Streptomyces spp. Biofilmed Solid Inoculant Improves Microbial Survival and Plant-Growth Efficiency of Triticum aestivum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Actinobacteria from Avocado Rhizosphere
2.2. Molecular Identification
2.3. Plant Growth-Promoting Assays
2.3.1. Phosphates Solubility
2.3.2. IAA Test
2.3.3. Growth of Isolates in Nitrogen-Free Medium
2.3.4. Siderophore Assay
2.4. Biofilm Formation and Induction on Perlite as a Carrier
2.5. Biofilmed Inoculant Pot Essays
2.6. Statistical Analysis
3. Results and Discussion
3.1. Molecular Identification
3.2. Plant Growth-Promoting Essays
3.3. Biofilm Formation on the Perlite Carrier
3.4. Pot Essays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food Security and Nutrition in the World 2021: Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; The State of Food Security and Nutrition in the World (SOFI); FAO: Rome, Italy, 2021; ISBN 978-92-5-134325-8. [Google Scholar]
- Carvalho, F.P. Agriculture, Pesticides, Food Security and Food Safety. Environ. Sci. Policy 2006, 9, 685–692. [Google Scholar] [CrossRef]
- Javaid, A.; Bajwa, R. Field Evaluation of Effective Microorganisms (EM) Application for Growth, Nodulation, and Nutrition of Mung Bean. Turk. J. Agric. For. 2011, 35, 443–452. [Google Scholar] [CrossRef]
- Sharf, W.; Javaid, A.; Shoaib, A.; Khan, I.H. Induction of Resistance in Chili against Sclerotium Rolfsii by Plant-Growth-Promoting Rhizobacteria and Anagallis Arvensis. Egypt. J. Biol. Pest Control 2021, 31, 16. [Google Scholar] [CrossRef]
- Franco-Correa, M.; Quintana, A.; Duque, C.; Suarez, C.; Rodríguez, M.X.; Barea, J.-M. Evaluation of Actinomycete Strains for Key Traits Related with Plant Growth Promotion and Mycorrhiza Helping Activities. Appl. Soil Ecol. 2010, 45, 209–217. [Google Scholar] [CrossRef]
- Gupta, G.; Snehi, S.K.; Singh, V. Role of PGPR in Biofilm Formations and Its Importance in Plant Health. In Biofilms in Plant and Soil Health; Ahmad, I., Husain, F.M., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2017; pp. 27–42. ISBN 978-1-119-24632-9. [Google Scholar]
- Rana, K.L.; Kour, D.; Yadav, A.N.; Yadav, N.; Saxena, A.K. Chapter 16—Agriculturally Important Microbial Biofilms: Biodiversity, Ecological Significances, and Biotechnological Applications. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms; Yadav, M.K., Singh, B.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 221–265. ISBN 978-0-444-64279-0. [Google Scholar]
- Yadav, A.N.; Singh, J.; Rastegari, A.A.; Yadav, N. Plant Microbiomes for Sustainable Agriculture; Springer Nature: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-38453-1. [Google Scholar]
- Zakeel, M.C.M.; Safeena, M.I.S. Biofilmed Biofertilizer for Sustainable Agriculture. In Plant Health Under Biotic Stress: Volume 2: Microbial Interactions; Ansari, R.A., Mahmood, I., Eds.; Springer: Singapore, 2019; pp. 65–82. ISBN 9789811360404. [Google Scholar]
- Govindasamy, V.; Franco, C.M.M.; Gupta, V.V.S.R. Endophytic Actinobacteria: Diversity and Ecology. In Advances in Endophytic Research; Verma, V.C., Gange, A.C., Eds.; Springer India: New Delhi, India, 2014; pp. 27–59. ISBN 978-81-322-1575-2. [Google Scholar]
