oriented Edge Magnitudes |
MFR | Maximum Filter Response |
DSIFT | dense scale invariant feature transform |
APCER | attack presentation classification error rate |
NPCER | normal presentation classification error rate |
HTER | Half Total Error Rate |
EER | equal error rate |
RHYXLC | RGB, HSV, YCbCr, LAB, XYZ, CMY |
RHYXC | RGB, HSV, YCbCr, XYZ, CMY |
RHYC | RGB, HSV, YCbCr, CMY |
RHYLX | RGB, HSV, YCbCr, LAB, XYZ |
RHYL | RGB, HSV, LAB, YCbCr |
RHY | RGB, HSV, YCbCr |
References
- Avisian. German National Digital ID is Going Mobile. 2020. Available online: https://www.secureidnews.com/news-item/german-national-digital-id-is-going-mobile/ (accessed on 23 September 2022).
- Deb, D.; Chugh, T.; Engelsma, J.; Cao, K.; Nain, N.; Kendall, J.; Jain, A. Matching Fingerphotos to Slap Fingerprint Images. arXiv 2018, arXiv:1804.08122. [Google Scholar]
- Grosz, S.; Engelsma, J.; Liu, E.; Jain, A. C2CL: Contact to contactless fingerprint matching. IEEE Trans. Inf. Forensics Secur. 2021, 17, 196–210. [Google Scholar] [CrossRef]
- Taneja, A.; Tayal, A.; Malhorta, A.; Sankaran, A.; Vatsa, M.; Singh, R. Fingerphoto spoofing in mobile devices: A preliminary study. In Proceedings of the IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), Niagara Falls, NY, USA, 1–6 September 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Gowda, S.; Yuan, C. ColorNet: Investigating the Importance of Color Spaces for Image Classification. In Computer Vision—ACCV 2018, Proceedings of the 14th Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11364, pp. 581–596. [Google Scholar] [CrossRef] [Green Version]
- Lukac, R.; Plataniotis, K. Color Image Processing: Methods and Applications; Image Processing Series; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Marasco, E.; Ross, A. A Survey on Antispoofing Schemes for Fingerprint Recognition Systems. ACM Comput. Surv. 2014, 47, 28:1–28:36. [Google Scholar] [CrossRef]
- Akhtar, Z.; Micheloni, C.; Piciarelli, C.; Foresti, G.L. MoBio_LivDet: Mobile Biometric liveness Detection. In Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Seoul, Korea, 26–29 August 2014; pp. 187–192. [CrossRef]
- Zhang, Y.; Tian, J.; Chen, X.; Yang, X.; Shi, P. Fake Finger Detection Based on Thin-Plate Spline Distortion Model. Adv. Biom. 2007, 11, 742–749. [Google Scholar] [CrossRef] [Green Version]
- Ghiani, L.; Hadid, A.; Marcialis, G.; Roli, F. Fingerprint Liveness Detection using Binarized Statistical Image Features. In Proceedings of the IEEE Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA, USA, 29 September–2 October 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Gottschlich, C.; Marasco, E.; Yang, A.; Cukic, B. Fingerprint Liveness Detection Based on Histograms of Invariant Gradients. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Menotti, D.; Chiachia, G.; Allan, A.; Robson, S.; Pedrini, H.; Xavier, F.; Rocha, A. Deep Representations for Iris, Face, and Fingerprint Spoofing Detection. IEEE Trans. Inf. Forensics Secur. 2015, 10, 864–879. [Google Scholar] [CrossRef] [Green Version]
- Frassetto, N.; Nogueira, R.; Lotufo, R.; Machado, R. Evaluating Software-based Fingerprint Liveness Detection using Convolutional Networks and Local Binary Patterns. In Proceedings of the IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS), Rome, Italy, 17 October 2014; pp. 22–29. [Google Scholar] [CrossRef]
- Stein, C.; Bouatou, V.; Busch, C. Video-Based Fingerphoto Recognition with Anti-Spoofing Techniques with Smartphone Cameras. In Proceedings of the 2013 International Conference of the BIOSIG Special Interest Group (BIOSIG), Darmstadt, Germany, 4–6 September 2013; pp. 1–12. [Google Scholar]
- Wasnik, P.; Ramachandra, R.; Raja, K.; Busch, C. Presentation Attack Detection for Smartphone Based Fingerphoto Recognition Using Second Order Local Structures. In Proceedings of the 14th International Conference on Signal-Image Technology &Internet-Based Systems (SITIS), Las Palmas de Gran Canaria, Spain, 26–29 November 2018; pp. 241–246. [Google Scholar] [CrossRef]
- Labati, D.; Genovese, A.; Piuri, V.; Scotti, F. A Scheme for Fingerphoto Recognition in Smartphones. In Advances in Computer Vision and Pattern Recognition; Springer International Publishing: Cham, Switzerland, 2019; pp. 49–66. [Google Scholar] [CrossRef] [Green Version]
- Marasco, E.; Vurity, A.; Otham, A. Deep Color Spaces for Fingerphoto Presentation Attack Detection in Mobile Devices. In Computer Vision and Image Processing; CVIP 2021; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2022; Volume 1567, pp. 351–362. [Google Scholar] [CrossRef]
- Rodgers, J.; Nicewander, A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Goshtasby, A. Similarity and Dissimilarity Measures. In Image Registration: Principles, Tools and Methods; Springer: London, UK, 2012; pp. 7–66. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015. [Google Scholar] [CrossRef] [Green Version]
- Wada, K. Labelme: Image polygonal annotation with python. Github Repos. 2016. Available online: https://github.com/wkentaro/labelme (accessed on 23 September 2022).
