Modified Biochar as a More Promising Amendment Agent for Remediation of Pesticide-Contaminated Soils: Modification Methods, Mechanisms, Applications, and Future Perspectives
Abstract
:1. Introduction
1.1. Application of Pesticides and Soil Pollution
1.2. Soil Pollution Remediation
1.3. Biochar
2. Source and Modification Methods of Biochar for Pesticide Remediation
2.1. Biochar Production
2.2. Modification Methods of Biochar
3. The Effect of Biochar on the Environmental Fate of Pesticides
3.1. The Effect of Biochar on Sorption of Pesticides
3.2. The Effect of Biochar on Degradation of Pesticides
3.3. Factors Affecting Biochar on Environmental Fate of Pesticides
4. Application of Biochar for Remediation of Pesticide-Contaminated Soils
5. Challenges and Opportunities
5.1. Cost of Biochar and Modified Biochar
5.2. Application of Biochar Return to Field
5.3. Effect of Biochar on Climate Change
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maggi, F.; Tang, F.H.M.; Black, A.J.; Marks, G.B.; McBratney, A. The pesticide health risk index—An application to the world’s countries. Sci. Total Environ. 2021, 801, 149731. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Sidhu, V.; Rong, Y.; Zheng, Y. Pesticide Pollution in Agricultural Soils and Sustainable Remediation Methods: A Review. Curr. Pollut. Rep. 2018, 4, 240–250. [Google Scholar] [CrossRef]
- Sabzevari, S.; Hofman, A. Worldwide review of currently used pesticides’ monitoring in agricultural soils. Sci. Total Environ. 2022, 812, 152344. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Cheng, Y.; Zhang, Q.; Liang, J. Quantitative analyses of relationships between ecotoxicological effects and combined pollution. Sci. China Ser. C 2004, 47, 332–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delwiche, K.B.; Lehmann, J.; Walter, M.T. Atrazine leaching from biochar-amended soils. Chemosphere 2014, 95, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yin, Y.; Guo, Y.; Wang, C. Preponderant adsorption for chlorpyrifos over atrazine by wheat straw-derived biochar: Experimental and theoretical studies. RSC Adv. 2016, 6, 10615–10624. [Google Scholar] [CrossRef]
- Sadaria, A.M.; Supowit, S.D.; Halden, R.U. Mass balance assessment for six neonicotinoid insecticides during conventional wastewater and wetland treatment: Nationwide reconnaissance in United States wastewater. Environ. Sci. Technol. 2016, 50, 6199–6206. [Google Scholar] [CrossRef]
- Yavari, S.; Malakahmad, A.; Sapari, N.B. Sorption-desorption mechanisms of imazapic and imazapyr herbicides on biochars produced from agricultural wastes. J. Environ. Chem. Eng. 2016, 4, 3981–3989. [Google Scholar] [CrossRef]
- Zhou, Q.; Song, Y. Contaminated Soil Remediation: Principles and Methods; Science Press: Beijing, China, 2004. [Google Scholar]
- Yang, F.; Gao, Y.; Sun, L.; Zhang, S.; Li, J.; Zhang, Y. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures. Environ. Sci. Pollut. Res. 2018, 25, 18528–18539. [Google Scholar] [CrossRef]
- Issaka, E.; Fapohunda, F.O.; Amu-Darko, J.N.O.; Yeboah, L.; Yakubu, S.; Varjani, S.; Ali, N.; Bilal, M. Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. Chemosphere 2022, 297, 134163. [Google Scholar] [CrossRef]
- Mayakaduwa, S.S.; Vithanage, M.; Karunarathna, A.; Mohan, D.; Ok, Y.S. Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 2016, 28, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, X.; Yuan, S.; Dong, F.; Xu, J.; Wu, X.; Zheng, Y. Accumulation of epoxiconazole from soil via oleic acid-embedded cellulose acetate membranes and bioavailability evaluation in earthworms (Eisenia fetida). Environ. Pollut. 2022, 292, 118283. [Google Scholar] [CrossRef] [PubMed]
- Morillo, E.; Villaverde, J. Advanced technologies for the remediation of pesticide-contaminated soils. Sci. Total Environ. 2017, 586, 576–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, R.K.; Goswami, M.; Mishra, R.K.; Chaturvedi, P.; Awashthi, M.K.; Singh, R.S.; Giri, B.S.; Pandey, A. Biochar for remediation of agrochemicals and synthetic organic dyes from environmental samples: A review. Chemosphere 2021, 272, 129917. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.-L.; Liu, W.-T.; Zhou, Q.-X. Biochar: An Effective Amendment for Remediating Contaminated Soil. Rev. Environ. Contam. Toxicol. 2014, 228, 83–99. [Google Scholar]