- Solanki, M.K.; Malviya, M.K.; Wang, Z. Actinomycetes Bio-Inoculants: A Modern Prospectus for Plant Disease Management. In Plant Growth Promoting Actinobacteria: A New Avenue for Enhancing the Productivity and Soil Fertility of Grain Legumes; Subramaniam, G., Arumugam, S., Rajendran, V., Eds.; Springer: Singapore, 2016; pp. 63–81. ISBN 978-981-10-0707-1. [Google Scholar]
- Alonso, A.N.; Pomposiello, P.J.; Leschine, S.B. Biofilm Formation in the Life Cycle of the Cellulolytic Actinomycete Thermobifida fusca. Biofilms 2008, 5, 1–11. [Google Scholar] [CrossRef]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes Benefaction Role in Soil and Plant Health. Microbial. Pathogen. 2017, 111, 458–467. [Google Scholar] [CrossRef]
- Amaresan, N.; Kumar, K.; Naik, J.H.; Bapatla, K.G.; Mishra, R.K. Chapter 8—Streptomyces in Plant Growth Promotion: Mechanisms and Role. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, B.P., Gupta, V.K., Passari, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 125–135. ISBN 978-0-444-63994-3. [Google Scholar]
- Prasanna, R.; Triveni, S.; Bidyarani, N.; Babu, S.; Yadav, K.; Adak, A.; Khetarpal, S.; Pal, M.; Shivay, Y.S.; Saxena, A.K. Evaluating the Efficacy of Cyanobacterial Formulations and Biofilmed Inoculants for Leguminous Crops. Arch. Agron. Soil Sci. 2014, 60, 349–366. [Google Scholar] [CrossRef]
- Sharma, M.; Dangi, P.; Choudhary, M. Actinomycetes: Source, Identification, and Their Applications. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 801–832. [Google Scholar]
- Imbert, M.; Béchet, M.; Blondeau, R. Comparison of the Main Siderophores Produced by Some Species of Streptomyces. Curr. Microbiol. 1995, 31, 129–133. [Google Scholar] [CrossRef]
- Lasudee, K.; Tokuyama, S.; Lumyong, S.; Pathom-aree, W. Actinobacteria Associated with Arbuscular Mycorrhizal Funneliformis Mosseae Spores, Taxonomic Characterization and Their Beneficial Traits to Plants: Evidence Obtained from Mung Bean (Vigna radiata) and Thai Jasmine Rice (Oryza sativa). Front. Microbiol. 2018, 9, 1247. [Google Scholar] [CrossRef] [Green Version]
- Palaniyandi, S.A.; Yang, S.H.; Zhang, L.; Suh, J.-W. Effects of Actinobacteria on Plant Disease Suppression and Growth Promotion. Appl. Microbiol. Biotechnol. 2013, 97, 9621–9636. [Google Scholar] [CrossRef]
- Costerton, J.W.; Geesey, G.G.; Cheng, K.-J. How Bacteria Stick. Sci. Am. 1978, 238, 86–95. [Google Scholar] [CrossRef]
- Seneviratne, G.; Kecskés, M.; Kennedy, I. Biofilmed Biofertilisers: Novel Inoculants for Efficient Nutrient Use in Plants. ACIAR Proc. 2008, 130, 126–130. [Google Scholar]
- Bhattacharya, D.C. Biofilmed Biofertilizer: Promising Technology for Tomorrow. JAM 2015, 4, 19–22. [Google Scholar]
- Flemming, H.-C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Buddhika, U.; Athauda, A.; Seneviratne, G.; Kulasooriya, S.; Abayasekara, C. Emergence of Diverse Microbes on Application of Biofilmed Biofertilizers to a Maize Growing Soil. Ceylon J. Sci. (Biol. Sci.) 2014, 42, 87. [Google Scholar] [CrossRef] [Green Version]
- El Othmany, R.; Zahir, H.; Ellouali, M.; Latrache, H. Current Understanding on Adhesion and Biofilm Development in Actinobacteria. Int. J. Microbiol. 2021, 2021, 6637438. [Google Scholar] [CrossRef]
