Progressive Dilution of Point Clouds Considering the Local Relief for Creation and Storage of Digital Twins of Cultural Heritage
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Principle of the Method
- Calculation of an evaluation variable E3.
- Transformation of the E3 variable into the T variable.
- Correction of the range of the T variable by winsdorizing.
- Dilution of the cloud based on a linearly changing distance between individual points based on the relative value of T.
2.2. Data Used for Method Testing
2.3. Algorithm Performance Testing
2.3.1. Preparation of the Test Clouds
2.3.2. Comparison of Prepared Clouds
3. Results
3.1. Testing Results—Data 1
3.2. Testing Results—Data 2
3.3. Testing Results—Data 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pérez-Álvarez, R.; de Luis-Ruiz, J.M.; Pereda-García, R.; Fernández-Maroto, G.; Malagón-Picón, B. 3D Documentation with TLS of Caliphal Gate (Ceuta, Spain). Appl. Sci. 2020, 10, 5377. [Google Scholar] [CrossRef]
- Matoušková, E.; Pavelka, K.; Smolík, T.; Pavelka, K. Earthen Jewish Architecture of Southern Morocco: Documentation of Unfired Brick Synagogues and Mellahs in the Drâa-Tafilalet Region. Appl. Sci. 2021, 11, 1712. [Google Scholar] [CrossRef]
- Ozimek, A.; Ozimek, P.; Skabek, K.; Łabędź, P. Digital Modelling and Accuracy Verification of a Complex Architectural Object Based on Photogrammetric Reconstruction. Buildings 2021, 11, 206. [Google Scholar] [CrossRef]
- Marčiš, M.; Fraštia, M. Photogrammetric Measurement of a Wooden Truss. Slovak J. Civ. Eng. 2018, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Roiha, J.; Heinaro, E.; Holopainen, M. The Hidden Cairns—A Case Study of Drone-Based ALS as an Archaeological Site Survey Method. Remote Sens. 2021, 13, 2010. [Google Scholar] [CrossRef]
- Niccolucci, F.; Felicetti, A.; Hermon, S. Populating the Data Space for Cultural Heritage with Heritage Digital Twins. Data 2022, 7, 105. [Google Scholar] [CrossRef]
- Callieri, M.; Dellepiane, M.; Pavoni, G.; Pingi, P.; Potenziani, M.; Scopigno, R. Alchemy in 3D: A digitization for a journey through matter. In Proceedings of the International Congress on Digital Heritage, Granada, Spain, 28 August–2 October 2015; pp. 223–231. [Google Scholar]
- Błaszczak-Bąk, W.; Janicka, J.; Suchocki, C.; Masiero, A.; Sobieraj-Żłobińska, A. Down-Sampling of Large LiDAR Dataset in the Context of Off-Road Objects Extraction. Geosciences 2020, 10, 219. [Google Scholar] [CrossRef]
- Boltcheva, D.; Lévy, B. Surface Reconstruction by Computing Restricted Voronoi Cells in Parallel. Comput.-Aided Des. 2017, 90, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Hanocka, R.; Metzer, G.; Giryes, R.; Cohen-Or, D. Point2Mesh. ACM Trans. Graph. 2020, 39, 126.1–126.12. [Google Scholar] [CrossRef]
- Williams, F.; Schneider, T.; Silva, C.; Zorin, D.; Bruna, J.; Panozzo, D. Deep Geometric Prior for Surface Reconstruction. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 9 January 2019. [Google Scholar] [CrossRef]
- Maglo, A.; Lavoué, G.; Dupont, F.; Hudelot, C. 3D Mesh Compression: Survey, Comparisons, and Emerging Trends. ACM Comput. Surv. 2015, 47, 1–41. [Google Scholar] [CrossRef]
- Luebke, D.P. A Developer’s Survey of Polygonal Simplification Algorithms. IEEE Comput. Graph. Appl. 2001, 21, 24–35. [Google Scholar] [CrossRef]
- Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva, C.; Taubin, G. The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Trans. Vis. Comput. Graph. 1999, 5, 349–359. [Google Scholar] [CrossRef]
- Dovrat, O.; Lang, I.; Avidan, S. Learning to Sample. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar] [CrossRef]