- García-Jaramillo, M.; Cox, L.; Knicker, H.E.; Cornejo, J.; Spokas, K.A.; Hermosín, M. Characterization and selection of biochar for an efficient retention of tricyclazole in a flooded alluvial paddy soil. J. Hazard. Mater. 2015, 286, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Egamberdieva, D.; Jabbarov, Z.; Arora, N.K.; Wirth, S.; Bellingrath-Kimura, S.D. Biochar mitigates effects of pesticides on soil biological activities. Environ. Sustain. 2021, 4, 335–342. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, C.; Sun, H.; Min, L. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Sci. Total Environ. 2018, 615, 59–69. [Google Scholar] [CrossRef]
- Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Núñez-Delgado, A.; Chhajro, M.A.; Kubar, K.A.; Ali, U.; Rana, M.S.; Mehmood, M.A.; et al. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manag. 2018, 228, 429–440. [Google Scholar] [CrossRef]
- Mendes, K.F.; Olivatto, G.P.; de Sousa, R.N.; Junqueira, L.V.; Tornisielo, V.L. Natural biochar effect on sorption-desorption and mobility of diclosulam and pendimethalin in soil. Geoderma 2019, 347, 118–125. [Google Scholar] [CrossRef]
- Liu, Y.; Lonappan, L.; Brar, S.K.; Yang, S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Sci. Total Environ. 2018, 645, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ouyang, W.; Hao, F.; Lin, C.; Wang, F.; Han, S.; Geng, X. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine. Bioresour. Technol. 2013, 147, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Q.; Sun, K.; Han, L.; Sun, H.; Yang, Y.; Wang, Z. Effects of simulated diagenesis and mineral amendment on the structure, stability and imidacloprid sorption properties of biochars produced at varied temperatures. Chemosphere 2021, 282, 131003. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, X.; Wu, X.; Dong, F.; Xu, J.; Zheng, Y. Sorption, degradation and bioavailability of oxyfluorfen in biochar-amended soils. Sci. Total Environ. 2019, 658, 87–94. [Google Scholar] [CrossRef]
- Deng, H.; Yu, H.; Chen, M.; Ge, C. Sorption of Atrazine in Tropical Soil by Biochar Prepared from Cassava Waste. BioResources 2014, 9, 6627–6643. [Google Scholar] [CrossRef] [Green Version]
- Sopeña, F.; Semple, K.; Sohi, S.; Bending, G. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 2012, 88, 77–83. [Google Scholar] [CrossRef]
- Cabrera, A.; Cox, L.; Spokas KU, R.T.; Hermosín, M.C.; Cornejo, J.; Koskinen, W.C. Influence of biochar amendments on the sorption–desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Sci. Total Environ. 2014, 470–471, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Muter, O.; Berzins, A.; Strikauska, S.; Pugajeva, I.; Bartkevics, V.; Dobele, G.; Truu, J.; Truu, M.; Steiner, C. The effects of woodchip- and straw-derived biochars on the persistence of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in soils. Ecotoxicol. Environ. Saf. 2014, 109, 93–100. [Google Scholar] [CrossRef]
- Wang, F.; Ji, R.; Jiang, Z.; Chen, W. Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms. Environ. Pollut. 2014, 186, 241–247. [Google Scholar] [CrossRef]
- Martin, S.M.; Kookana, R.S.; Van Zwieten, L.; Krull, E. Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. J. Hazard. Mater. 2012, 231-232, 70–78. [Google Scholar] [CrossRef]
- Fang, W.; Wang, Q.; Han, D.; Liu, P.; Huang, B.; Yan, D.; Ouyang, C.; Li, Y.; Cao, A. The effects and mode of action of biochar on the degradation of methyl isothiocyanate in soil. Sci. Total Environ. 2016, 565, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Vithanage, M.; Mayakaduwa, S.S.; Herath, I.; Ok, Y.S.; Mohan, D. Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere 2016, 150, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Huang, Y.; Li, Y.; Huang, L.; Mar, N.N.; Huang, Q.; Liu, Z. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor. Environ. Sci. Pollut. Res. 2017, 24, 4552–4561. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, P.; Liu, X.; Wu, X.; Dong, F.; Xu, J.; Zheng, Y. Polyoxymethylene passive samplers to assess the effectiveness of biochar by reducing the content of freely dissolved fipronil and ethziprole. Sci. Total Environ. 2018, 630, 960–966. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Rajapaksha, A.U.; Vithanage, M.; Zhang, M.; Cho, J.S.; Lee, S.-E.; Ok, Y.S. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour. Technol. 2013, 143, 615–622. [Google Scholar] [CrossRef]
- Liu, N.; Charrua, A.B.; Weng, C.-H.; Yuan, X.; Ding, F. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresour. Technol. 2015, 198, 55–62. [Google Scholar] [CrossRef]