- Seneviratne, G.; Jayasinghearachchi, H.S. A Rhizobial Biofilm with Nitrogenase Activity Alters Nutrient Availability in a Soil. Soil Biol. Biochem. 2005, 37, 1975–1978. [Google Scholar] [CrossRef]
- Adak, A.; Prasanna, R.; Babu, S.; Bidyarani, N.; Verma, S.; Pal, M.; Shivay, Y.S.; Nain, L. Micronutrient Enrichment Mediated by Plant-Microbe Interactions and Rice Cultivation Practices. J. Plant Nutr. 2016, 39, 1216–1232. [Google Scholar] [CrossRef]
- Hettiarachchi, R.P.; Seneviratne, G.; Jayakody, A.N.; De Silva, E.; Gunatilake, P.; Edirimanna, V.; Thewarapperuma, A.; Chandrasiri, J.A.S.; Malawaraarachchi, G.C.; Siriwardana, N.S. Effect of Biofilmed Biofertilizer on Plant Growth and Nutrient Uptake of Hevea Brasiliensis Nursery Plants at Field Condition. J. Rubber Res. Inst. Sri Lanka 2018, 98, 16. [Google Scholar] [CrossRef]
- Seneviratne, G.; Weerasekara, M.L.M.A.W.; Seneviratne, K.A.C.N.; Zavahir, J.S.; Kecskés, M.L.; Kennedy, I.R. Importance of Biofilm Formation in Plant Growth Promoting Rhizobacterial Action. In Plant Growth and Health Promoting Bacteria; Microbiology Monographs; Maheshwari, D.K., Ed.; Springer Berlin: Heidelberg/Berlin, Germany, 2010; Volume 18, pp. 81–95. ISBN 978-3-642-13611-5. [Google Scholar]
- Seneviratne, G.; Zavahir, J.S.; Bandara, W.M.M.S.; Weerasekara, M.L.M.A.W. Fungal-Bacterial Biofilms: Their Development for Novel Biotechnological Applications. World J. Microbiol. Biotechnol. 2007, 24, 739. [Google Scholar] [CrossRef]
- Seneviratne, G.; Jayasinghearachchi, H.S. Mycelial Colonization by Bradyrhizobia and Azorhizobia. J. Biosci. 2003, 28, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Tennakoon, P.L.K.; Rajapaksha, R.M.C.P.; Hettiarachchi, L.S.K. Tea Yield Maintained in PGPR Inoculated Field Plants despite Significant Reduction in Fertilizer Application. Rhizosphere 2019, 10, 100146. [Google Scholar] [CrossRef]
- Ajeng, A.A.; Abdullah, R.; Ling, T.C.; Ismail, S.; Lau, B.F.; Ong, H.C.; Chew, K.W.; Show, P.L.; Chang, J.-S. Bioformulation of Biochar as a Potential Inoculant Carrier for Sustainable Agriculture. Environ. Technol. Innov. 2020, 20, 101168. [Google Scholar] [CrossRef]
- Malusá, E.; Sas-Paszt, L.; Ciesielska, J. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. Available online: https://www.hindawi.com/journals/tswj/2012/491206/ (accessed on 28 October 2020).
- Albareda, M.; Rodríguez-Navarro, D.N.; Camacho, M.; Temprano, F.J. Alternatives to Peat as a Carrier for Rhizobia Inoculants: Solid and Liquid Formulations. Soil Biol. Biochem. 2008, 40, 2771–2779. [Google Scholar] [CrossRef]
- Khavazi, K.; Rejali, F.; Seguin, P.; Miransari, M. Effects of Carrier, Sterilisation Method, and Incubation on Survival of Bradyrhizobium japonicum in Soybean (Glycine max L.) Inoculants. Enzyme Microb. Technol. 2007, 41, 780–784. [Google Scholar] [CrossRef]
- Sun, D.; Hale, L.; Crowley, D. Nutrient Supplementation of Pinewood Biochar for Use as a Bacterial Inoculum Carrier. Biol. Fertil. Soils 2016, 52, 515–522. [Google Scholar] [CrossRef]
- Kelly, K.L.; Judd, D.B.; Inter-Society Color Council; United States National Bureau of Standards. ISCC-NBS Color-Name Charts Illustrated with Centroid Colors; U.S. National Bureau of Standards: Washington, DC, USA, 1965.