- Nezhadarya, E.; Taghavi, E.; Razani, R.; Liu, B.; Luo, J. Adaptive Hierarchical down-Sampling for Point Cloud Classification. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 5 August 2020. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, Z.; Zeng, D. A New Simplification Algorithm for Scattered Point Clouds with Feature Preservation. Symmetry 2021, 13, 399. [Google Scholar] [CrossRef]
- Zhang, K.; Qiao, S.; Wang, X.; Yang, Y.; Zhang, Y. Feature-Preserved Point Cloud Simplification Based on Natural Quadric Shape Models. Appl. Sci. 2019, 9, 2130. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.R.; Stroud, I.A.; Marshall, A.D. Data reduction for reverse engineering. Proc. Inf. Geometers Conf. 1997, 10, 85–100. [Google Scholar]
- Xu, X.; Li, K.; Ma, Y.; Geng, G.; Wang, J.; Zhou, M.; Cao, X. Feature-Preserving Simplification Framework for 3D Point Cloud. Sci. Rep. 2022, 12, 9450. [Google Scholar] [CrossRef]
- Leal, E.; Sanchez-Torres, G.; Branch-Bedoya, J.W.; Abad, F.; Leal, N. A Saliency-Based Sparse Representation Method for Point Cloud Simplification. Sensors 2021, 21, 4279. [Google Scholar] [CrossRef]
- Fan, L.; Atkinson, P.M. An Iterative Coarse-to-Fine Sub-Sampling Method for Density Reduction of Terrain Point Clouds. Remote Sens. 2019, 11, 947. [Google Scholar] [CrossRef]
- Chen, C.; Yan, C.; Cao, X.; Guo, J.; Dai, H. A Greedy-Based Multiquadric Method for LiDAR-Derived Ground Data Reduction. ISPRS J. Photogramm. Remote Sens. 2015, 102, 110–121. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z. Effects of LiDAR Data Reduction and Breaklines on the Accuracy of Digital Elevation Model. Surv. Rev. 2011, 43, 614–628. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, L.; Mathiopoulos, P.T.; Huang, X. A Methodology for Automated Segmentation and Reconstruction of Urban 3-D Buildings from ALS Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4199–4217. [Google Scholar] [CrossRef]
- Honti, R.; Erdélyi, J.; Kopáčik, A. Semi-Automated Segmentation of Geometric Shapes from Point Clouds. Remote Sens. 2022, 14, 4591. [Google Scholar] [CrossRef]
- Albano, R. Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds. Appl. Sci. 2019, 9, 4674. [Google Scholar] [CrossRef] [Green Version]
- Pingel, T.J.; Clarke, K.C.; McBride, W.A. An Improved Simple Morphological Filter for the Terrain Classification of Airborne LIDAR Data. ISPRS J. Photogramm. Remote Sens. 2013, 77, 21–30. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Lidmila, M.; Kolář, V.; Křemen, T. Vegetation Filtering of a Steep Rugged Terrain: The Performance of Standard Algorithms and a Newly Proposed Workflow on an Example of a Railway Ledge. Remote Sens. 2021, 13, 3050. [Google Scholar] [CrossRef]
- Braun, J.; Braunová, H.; Suk, T.; Michal, O.; Pěťovský, P.; Kurič, I. Structural and Geometrical Vegetation Filtering—Case Study on Mining Area Point Cloud Acquired by UAV Lidar. Acta Montan. Slovaca 2022, 26, 661–674. [Google Scholar] [CrossRef]
Data | Uniform Dilution [m] | R [m] | a/b [m] for Progressive Dilutions |
---|---|---|---|
Data 1 | 0.01; 0.02; 0.03; 0.05 | 0.050 | (a) 0.01/0.02; 0.02/0.04; 0.03/0.06; 0.05/0.10; (b) 0.01/0.03; 0.02/0.06; 0.03/0.09; 0.05/0.15; (c) 0.01/0.05; 0.02/0.10 |
Data 2 | 0.01; 0.02; 0.03; 0.05 | 0.100 | (a) 0.01/0.02; 0.02/0.04; 0.03/0.06; 0.05/0.10; (b) 0.01/0.03; 0.02/0.06; 0.03/0.09; 0.05/0.15; (c) 0.01/0.10; 0.02/0.10; |
Data 3 | 0.005; 0.01; 0.02 | 0.050 | (a) 0.005/0.01; 0.01/0.02; 0.02/0.04; (b) 0.005/0.015; 0.01/0.03; 0.02/0.06; (c) 0.005/0.025; 0.005/0.050; 0.01/0.05; 0.02/0.10 |
a [m] | b [m] | Points in the Cloud | % Original 1 | RMSD [m] | RMSDE [m] | % Uniform 2 |
---|---|---|---|---|---|---|
original | - | 728,137 | 100 | - | - | - |
0.01 | uniform | 352,660 | 48.4 | 0.0005 | 0.0007 | 100 |