- Ponnam, V.; Katari, N.K.; Mandapati, R.N.; Nannapaneni, S.; Tondepu, S.; Jonnalagadda, S.B. Efficacy of biochar in removal of organic pesticide, Bentazone from watershed systems. J. Environ. Sci. Health Part B 2020, 55, 396–405. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, H.; Yu, L.; Sun, T. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. J. Hazard. Mater. 2013, 244, 217–224. [Google Scholar] [CrossRef]
- Wei, L.; Huang, Y.; Huang, L.; Li, Y.; Huang, Q.; Xu, G.; Müller, K.; Wang, H.; Ok, Y.S.; Liu, Z. The ratio of H/C is a useful parameter to predict adsorption of the herbicide metolachlor to biochars. Environ. Res. 2020, 184, 109324. [Google Scholar] [CrossRef]
- Zheng, W.; Guo, M.; Chow, T.; Bennett, D.N.; Rajagopalan, N. Sorption properties of greenwaste biochar for two triazine pesticides. J. Hazard. Mater. 2010, 181, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Essandoh, M.; Wolgemuth, D.; Pittman, C.U., Jr.; Mohan, D.; Mlsna, T. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 2017, 174, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Dai, Y. Strong adsorption of metolachlor by biochar prepared from walnut shells in water. Environ. Sci. Pollut. Res. 2021, 28, 48379–48391. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, X.; Wu, X.; Xu, J.; Dong, F.; Zheng, Y. Evaluation of biochars in reducing the bioavailability of flubendiamide in water/sediment using passive sampling with polyoxymethylene. J. Hazard. Mater. 2018, 344, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Lee, S.S.; Dou, X.M.; Mohan, D.; Sung, J.-K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wu, M.; Zhang, Z.; Lü, J. Effectiveness of low-temperature biochar in controlling the release and leaching of herbicides in soil. Plant Soil 2013, 370, 333–344. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Zhang, Y.; Lin, T.; Zeng, G.; Zhang, S.; Wang, Y.; He, W.; Zhang, M.; Long, H. An efficient adsorbent: Simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption. Bioresour. Technol. 2019, 288, 121511. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Fang, W.; Li, X.; Shan, D.; Dai, Y. Adsorption of metolachlor by a novel magnetic illite–biochar and recovery from soil. Environ. Res. 2022, 204, 111919. [Google Scholar] [CrossRef]
- Yavari, S.; Abualqumboz, M.; Sapari, N.; Hata-Suhaimi, H.-A.; Nik-Fuaad, N.-Z. Sorption of imazapic and imazapyr herbicides on chitosan-modified biochars. Int. J. Environ. Sci. Technol. 2020, 17, 3341–3350. [Google Scholar] [CrossRef]
- Shou, J.; Dong, H.; Li, J.; Zhong, J.; Li, S.; Lü, J.; Li, Y. Influence of Al-oxide on pesticide sorption to woody biochars with different surface areas. Environ. Sci. Pollut. Res. 2016, 23, 19156–19163. [Google Scholar] [CrossRef]
- Cusioli, L.F.; Bezerra, C.D.O.; Quesada, H.B.; Baptista, A.T.A.; Nishi, L.; Vieira, M.F.; Bergamasco, R. Modified Moringa oleifera Lam. Seed husks as low-cost biosorbent for atrazine removal. Environ. Technol. 2021, 42, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Liu, M.; Xia, J.; Li, C. Effective removal of aqueous glyphosate using CuFe2O4@biochar derived from phragmites. J. Chem. Technol. Biotechnol. 2020, 95, 196–204. [Google Scholar] [CrossRef]
- Mayakaduwa, S.S.; Herath, I.; Ok, Y.S.; Mohan, D.; Vithanage, M. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Environ. Sci. Pollut. Res. 2017, 24, 22755–22763. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kang, J.; Jiang, S.; Li, H.; Ren, Z.; Xu, Q.; Jiang, Q.; Liu, W.; Li, R.; Zhang, Y. A composite of Ni–Fe–Zn layered double hydroxides/biochar for atrazine removal from aqueous solution. Biochar 2020, 2, 455–464. [Google Scholar] [CrossRef]
- Suo, F.; You, X.; Ma, Y.; Li, Y. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere 2019, 235, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.-L.; Xie, T.; Cao, J. Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant. Bioresour. Technol. 2020, 316, 123929. [Google Scholar] [CrossRef]
- Mohammad, S.G.; El-Sayed, M.M.H. Removal of imidacloprid pesticide using nanoporous activated carbons produced via pyrolysis of peach stone agricultural wastes. Chem. Eng. Commun. 2021, 208, 1069–1080. [Google Scholar] [CrossRef]
- Tan, G.; Sun, W.; Xu, Y.; Wang, H.; Xu, N. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresour. Technol. 2016, 211, 727–735. [Google Scholar] [CrossRef]
- Mandal, A.; Singh, N.; Purakayastha, T.J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ. 2017, 577, 376–385. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, N.; Tong, L.; Lv, Y.; Li, G. Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2,4-dichlorophenoxyacetic acid. Chemosphere 2018, 210, 734–744. [Google Scholar] [CrossRef]