- Nonomura, H. Studies on Isolation, Taxonomy and Ecology of Soil Actinomycetes (in Japanese with English Abstract). Actinomycetologica 1989, 3, 45–54. [Google Scholar] [CrossRef]
- Goodfellow, M.; Ferguson, E.V.; Sanglier, J.-J. Numerical Classification and Identification of Streptomyces Species—A Review. Gene 1992, 115, 225–233. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- DeLong, E.F. Archaea in Coastal Marine Environments. Proc. Natl. Acad. Sci. USA 1992, 89, 5685–5689. [Google Scholar] [CrossRef] [Green Version]
- Nautiyal, C.S. An Efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Adesanwo, O.O.; Ige, D.V.; Thibault, L.; Flaten, D.; Akinremi, W. Comparison of Colorimetric and ICP Methods of Phosphorus Determination in Soil Extracts. Commun. Soil Sci. Plant Anal. 2013, 44, 3061–3075. [Google Scholar] [CrossRef]
- Bowman, R.A. A Rapid Method to Determine Total Phosphorus in Soils. Soil Sci. Soc. Am. J. 1988, 52, 1301–1304. [Google Scholar] [CrossRef]
- Fiske, C.H.; Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 1925, 66, 375–400. [Google Scholar] [CrossRef]
- Olsen, S.R. Sommers 1982 Phosphorus. Methods Soil Anal. 1982, 2, 403–430. [Google Scholar]
- Sahu, M.K.; Sivakumar, K.; Thangaradjou, T.; Kannan, L. Phosphate Solubilizing Actinomycetes in the Estuarine Environment: An Inventory. J. Environ. Biol. 2007, 28, 795. [Google Scholar]
- Glickmann, E.; Dessaux, Y. A Critical Examination of the Specificity of the Salkowski Reagent for Indolic Compounds Produced by Phytopathogenic Bacteria. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Patten, C.L.; Glick, B.R. Role of Pseudomonas Putida Indoleacetic Acid in Development of the Host Plant Root System. Appl. Environ. Microbiol. 2002, 68, 3795–3801. [Google Scholar] [CrossRef] [Green Version]
- Balagurunathan, R.; Radhakrishnan, M.; Shanmugasundaram, T.; Gopikrishnan, V.; Jerrine, J. Characterization and Identification of Actinobacteria. In Protocols in Actinobacterial Research; Springer Protocols Handbooks; Balagurunathan, R., Radhakrishnan, M., Shanmugasundaram, T., Gopikrishnan, V., Jerrine, J., Eds.; Springer US: New York, NY, USA, 2020; pp. 39–64. ISBN 978-1-07-160728-2. [Google Scholar]
- Valdés, M.; Pérez, N.-O.; los Santos, P.E.; Caballero-Mellado, J.; Peña-Cabriales, J.J.; Normand, P.; Hirsch, A.M. Non-Frankia Actinomycetes Isolated from Surface-Sterilized Roots of Casuarina Equisetifolia Fix Nitrogen. Appl. Environ. Microbiol. 2005, 71, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Simon, E.H.; Tessman, I. Thymidine-Requiring Mutants of Phage T4. Proc. Natl. Acad. Sci. USA 1963, 50, 526–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, J.M.; Loper, J.E. Characterization of Siderophore Production by the Biological Control Agent Enterobacter cloacae. MPMI—Mol. Plant Microbe Interact. 1994, 7, 440–448. [Google Scholar] [CrossRef]
- Baakza, A.; Vala, A.K.; Dave, B.P.; Dube, H.C. A Comparative Study of Siderophore Production by Fungi from Marine and Terrestrial Habitats. J. Exp. Mar. Biol. Ecol. 2004, 311, 1–9. [Google Scholar] [CrossRef]