- Hong, L.; Wan, Y.; Jain, A. Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 777–789. [Google Scholar] [CrossRef] [Green Version]
- Więcław, Ł. A minutiae-based matching algorithms in fingerprint recognition systems. J. Med. Inform. Technol. 2009, 13, 65–71. [Google Scholar]
- Zerman, E.; Rana, A.; Smolic, A. Colornet-Estimating Colorfulness in Natural Images. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3791–3795. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar] [CrossRef]
- Puuronen, S.; Terziyan, V.; Tsymbal, A. A dynamic integration algorithm for an ensemble of classifiers. Found. Intell. Syst. 1999, 1609, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Dietterich, T. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Comput. 1998, 10, 1895–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownlee, J. Machine Learning Mastery. 2019. Available online: https://machinelearningmastery.com/mcnemars-test-for-machine-learning/ (accessed on 26 September 2022).
- Sankaran, A.; Malhotra, A.; Mittal, A.; Vatsa, M.; Singh, R. On Smartphone Camera based Fingerphoto Authentication. In Proceedings of the IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), Arlington, VA, USA, September 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Chugh, T.; Cao, K.; Jain, A. Fingerprint Spoof Buster: Use of Minutiae-Centered Patches. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2190–2202. [Google Scholar] [CrossRef]
- George Mason Computing Resources. Available online: https://orc.gmu.edu/resources/computing-systems/computing-resources/ (accessed on 28 June 2022).
- Marasco, E.; Albanese, M.; Patibandla, V.; Vurity, A.; Sriram, S. Biometric Multi-factor Authentication: On the Usability of the FingerPIN Scheme. Wiley Secur. Priv. J. 2022, 5. [Google Scholar] [CrossRef]
- Rhodes, L. Time Efficiency. 2019. Available online: https://jcsites.juniata.edu/faculty/rhodes/cs2/ch12a.htm#Defns (accessed on 26 September 2022).
- Time Complexity: How to Measure the Efficiency of Algorithms. 2019. Available online: https://www.kdnuggets.com/2020/06/time-complexity-measure-efficiency-algorithms.html (accessed on 26 September 2022).
Notation |
---|
RHYXLC: RGB, HSV, YCbCr, LAB, XYZ & CMY. |
RHYXC: RGB, HSV, YCbCr, XYZ & CMY. |
RHYC: RGB, HSV, YCbCr & CMY. |
RHYLX: RGB, HSV, YCbCr, LAB, & XYZ. |
RHYL: RGB, HSV, LAB & YCbCr. |
RHY: RGB, HSV & YCbCr. |
RGB | HSV | LAB | XYZ | YCbCr | CMY | |
---|---|---|---|---|---|---|
RGB | 1.000 | 0.015 | −0.031 | 0.998 | 0.324 | −0.983 |
HSV | 0.015 | 1.000 | 0.017 | −0.453 | −0.037 | −0.010 |
LAB | −0.031 | 0.053 | 1.000 | −0.013 | 0.334 | −0.004 |
XYZ | 0.995 | 0.026 | −0.013 | 1.000 | 0.333 | −0.993 |
YCbCr | 0.324 | 0.011 | 0.335 | 0.240 | 1.000 | −0.621 |
CMY | −0.990 | −0.006 | −0.007 | −0.993 | −0.283 | 1.000 |
Color Space | AlexNet | ResNet-18 | ResNet-34 | VGG16 | VGG19 | GoogLeNet | MobileNetV3 | DenseNet-121 |
---|---|---|---|---|---|---|---|---|
RGB | 2.875 | 1.381 | 1.454 | 4.012 | 3.274 | 2.124 | 2.024 | 1.274 |
XYZ | 3.87 | 5.124 | 3.765 | 5.611 | 5.612 | 6.248 | 3.164 | 4.127 |
YCbCr | 2.471 | 1.918 | 2.472 | 4.37 | 4.374 | 5.312 | 1.394 | 3.041 |