- Wan, C.; Li, H.; Zhao, L.; Li, Z.; Zhang, C.; Tan, X.; Liu, X. Mechanism of removal and degradation characteristics of dicamba by biochar prepared from Fe-modified sludge. J. Environ. Manag. 2021, 299, 113602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, B.; Yu, J.; Yuan, M.; Ji, J.; Lu, H.; Ma, Y.; Guo, Y. Functional biochar for efficient residue treatment of sulfonylurea herbicides by weak molecular interaction. Biochar 2021, 3, 545–556. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Li, F.; Li, G.; Niu, G.; Chen, H.; Ying, G.G.; Huang, M. Accurate prediction and further dissection of neonicotinoid elimination in the water treatment by CTS@AgBC using multihead attention-based convolutional neural network combined with the time-dependent Cox regression model. J. Hazard. Mater. 2022, 423 Pt A, 127029. [Google Scholar] [CrossRef]
- Aswani, M.T.; Yadav, M.; Vinod Kumar, A.; Tiwari, S.; Kumar, T.; Pavan Kumar, M.V. Ultrasound-acid modified Merremia vitifolia biomass for the biosorption of herbicide 2,4-D from aqueous solution. Water Sci. Technol. 2020, 82, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Binh, Q.A.; Tungtakanpoung, D.; Kajitvichyanukul, P. Similarities and differences in adsorption mechanism of dichlorvos and pymetrozine insecticides with coconut fiber biowaste sorbent. J. Environ. Sci. Health Part B 2020, 55, 103–114. [Google Scholar] [CrossRef]
- El Bakouri, H.; Usero, J.; Morillo, J.; Rojas, R.; Ouassini, A. Drin pesticides removal from aqueous solutions using acid-treated date stones. Bioresour. Technol. 2009, 100, 2676–2684. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, X.; Yang, C.; Wang, Y.; Cheng, J.; Zhao, J.; Dong, X.; Zhang, Q. Eco-friendly and acid-resistant magnetic porous carbon derived from ZIF-67 and corn stalk waste for effective removal of imidacloprid and thiamethoxam from water. Chem. Eng. J. 2022, 430, 132999. [Google Scholar] [CrossRef]
- Ali, N.; Khan, S.; Li, Y.; Zheng, N.; Yao, H. Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils. Sci. Total Environ. 2019, 647, 551–560. [Google Scholar] [CrossRef]
- Cao, Y.; Jiang, S.; Kang, X.; Zhang, H.; Zhang, Q.; Wang, L. Enhancing degradation of atrazine by Fe-phenol modified biochar/ferrate(VI) under alkaline conditions: Analysis of the mechanism and intermediate products. Chemosphere 2021, 285, 131399. [Google Scholar] [CrossRef]
- Dai, S.-J.; Zhao, Y.-C.; Niu, D.-J.; Li, Q.; Chen, Y. Preparation and reactivation of magnetic biochar by molten salt method: Relevant performance for chlorine-containing pesticides abatement. J. Air Waste Manag. Assoc. 2019, 69, 58–70. [Google Scholar] [CrossRef]
- Wang, P.; Stenrød, M.; Wang, L.; Yuan, S.; Mao, L.; Zhu, L.; Zhang, L.; Zhang, Y.; Jiang, H.; Zheng, Y.; et al. Characterization of montmorillonite–biochar composite and its application in the removal of atrazine in aqueous solution and soil. Front. Environ. Sci. 2022, 10, 888252. [Google Scholar] [CrossRef]
- Xi, X.; Yan, J.; Quan, G.; Cui, L. Removal of the pesticide pymetrozine from aqueous solution by biochar produced from brewer’s spent grain at different pyrolytic temperatures. Bioresources 2014, 9, 7696–7709. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Pignatello, J.J. Interactions of triazine herbicides with biochar: Steric and electronic effects. Water Res. 2015, 80, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, P.; Wang, J.; Pan, Y.; Shen, B.; Wu, C. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ. 2019, 659, 473–490. [Google Scholar] [CrossRef]
- Sophia, A.C.; Lima, E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Robinson, B.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Farraji, H.; Vakili, M. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 2020, 253, 126646. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, N.; Xing, C.; Cui, Q.; Sun, Q. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef]
- Loganathan, V.A.; Feng, Y.; Sheng, G.D.; Clement, T.P. Crop-Residue-Derived Char Influences Sorption, Desorption and Bioavailability of Atrazine in Soils. Soil Sci. Soc. Am. J. 2009, 73, 967–974. [Google Scholar] [CrossRef]
- Mandal, A.; Singh, N. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems. Int. J. Hyg. Environ. Health 2017, 220, 637–645. [Google Scholar] [CrossRef]