- Anderson, G.G.; O’Toole, G.A. Innate and Induced Resistance Mechanisms of Bacterial Biofilms. In Bacterial Biofilms; Romeo, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 85–105. ISBN 978-3-540-75418-3. [Google Scholar]
- Gavín, R.; Merino, S.; Altarriba, M.; Canals, R.; Shaw, J.G.; Tomás, J.M. Lateral Flagella Are Required for Increased Cell Adherence, Invasion and Biofilm Formation by Aeromonas spp. FEMS Microbiol. Lett. 2003, 224, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Oriani, A.S.; Gentili, A.R.; Zuñiga, A.E.; Oriani, D.S.; Baldini, M. Composición lipídica de la pared celular de tres especies de micobacterias ambientales y su posible correlación con la formación de biofilms y movilidad por sliding/Lipid composition of cell wall of three species of environmental mycobacteria and its po. Cienc. Vet. 2017, 17, 47–59. [Google Scholar] [CrossRef]
- O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm Formation as Microbial Development. Ann. Rev. Microbiol. 2000, 54, 49–79. [Google Scholar] [CrossRef]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New Method for Detecting Slime Production by Coagulase Negative Staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, T.D.L.; Pereira, E.M.; dos Santos, K.R.N.; Maciel, E.L.N.; Schuenck, R.P.; Nunes, A.P.F. Modification of the Congo Red Agar Method to Detect Biofilm Production by Staphylococcus epidermidis. Diagn. Microbiol. Infect. Dis. 2013, 75, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.; Torello, S.; Kolter, R. Sliding Motility in Mycobacteria. J. Bacteriol. 1999, 181, 7331–7338. [Google Scholar] [CrossRef] [Green Version]
- Sousa, S.; Bandeira, M.; Carvalho, P.A.; Duarte, A.; Jordao, L. Nontuberculous Mycobacteria Pathogenesis and Biofilm Assembly. Int. J. Mycobacteriol. 2015, 4, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.H.; Yates, P.S.; Grinton, B.E.; Taylor, P.M.; Sait, M. Improved Culturability of Soil Bacteria and Isolation in Pure Culture of Novel Members of the Divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 2002, 68, 2391–2396. [Google Scholar] [CrossRef] [Green Version]
- Coombs, J.T.; Franco, C.M.M. Isolation and Identification of Actinobacteria from Surface-Sterilized Wheat Roots. Appl. Environ. Microbiol. 2003, 69, 5603–5608. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, V.; Gopalakrishnan, S.; Kamidi, J.P.; Chander, G. Effect of Plant Growth-Promoting Streptomyces sp. on Plant Growth and Yield of Tomato and Chilli. Andhra Pradesh J. Agril. Sci. 2020, 6, 65–70. [Google Scholar]
- Panneerselvam, P.; Selvakumar, G.; Ganeshamurthy, A.N.; Mitra, D.; Senapati, A. Enhancing Pomegranate (Punica granatum L.) Plant Health through the Intervention of a Streptomyces Consortium. Biocontrol Sci. Technol. 2021, 31, 430–442. [Google Scholar] [CrossRef]