0.01 | 0.02 | 249,549 | 34.3 | 0.0006 | 0.0007 | 70.8 |
0.01 | 0.03 | 187,024 | 25.7 | 0.0006 | 0.0007 | 53.0 |
0.01 | 0.05 | 120,506 | 16.5 | 0.0007 | 0.0008 | 34.2 |
0.02 | uniform | 121,333 | 16.7 | 0.0010 | 0.0011 | 100.0 |
0.02 | 0.04 | 81,622 | 11.2 | 0.0011 | 0.0012 | 67.3 |
0.02 | 0.06 | 59,777 | 8.2 | 0.0012 | 0.0013 | 49.3 |
0.02 | 0.10 | 36,728 | 5.0 | 0.0016 | 0.0016 | 30.3 |
0.03 | uniform | 65,148 | 8.9 | 0.0015 | 0.0016 | 100.0 |
0.03 | 0.06 | 40,194 | 5.5 | 0.0017 | 0.0017 | 61.7 |
0.03 | 0.09 | 29,088 | 4.0 | 0.0020 | 0.0020 | 44.6 |
0.05 | uniform | 26,194 | 3.6 | 0.0029 | 0.0030 | 100.0 |
0.05 | 0.10 | 15,752 | 2.2 | 0.0033 | 0.0033 | 60.1 |
0.05 | 0.15 | 11,100 | 1.5 | 0.0042 | 0.0042 | 42.4 |
a [m] | b [m] | Points in the Cloud | % Original 1 | RMSD [m] | RMSDE [m] | % Uniform 2 |
---|---|---|---|---|---|---|
original | - | 407,532 | 100 | - | - | - |
0.01 | uniform | 404,419 | 99.2 | 0.0001 | 0.0015 | 100.0 |
0.01 | 0.02 | 366,731 | 90.0 | 0.0002 | 0.0006 | 90.7 |
0.01 | 0.03 | 332,062 | 81.5 | 0.0003 | 0.0008 | 82.1 |
0.01 | 0.05 | 283,446 | 69.6 | 0.0005 | 0.0010 | 70.1 |
0.01 | 0.10 | 213,828 | 52.5 | 0.0009 | 0.0013 | 52.9 |
0.02 | uniform | 120,139 | 29.5 | 0.0020 | 0.0023 | 100.0 |
0.02 | 0.04 | 112,243 | 27.5 | 0.0020 | 0.0024 | 93.4 |
0.02 | 0.06 | 105,751 | 25.9 | 0.0021 | 0.0025 | 88.0 |
0.02 | 0.1 | 95,120 | 23.3 | 0.0022 | 0.0025 | 79.2 |
0.03 | uniform | 63,517 | 15.6 | 0.0033 | 0.0036 | 100.0 |
0.03 | 0.06 | 58,674 | 14.4 | 0.0034 | 0.0037 | 92.4 |
0.03 | 0.09 | 54,882 | 13.5 | 0.0035 | 0.0038 | 86.4 |
0.05 | uniform | 26,158 | 6.4 | 0.0058 | 0.0060 | 100.0 |
0.05 | 0.10 | 23,756 | 5.8 | 0.0061 | 0.0063 | 90.8 |
0.05 | 0.15 | 22,082 | 5.4 | 0.0062 | 0.0064 | 84.4 |
a [m] | b [m] | Points in the Cloud | % Original 1 | RMSD [m] | RMSDE [m] | % Uniform 2 |
---|---|---|---|---|---|---|
original | - | 1,470,249 | 100 | - | - | - |
0.005 | uniform | 651,345 | 44.3 | 0.0004 | 0.0005 | 100.0 |
0.005 | 0.010 | 506,966 | 34.5 | 0.0004 | 0.0005 | 77.8 |
0.005 | 0.015 | 436,672 | 29.7 | 0.0004 | 0.0005 | 67.0 |
0.005 | 0.025 | 369,672 | 25.1 | 0.0005 | 0.0006 | 56.8 |
0.005 | 0.050 | 291,500 | 19.8 | 0.0006 | 0.0007 | 44.8 |
0.01 | uniform | 181,235 | 12.3 | 0.0009 | 0.0009 | 100.0 |
0.01 | 0.02 | 156,035 | 10.6 | 0.0009 | 0.0010 | 86.1 |
0.01 | 0.03 | 140,215 | 9.5 | 0.0010 | 0.0010 | 77.4 |
0.01 | 0.05 | 119,166 | 8.1 | 0.0011 | 0.0011 | 65.8 |
0.02 | uniform | 49,600 | 3.4 | 0.0021 | 0.0021 | 100.0 |
0.02 | 0.04 | 42,539 | 2.9 | 0.0022 | 0.0022 | 85.8 |
0.02 | 0.06 | 38,153 | 2.6 | 0.0024 | 0.0024 | 76.9 |
0.02 | 0.10 | 31,709 | 2.2 | 0.0046 | 0.0047 | 63.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štroner, M.; Křemen, T.; Urban, R. Progressive Dilution of Point Clouds Considering the Local Relief for Creation and Storage of Digital Twins of Cultural Heritage. Appl. Sci. 2022, 12, 11540. https://doi.org/10.3390/app122211540
Štroner M, Křemen T, Urban R. Progressive Dilution of Point Clouds Considering the Local Relief for Creation and Storage of Digital Twins of Cultural Heritage. Applied Sciences. 2022; 12(22):11540. https://doi.org/10.3390/app122211540
Chicago/Turabian StyleŠtroner, Martin, Tomáš Křemen, and Rudolf Urban. 2022. "Progressive Dilution of Point Clouds Considering the Local Relief for Creation and Storage of Digital Twins of Cultural Heritage" Applied Sciences 12, no. 22: 11540. https://doi.org/10.3390/app122211540
APA StyleŠtroner, M., Křemen, T., & Urban, R. (2022). Progressive Dilution of Point Clouds Considering the Local Relief for Creation and Storage of Digital Twins of Cultural Heritage. Applied Sciences, 12(22), 11540. https://doi.org/10.3390/app122211540