- Hagner, M.; Penttinen, O.P.; Tiilikkala, K.; Setälä, H. The effects of biochar, wood vinegar and plants on glyphosate leaching and degradation. Eur. J. Soil Biol. 2013, 58, 1–7. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, C.; Rong, Q.; Li, C.; Mao, J.; Liu, Y.; Chen, J.; Liu, X. Effect of two organic amendments on atrazine degradation and microorganisms in soil. Appl. Soil Ecol. 2020, 152, 103564. [Google Scholar] [CrossRef]
- Yu, X.; Pan, L.; Ying, G.; Kookana, R.S. Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J. Environ. Sci. 2010, 22, 615–620. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, W.; Li, J.; Wang, S.; Tao, Y.; Wang, Y.; Zhang, Y. The enhancement of atrazine sorption and microbial transformation in biochars amended black soils. Chemosphere 2017, 189, 507–516. [Google Scholar] [CrossRef]
- Jin, J.; Kang, M.; Sun, K.; Pan, Z.; Wu, F.; Xing, B. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine. Sci. Total Environ. 2016, 550, 504–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorram, M.S.; Lin, D.; Zhang, Q.; Zheng, Y.; Fang, H.; Yu, Y. Effects of aging process on adsorption–desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar. J. Environ. Sci. 2017, 56, 180–191. [Google Scholar] [CrossRef]
- Gámiz, B.; Velarde, P.; Spokas, K.A.; Celis, R.; Cox, L. Changes in sorption and bioavailability of herbicides in soil amended with fresh and aged biochar. Geoderma 2019, 337, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Ma, L.; Liang, Y.; Gao, B.; Harris, W. Simultaneous Immobilization of Lead and Atrazine in Contaminated Soils Using Dairy-Manure Biochar. Environ. Sci. Technol. 2011, 45, 4884–4889. [Google Scholar] [CrossRef]
- Godlewska, P.; Schmidt, H.P.; Ok, Y.S.; Oleszczuk, P. Biochar for composting improvement and contaminants reduction. A review. Bioresour. Technol. 2017, 246, 193–202. [Google Scholar] [CrossRef]
- Wang, H.; Lin, K.; Hou, Z.; Richardson, B.; Gan, J. Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J. Soils Sediments 2010, 10, 283–289. [Google Scholar] [CrossRef]
- García-Jaramillo, M.; Trippe, K.M.; Helmus, R.; Knicker, H.E.; Cox, L.; Hermosín, M.C.; Parsons, J.R.; Kalbitz, K. An examination of the role of biochar and biochar water-extractable substances on the sorption of ionizable herbicides in rice paddy soils. Sci. Total Environ. 2020, 706, 135682. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H. Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review. J. Clean. Prod. 2020, 265, 121762. [Google Scholar] [CrossRef]
- Uchimiya, M.; Wartelle, L.H.; Boddu, V.M. Sorption of Triazine and Organophosphorus Pesticides on Soil and Biochar. J. Agric. Food Chem. 2012, 60, 2989–2997. [Google Scholar] [CrossRef] [PubMed]
- Tatarková, V.; Hiller, E.; Vaculík, M. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicol. Environ. Saf. 2013, 92, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Kaium, A.; Cao, J.; Liu, X.; Xu, J.; Dong, F.; Wu, X.; Zheng, Y. Method Validation and Dissipation Behaviour of Dimethyl Disulphide (DMDS) in Cucumber and Soil by Gas Chromatography-Tandem Mass Spectrometry. Int. J. Environ. Res. Public Health 2019, 16, 4493. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Edwards-Jones, G.; Murphy, D. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol. Biochem. 2011, 43, 804–813. [Google Scholar] [CrossRef]
- Sheng, G.; Yang, Y.; Huang, M.; Yang, K. Influence of pH on pesticide sorption by soil containing wheat residue-derived char. Environ. Pollut. 2005, 134, 457–463. [Google Scholar] [CrossRef]
- Si, Y.; Wang, M.; Tian, C.; Zhou, J.; Zhou, D. Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils. J. Contam. Hydrol. 2011, 123, 75–81. [Google Scholar] [CrossRef]
- Yang, X.B.; Ying, G.G.; Peng, P.A.; Wang, L.; Zhao, J.L.; Zhang, L.J.; Yuan, P.; He, H.P. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J. Agric. Food Chem. 2010, 58, 7915–7921. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, Q.; Nie, T.; Zhou, W. Quantitative evaluation of relationships between adsorption and partition of atrazine in biochar-amended soils with biochar characteristics. RSC Adv. 2019, 9, 4162–4171. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.N.; Xu, C.-Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Kong, F.; Lu, L.; Wang, P.; Jiang, Z. Biochar—An effective additive for improving quality and reducing ecological risk of compost: A global meta-analysis. Sci. Total Environ. 2022, 806, 151439. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Gao, B.; Ro, K.S.; Novak, J.M.; Wang, Z.; Herbert, S.; Xing, B. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. Environ. Pollut. 2012, 163, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Keiluweit, M.; Kleber, M.; Pan, Z.; Xing, B. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresour. Technol. 2011, 102, 9897–9903. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luo, J.; Deng, H.; Huang, P.; Ge, C.; Yu, H.; Xu, W. Effect of cassava waste biochar on sorption and release behavior of atrazine in soil. Sci. Total Environ. 2018, 644, 1617–1624. [Google Scholar] [CrossRef]