- Boubekri, K.; Soumare, A.; Mardad, I.; Lyamlouli, K.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L. The Screening of Potassium- and Phosphate-Solubilizing Actinobacteria and the Assessment of Their Ability to Promote Wheat Growth Parameters. Microorganisms 2021, 9, 470. [Google Scholar] [CrossRef]
- Hu, Y.; Qi, Y.; Stumpf, S.D.; D’Alessandro, J.M.; Blodgett, J.A.V. Bioinformatic and Functional Evaluation of Actinobacterial Piperazate Metabolism. ACS Chem. Biol. 2019, 14, 696–703. [Google Scholar] [CrossRef]
- Alekhya, G.; Gopalakrishnan, S. Biological Control and Plant Growth-Promotion Traits of Streptomyces Species Under Greenhouse and Field Conditions in Chickpea. Agric. Res. 2017, 6, 410–420. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, C.M.; Olivete, E.; Orias, S.L.; Rocas, M.R.; Juan, S.; Dungca, J.Z.; Mahboob, T.; Barusrux, S.; Nissapatorn, V. A Review on Streptomyces spp. as Plant-Growth Promoting Bacteria (PGPB). Asian J. Pharmacogn. 2018, 2, 32–40. [Google Scholar]
- Naorungrote, S.; Chunglok, W.; Lertcanawanichakul, M.; Bangrak, P. Actinomycetes Producing Anti-Methicillin Resistant Staphylococcus aureus from Soil Samples in Nakhon Si Thammarat. Walailak J. Sci. Technol. (WJST) 2011, 8, 131–138. [Google Scholar]
- Bologa, C.G.; Ursu, O.; Oprea, T.I.; Melançon, C.E.; Tegos, G.P. Emerging Trends in the Discovery of Natural Product Antibacterials. Curr. Opin. Pharmacol. 2013, 13, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Feng, M.; Li, X.; Chen, F.; Zhang, Z.; Yang, W.; Shao, C.; Tao, L.; Zhang, Y. Antibacterial Activity of Aureonuclemycin Produced by Streptomyces aureus Strain SPRI-371. Molecules 2022, 27, 5041. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lai, K.; Li, Y.; Hu, M.; Zhang, Y.; Zeng, Y. Biodegradation of Deltamethrin and Its Hydrolysis Product 3-Phenoxybenzaldehyde by a Newly Isolated Streptomyces aureus Strain HP-S-01. Appl. Microbiol. Biotechnol. 2011, 90, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Luo, J.; Hu, M.; Lai, K.; Geng, P.; Huang, H. Enhancement of Cypermethrin Degradation by a Coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. Biores. Technol. 2012, 110, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Jog, R.; Pandya, M.; Nareshkumar, G.; Rajkumar, S. Mechanism of Phosphate Solubilization and Antifungal Activity of Streptomyces spp. Isolated from Wheat Roots and Rhizosphere and Their Application in Improving Plant Growth. Microbiology 2014, 160, 778–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daza, A.; Santamaría, C.; Rodríguez-Navarro, D.N.; Camacho, M.; Orive, R.; Temprano, F. Perlite as a Carrier for Bacterial Inoculants. Soil Biol. Biochem. 2000, 32, 567–572. [Google Scholar] [CrossRef]
- Filippova, S.N.; Surgucheva, N.A.; Gal’chenko, V.F. Long-Term Storage of Collection Cultures of Actinobacteria. Microbiology 2012, 81, 630–637. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 1, 175–187. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta-Analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Anderson, C.R.; Condron, L.M.; Clough, T.J.; Fiers, M.; Stewart, A.; Hill, R.A.; Sherlock, R.R. Biochar Induced Soil Microbial Community Change: Implications for Biogeochemical Cycling of Carbon, Nitrogen and Phosphorus. Pedobiol.—J. Soil Ecol. 2011, 5–6, 309–320. [Google Scholar] [CrossRef]