HSV | 3.214 | 2.412 | 1.196 | 2.487 | 2.847 | 2.471 | 0.967 | 1.671 |
LAB | 11.471 | 4.974 | 5.972 | 8.87 | 9.69 | 8.574 | 4.974 | 4.472 |
CMY | 4.124 | 2.874 | 3.412 | 4.102 | 3.128 | 3.481 | 2.851 | 1.971 |
Model | EER% | Avg. Accuracy | Standard Deviation | F1 Score | CV-10fold | |
---|---|---|---|---|---|---|
Finger photo: Trained on all color spaces | Alexnet | 6.97 | 92.5 | 1.52 | 0.91 | 91.98 ± 1.04 |
VGG16 | 8.08 | 90.4 | 1.57 | 0.89 | 89.31 ± 0.96 | |
VGG19 | 6.42 | 93.6 | 1.41 | 0.85 | 91.67 ± 1.84 | |
ResNet 18 | 8.64 | 91.1 | 0.98 | 0.87 | 91.61 ± 1.44 | |
ResNet-34 | 6.12 | 93.9 | 1.64 | 0.84 | 93.04 ± 1.25 | |
GoogleNet | 7.84 | 92.6 | 0.94 | 0.89 | 91.51 ± 0.98 | |
Dense-121 | 6.38 | 93.2 | 1.34 | 0.87 | 92.51 ± 0.97 | |
Finger photo: Trained on RHY | Alexnet | 4.02 | 95.41 | 0.92 | 0.931 | 95.47 ± 0.87 |
VGG16 | 4.97 | 94.1 | 0.68 | 0.965 | 94.45 ± 0.81 | |
VGG19 | 6.42 | 93.93 | 0.91 | 0.85 | 94.14 ± 1.24 | |
ResNet 18 | 4.06 | 95.97 | 0.73 | 0.94 | 94.14 ± 0.42 | |
ResNet-34 | 3.54 | 96.65 | 0.67 | 0.95 | 95.17 ± 0.87 | |
GoogleNet | 4.09 | 96.08 | 0.65 | 0.96 | 96.84 ± 1.04 | |
Dense-121 | 3.01 | 97.1 | 1.48 | 0.97 | 97.81 ± 0.48 | |
Late Fusion: Selection of best nets | RHYLXC | 0.964 | 97.42 | 1.63 | 0.969 | 97.42 ± 1.04 |
RHYXC | 0.961 | 97.27 | 0.98 | 0.953 | 97.47 ± 0.64 | |
RHYC | 0.841 | 98.91 | 1.01 | 0.964 | 98.17 ± 1.20 | |
RHY | 0.864 | 98.93 | 0.87 | 0.971 | 98.37 ± 0.97 | |
State of the art: Score-Level Fusion | RHY [17] | 2.12 | 96.32 | 0.85 | 0.93 | 97.28 ± 0.78 |
RHYL [17] | 2.71 | 96.81 | 0.98 | 0.95 | 98.15 ± 0.87 | |
RHYLX [17] | 3.29 | 96.02 | 1.03 | 0.91 | 97.08 ± 0.95 | |
State of the art: RGB Color Space | LBP+SVM [4] | 3.02 | 97.7 | 0.85 | 0.98 | 98.40 ± 0.74 |
DSIFT+SVM [4] | 5.03 | 95.05 | 0.27 | 0.96 | 96.31 ± 0.21 | |
LUCID+SVM [4] | 21.66 | 77.2 | 0.31 | 0.85 | 78.34 ± 0.51 |
RHYLXC | RHYXC | RHYC | RHY | |||||
---|---|---|---|---|---|---|---|---|
p< 0.05 | p< 0.05 | p< 0.05 | p< 0.05 | |||||
RHYLXC | 16.46 | 4.9 × 10 | 35.53 | 2.5 × 10 | 35.15 | 5.7 × 10 | ||
RHYXC | 16.46 | 4.9 × 10 | 4.212 | 0.041 | 29.45 | 4.2 × 10 | ||
RHYC | 35.53 | 2.5 × 10 | 4.212 | 0.041 | 26.16 | 3.1 × 10 | ||
RHY | 35.15 | 5.7 × 10 | 29.45 | 4.2 × 10 | 26.16 | 3.1 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marasco, E.; Vurity, A. Late Deep Fusion of Color Spaces to Enhance Finger Photo Presentation Attack Detection in Smartphones. Appl. Sci. 2022, 12, 11409. https://doi.org/10.3390/app122211409
Marasco E, Vurity A. Late Deep Fusion of Color Spaces to Enhance Finger Photo Presentation Attack Detection in Smartphones. Applied Sciences. 2022; 12(22):11409. https://doi.org/10.3390/app122211409
Chicago/Turabian StyleMarasco, Emanuela, and Anudeep Vurity. 2022. "Late Deep Fusion of Color Spaces to Enhance Finger Photo Presentation Attack Detection in Smartphones" Applied Sciences 12, no. 22: 11409. https://doi.org/10.3390/app122211409
APA StyleMarasco, E., & Vurity, A. (2022). Late Deep Fusion of Color Spaces to Enhance Finger Photo Presentation Attack Detection in Smartphones. Applied Sciences, 12(22), 11409. https://doi.org/10.3390/app122211409