- Yin, Y.F.; Zhang, P.; Lei, H.D.; Ma, H.; Gao, R. Influence of different pyrolysis temperature on chemical properties of biochar. Chin. J. Trop. Crops 2014, 35, 1496–1500. [Google Scholar]
- Zhang, P.; Sun, H.; Ren, C.; Min, L.; Zhang, H. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption. Environ. Pollut. 2018, 234, 812–820. [Google Scholar] [CrossRef]
- Trigo, C.; Spokas, K.A.; Cox, L.; Koskinen, W.C. Influence of Soil Biochar Aging on Sorption of the Herbicides MCPA, Nicosulfuron, Terbuthylazine, Indaziflam, and Fluoroethyldiaminotriazine. J. Agric. Food Chem. 2014, 62, 10855–10860. [Google Scholar] [CrossRef] [Green Version]
- Dechene, A.; Rosendahl, I.; Laabs, V.; Amelung, W. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil. Chemosphere 2014, 109, 180–186. [Google Scholar] [CrossRef]
- Deng, H.; Feng, D.; He, J.-X.; Li, F.-Z.; Yu, H.-M.; Ge, C.-J. Influence of biochar amendments to soil on the mobility of atrazine using sorption-desorption and soil thin-layer chromatography. Ecol. Eng. 2017, 99, 381–390. [Google Scholar] [CrossRef]
- Xu, C.; Liu, W.; Sheng, G.D. Burned rice straw reduces the availability of clomazone to barnyardgrass. Sci. Total Environ. 2008, 392, 284–289. [Google Scholar] [CrossRef]
- Nag, S.K.; Kookana, R.; Smith, L.; Krull, E.; Macdonald, L.M.; Gill, G. Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere 2011, 84, 1572–1577. [Google Scholar] [CrossRef]
- Graber, E.R.; Tsechansky, L.; Khanukov, J.; Oka, Y. Sorption, Volatilization, and Efficacy of the Fumigant 1,3-Dichloropropene in a Biochar-Amended Soil. Soil Sci. Soc. Am. J. 2011, 75, 1365–1373. [Google Scholar] [CrossRef]
- Yang, Y.; Sheng, G.; Huang, M. Bioavailability of diuron in soil containing wheat-straw-derived char. Sci. Total Environ. 2006, 354, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-Y.; Ying, G.-G.; Kookana, R.S. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 2009, 76, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-Y.; Ying, G.-G.; Kookana, R.S. Sorption and Desorption Behaviors of Diuron in Soils Amended with Charcoal. J. Agric. Food Chem. 2006, 54, 8545–8550. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhang, C.; Zhang, P.; Cao, M.; Xu, G.; Wu, H.; Zhang, J.; Li, C.; Rong, Q. Effects of biochar amendment on the sorption and degradation of atrazine in different soils. Soil Sediment Contam. 2018, 27, 643–657. [Google Scholar] [CrossRef]
- Zhelezova, A.; Cederlund, H.; Stenström, J. Effect of biochar amendment and ageing on adsorption and degradation of two herbicides. Water Air Soil Pollut. 2017, 228, 216. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Miao, J.; Saleem, M.; Zhang, H.; Yang, Y.; Zhang, Q. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. J. Hazard. Mater. 2020, 398, 122941. [Google Scholar] [CrossRef]
- Khorram, M.S.; Wang, Y.; Jin, X.; Fang, H.; Yu, Y. Reduced mobility of fomesafen through enhanced adsorption in biochar-amended soil. Environ. Toxicol. Chem. 2015, 34, 1258–1266. [Google Scholar] [CrossRef]
- Tao, Y.; Hu, S.; Han, S.; Shi, H.; Yang, Y.; Li, H.; Jiao, Y.; Zhang, Q.; Akindolie, M.S.; Ji, M.; et al. Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32. Sci. Total Environ. 2019, 682, 59–69. [Google Scholar] [CrossRef]
- Wang, D.; Mukome, F.N.D.; Yan, D.; Wang, H.; Scow, K.M.; Parikh, S.J. Phenylurea herbicide sorption to biochars and agricultural soil. J. Environ. Sci. Healthj Part B 2015, 50, 544–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graber, E.R.; Tsechansky, L.; Gerstl, Z.; Lew, B. High surface area biochar negatively impacts herbicide efficacy. Plant Soil 2012, 353, 95–106. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Y.; Liu, X.; Wu, X.; Dong, F.; Xu, J.; Zheng, Y. Bioavailability assessment of thiacloprid in soil as affected by biochar. Chemosphere 2017, 171, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.; Wu, X.; Dong, F.; Xu, J.; Pan, X.; Zheng, Y. Effects of biochars on the fate of acetochlor in soil and on its uptake in maize seedling. Environ. Pollut. 2018, 241, 710–719. [Google Scholar] [CrossRef]