- Zucchi, T.D.; De Moraes, L.A.B.; De Melo, I.S. Streptomyces sp. ASBV-1 Reduces Aflatoxin Accumulation by Aspergillus parasiticus in Peanut Grains. J. Appl. Microbiol. 2008, 105, 2153–2160. [Google Scholar] [CrossRef]
Treatments | Formulation |
---|---|
C0 | Control, Sterile soil |
C1 | Control, Sterile soil + biochar |
C2 | Control, Sterile soil + perlite + biochar |
T1 | A20-3 + biochar |
T2 | A20-5 + biochar |
T3 | A30-32 + biochar |
T4 | A20-3, A20-5 combination + biochar |
T5 | A20-3, A30-32 combination + biochar |
T6 | A20-5, A30-32 combination + biochar |
T7 | A20-3, A20-5, A30-32 combination + biochar |
Strain | BLAST Analysis a | % Similarity | Accession Number |
---|---|---|---|
ARI_A20-3 | Streptomyces griseorubens | 98.16 | KP718552.1 |
ARI_A20-5 | Streptomyces flaveolus | 99.7 | KU647253.1 |
ARI_A30-32 | Streptomyces aureus | 99.56 | EU841615.1 |
Strain ARI | Biofilm Formation 1 | NFB Growth 2 | Aerial Mycelium | Diazotrophic Structures | Siderophore Production | AIA Production | Phosphate Solubilizer Activity | Strain ARI | Biofilm Formation 1 | NFB Growth 2 | Aerial Mycelium | Diazotrophic Structures | Siderophore Production | AIA Production | Phosphate Solubilizer Activity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1-7 | +a | + | + | + | + | ++ | + | A11-30 | +b | + | - | - | + | - | + |
A2-2 | +a | + | - | - | ++ | + | + | A11-36 | - | ++ | + | + | + | + | + |
A2-5 | - | + | + | + | + | - | ++ | A11-37 | - | ++ | + | + | + | - | ++ |
A4-9 | - | ++ | + | + | + | + | - | A13-11 | - | ++ | + | + | + | - | ++ |
A4-11 | +a | + | + | - | + | + | - | A15-11 | - | - | - | - | + | + | + |
A4-15 | - | - | - | - | + | - | - | A16-3 | - | ++ | + | + | + | ++ | ++ |
A4-18 | - | + | + | + | + | ++ | + | A16-4 | - | ++ | + | + | + | + | + |
A4-26 | - | ++ | + | + | + | + | ++ | A16-7 | - | ++ | + | + | + | - | ++ |
A4-31 | - | + | + | - | + | ++ | + | A16-52 | +a | ++ | + | + | + | + | ++ |
A4-33 | +a | + | + | + | + | - | + | A18-14 | +a | ++ | + | + | + | - | ++ |
A4-49 | - | + | + | + | + | - | + | A18-15 | - | ++ | + | + | + | ++ | ++ |
A6-12 | +a | + | + | + | + | + | + | A20-1 | +a | ++ | + | + | + | ++ | ++ |
A7-3 | - | + | + | + | + | ++ | + | A20-2 | +a | ++ | + | + | + | - | + |
A7-13 | - | - | - | - | + | ++ | + | A20-3 | +a | ++ | + | + | + | - | + |
A7-17 | - | ++ | + | + | + | + | + | A20-5 | +a | ++ | + | + | + | + | ++ |
A7-22 | - | ++ | + | + | + | ++ | - | A20-6 | - | + | + | - | + | ++ | + |
A8-4 | +b | + | - | - | + | + | - | A20-13 | +a | - | + | - | + | ++ | ++ |
A10-3 | - | + | + | - | + | + | + | A30-7 | - | + | + | - | + | ++ | + |
A10-13 | +b | + | + | + | + | - | ++ | A30-14 | - | ++ | + | + | + | ++ | ++ |