- Yavari, S.; Kamyab, H.; Asadpour, R.; Bin Sapari, N.; Baloo, L.; Manan, T.S.B.A.; Ashokkumar, V.; Chelliapan, S. The fate of imazapyr herbicide in the soil amended with carbon sorbents. Biomass Convers. Biorefinery 2021, 1–9. [Google Scholar] [CrossRef]
- Petter, F.A.; Ferreira, T.S.; Sinhorin, A.P.; Lima, L.B.; Almeida, F.A.; Pacheco, L.P.; Silva, A.F. Biochar Increases Diuron Sorption and Reduces the Potential Contamination of Subsurface Water with Diuron in a Sandy Soil. Pedosphere 2019, 29, 801–809. [Google Scholar] [CrossRef]
- Jing, X.; Wang, T.; Yang, J.; Wang, Y.; Xu, H. Effects of biochar on the fate and toxicity of herbicide fenoxaprop-ethyl in soil. R. Soc. Open Sci. 2018, 5, 171875. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Sun, T.; Li, M.; Saleem, M.; Zhang, Q.; Wang, C. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotoxicol. Environ. Saf. 2019, 171, 75–83. [Google Scholar] [CrossRef]
- Fellet, G.; Marchiol, L.; Delle Vedove, G.; Peressotti, A. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere 2011, 83, 1262–1267. [Google Scholar] [CrossRef]
- Tan, Z.; Lin, C.S.; Ji, X.; Rainey, T.J. Returning biochar to fields: A review. Appl. Soil Ecol. 2017, 116, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Huang, X.; Li, Z.; Tan, X.; Zeng, G.; Zhou, L. Potential Benefits of Biochar in Agricultural Soils: A Review. Pedosphere 2017, 27, 645–661. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental Benefits of Biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inyang, M.; Dickenson, E. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 2015, 134, 232–240. [Google Scholar] [CrossRef]
- Alhashimi, H.A.; Aktas, C.B. Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resour. Conserv. Recycl. 2017, 118, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. J. Environ. Qual. 2012, 41, 973–998. [Google Scholar] [CrossRef] [Green Version]
- Khorram, M.S.; Zhang, Q.; Lin, D.; Zheng, Y.; Fang, H.; Yu, Y. Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. J. Environ. Sci. 2016, 44, 269–279. [Google Scholar] [CrossRef]
- Lian, F.; Xing, B. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk. Environ. Sci. Technol. 2017, 51, 13517–13532. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Yavari, S.; Malakahmad, A.; Sapari, N.B. Biochar efficiency in pesticides sorption as a function of production variables—a review. Environ. Sci. Pollut. Res. 2015, 22, 13824–13841. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, S.; Chen, J.; Mueller, K.; Li, Y.; Fu, W.; Lin, Z.; Wang, H. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review. J. Soils Sediments 2018, 18, 546–563. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Huang, W.; Sun, Y.; Cao, J.; Luo, J. Research progress on the biochar production and its applications in enhancing electron transport and catalysis performance. Res. Environ. Sci. 2021, 34, 1157–1167. [Google Scholar]
- Yu, H.; Zhao, Y.; Zhang, C.; Wei, D.; Wu, J.; Zhao, X.; Hao, J.; Wei, Z. Driving effects of minerals on humic acid formation during chicken manure composting: Emphasis on the carrier role of bacterial community. Bioresour. Technol. 2019, 294, 122239. [Google Scholar] [CrossRef] [PubMed]
- Minh, T.D.; Song, J.; Deb, A.; Cha, L.; Srivastava, V.; Sillanpää, M. Biochar based catalysts for the abatement of emerging pollutants: A review. Chem. Eng. J. 2020, 394, 124856. [Google Scholar] [CrossRef]
- He, J.; Xiao, Y.; Tang, J.; Chen, H.; Sun, H. Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect. Sci. Total Environ. 2019, 690, 768–777. [Google Scholar] [CrossRef]
- Spokas, K.; Koskinen, W.; Baker, J.; Reicosky, D. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K. Biochar for crop production: Potential benefits and risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Cara, I.G.; Țopa, D.; Puiu, I.; Jităreanu, G. Biochar a Promising Strategy for Pesticide-Contaminated Soils. Agriculture 2022, 12, 1579. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
Raw Material | Pyrolysis Temperature °C | pH | Specific Surface Area (m2·g−1) | Organic Carbon Content% | Maximum Adsorption Capacity (mg·g−1) | Maximum Removal Rate% | Contaminant (Pesticide) | Principle | Adsorption Kinetics | Adsorption Isotherm | Active Matrix | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
rice hull | 500 | 6.96 | 95.67 | 33.6 | — | increase by 2 to 3.2 fold | Oxyfluorfen (herbicide) | surface polarity mechanism, the pore-filling mechanism, hydrophobic and π-π interaction | The first-order kinetics | Freundlich | soil | [25] |