A11-10 | - | ++ | + | + | + | - | + | A30-32 | +a | ++ | + | + | + | ++ | ++ |
A11-29 | - | ++ | + | + | + | + | + |
Treatment | Height (%) | Complete Spike (%) | Base Spike (%) | Total Biomass (%) | Root Biomass (%) |
---|---|---|---|---|---|
T1 | 142.96 a,* | 154.22 a,* | 174.83 a,* | 215.93 a,* | 282.36 a,b,* |
T2 | 138.64 a | 153.35 a,* | 164.90 a,* | 214.83 a,* | 334.71 a,* |
T3 | 137.82 a | 138.77 a | 161.58 a | 224.31 a,* | 246.14 b |
T4 | 140.22 a,* | 143.44 a | 156.95 a | 188.92 a | 228.25 b |
T5 | 141.54 a,* | 146.06 a,* | 155.62 a | 186.04 a | 236.97 b |
T6 | 139.29 a | 141.98 a | 162.91 a,* | 212.47 a | 262.35 a,b,* |
T7 | 125.50 a | 141.39 a | 159.60 a | 181.16 a | 232.22 b |
C0 | 100.00 b | 100.00 b | 100.00 b | 100.00 b | 100.00 c |
Treatment | Week | CFU/g Rizospheric Soil | Treatment | Week | CFU/g Rizospheric Soil |
---|---|---|---|---|---|
T1 (Ta) | 0 | 3.0 × 106 d | T5 (Ta) | 0 | 3.5 × 106 d |
6 | 6.5 × 107 c | 6 | 1.6 × 108 b | ||
12 | 6.7 × 108 b | 12 | 1.4 × 109 a | ||
T2 (Ta) | 0 | 4.6 × 106 d | T6 (Ta) | 0 | 3.0 × 106 d |
6 | 7.0 × 106 d | 6 | 1.2 × 107 c | ||
12 | 3.3 × 108 b | 12 | 1.1 × 109 a | ||
T3 (Ta) | 0 | 2.5 × 106 d | T7 (Ta) | 0 | 3.5 × 106 d |
6 | 1.6 × 108 b | 6 | 1.6 × 108 b | ||
12 | 1.3 × 109 a | 12 | 6.7 × 108 b | ||
T4 (Ta) | 0 | 2.0 × 106 d | C0 | 0 | 0 |
6 | 5.4 × 106 d | 0 | 0 | ||
12 | 2.3 × 108 b | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-González, K.G.; Robledo-Medrano, J.J.; Valdez-Alarcón, J.J.; Hernández-Cristobal, O.; Martínez-Flores, H.E.; Cerna-Cortés, J.F.; Garnica-Romo, M.G.; Cortés-Martínez, R. Streptomyces spp. Biofilmed Solid Inoculant Improves Microbial Survival and Plant-Growth Efficiency of Triticum aestivum. Appl. Sci. 2022, 12, 11425. https://doi.org/10.3390/app122211425
Domínguez-González KG, Robledo-Medrano JJ, Valdez-Alarcón JJ, Hernández-Cristobal O, Martínez-Flores HE, Cerna-Cortés JF, Garnica-Romo MG, Cortés-Martínez R. Streptomyces spp. Biofilmed Solid Inoculant Improves Microbial Survival and Plant-Growth Efficiency of Triticum aestivum. Applied Sciences. 2022; 12(22):11425. https://doi.org/10.3390/app122211425
Chicago/Turabian StyleDomínguez-González, Karla Gabriela, J. Jesús Robledo-Medrano, Juan José Valdez-Alarcón, Orlando Hernández-Cristobal, Héctor Eduardo Martínez-Flores, Jorge Francisco Cerna-Cortés, Ma. Guadalupe Garnica-Romo, and Raúl Cortés-Martínez. 2022. "Streptomyces spp. Biofilmed Solid Inoculant Improves Microbial Survival and Plant-Growth Efficiency of Triticum aestivum" Applied Sciences 12, no. 22: 11425. https://doi.org/10.3390/app122211425
APA StyleDomínguez-González, K. G., Robledo-Medrano, J. J., Valdez-Alarcón, J. J., Hernández-Cristobal, O., Martínez-Flores, H. E., Cerna-Cortés, J. F., Garnica-Romo, M. G., & Cortés-Martínez, R. (2022). Streptomyces spp. Biofilmed Solid Inoculant Improves Microbial Survival and Plant-Growth Efficiency of Triticum aestivum. Applied Sciences, 12(22), 11425. https://doi.org/10.3390/app122211425