cassava | 750 | 9.55 | 430.37 | 62.38 | 125 | 86.64% | atrazine (herbicide) | via a pore-filling mechanism | pseudo-second order | Freundlich | soil | [26] |
red gum wood | 500 | 7.8 | — | — | — | 49.8% | isoproturon (herbicide) | — | The first-order kinetics | Freundlich | soil | [27] |
wood chip | >500 | 10.8 | 28.8 | 73.9 | — | 82%-85% | aminocyclopyrachlor (herbicide) | — | — | Freundlich | soil | [28] |
woodchip | 725 | 7.39 | 3.72 | 85.76 | 11.8–21.5 | — | 4-chloro-2-methylphenoxyacetic acid (MCPA) (herbicide) | — | — | — | soil | [29] |
pine-wood shavings | 400 | — | — | — | — | 95% | atrazine (herbicide) | — | — | Freundlich | soil | [30] |
poultry litter | 550 | 8.9 | 3.14 | — | increase by 448% | — | diuron (herbicide) | — | — | Freundlich | soil | [31] |
wood pellet | 500 | 6.02 | 1.25 | 81.39 | 3 | — | methyl isothiocyanate (fumigant) | — | The first-order kinetics | — | soil | [32] |
rice husk | 700 | 9.87 | 377.00 | 47.71 | 9.6 ± 0.2 | 47.7% | carbofuran (insecticide) | the pore-filling mechanism, π-π interaction, Van der Waals’ forces, H-bond, electrostatic interaction | The first-order kinetics | — | water | [33] |
rice husk | 750 | 10.51 | 53.08 | 64.08 | 9.5 | 95% | metolachlor (herbicide) | the pore-filling mechanism, H-bond | intra-particle diffusion | Freundlich | water | [34] |
magnolia wood | 700 | 10.14 | 364.63 | 83.55 | — | 81.10% | ethiprole (insecticide) | π-π interaction, the pore-filling mechanism | The first-order kinetics | Freundlich | water | [35] |
pine needle | 700 | — | 390.52 | 93.67 | 105 | 75.04% | trichloroethylene (TCE) (insecticide) | the pore-filling mechanism | — | Temkin Dubinin-Radushkevich | water | [36] |
soybeans | 450 | 9.21 | 17.5 | 57.52 | 1.5 | — | atrazine (herbicide) | physical adsorption, chemical adsorption | — | Freundlich | water | [37] |
azadirachta indica | 300 | — | 30.43 | 42.89 | 79.40 | 80% | bentazone (herbicide) | H-bond, electrostatic interaction and ion exchange | pseudo-second order | Freundlich | water | [38] |
pig manure stock | 700 | 8.7 | 218.1 | 81.83 | 2.872 | 71.80% | carbaryl (insecticide) | the pore-filling mechanism, π-π electron interaction | — | Freundlich | water | [39] |
Herb Dangshen and Danggui | 750 | 9.75 | 85.3 | 79.09 | 3.09 | 91% | metolachlor (herbicide) | the pore-filling mechanism, hydrophobic effect and π-bond | — | Freundlich | water | [40] |
greenwaste | 450 | — | 7.56 ± 0.29 | 71.18 | 1.066 | 95% | simazine (herbicide) | — | — | Freundlich | water | [41] |
switchgrass | 425 | — | 1.1 | — | 50 | 90% | MCPA (herbicide) | H-bond, van der Waals and π-π interaction | pseudo-second order | Redlich-Peterson | water | [42] |
walnut shells | 700 | — | 358.67 | 82.53 | 44.67 | 87.89% | metolachlor (MET) (insecticide) | the pore-filling mechanism, H-bond, and π-π electron donor–acceptor | pseudo-second order | Langmuir | water | [43] |
crofton weed | 500 | 10.53 | 382.21 | 86.48 | — | 90% (pH = 2) | flubendiamide (insecticide) | π-π interaction | The first-order kinetics | Freundlich | water | [44] |
Raw Material | Pyrolysis Temperature °C | pH | Modification Method | Specific Surface Area (m2·g−1) | Otal Pore Volum (cm3·g−1) | Maximum Adsorption Capacity (mg·g−1) | Maximum Removal Rate% | Contaminant | Adsorption Mechanism | Adsorption Kinetics | Adsorption Isotherm | Active Matrix | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
walnut shell | 700 | 7 | illiteFeCl3 | 232.77 | 0.29 | 126.72 | 95% | metolachlor (herbicide) | π-π electron interaction and chemical reaction | pseudo-second order | Langmuir | soil | [49] |
oil palm empty fruit bunch | 300 | 8.14 | chitosan | 1.19 | — | increase by 75 % | — | imazapic (herbicide) | — | — | Langmuir | soil | [50] |
pinus radiata shavings | 450 | — | Al-oxide | 219 | 0.0681 | 146.054 | 56.72% | isoproturon (herbicide) | — | — | Freundlich | soil | [51] |
Moringa oleifera Lam. seed husk | 300 | — | nitric acid | 5.77 | 0.0409 | 10.321 | 33.03% | atrazine (herbicide) | electrostatic interactions and hydrogen bonds | pseudo-second order | Langmuir | water | [52] |
phragmite powders | 500 | — | nano CuFe2O4 | 189.6 | 0.12 | 269.4 | 98.9% | glyphosate (herbicide) | physisorption, chemisorption, electrostatic interactions and coordination bonding | pseudo-second order | Freundlich | water | [53] |
rice husk | 700 | 10.12 | steam activated | 251.47 | 0.083 | 160.77 | 16.08% | carbofuran (insecticide) | electrostatic action, physisorption and chemisorption | — | Freundlich | water | [54] |
corn stalk | 600 | 10 | Ni(NO3)2 FeCl3 ZnCl2 | 14.26 | — | 143.15 | 71.58% | atrazine (herbicide) | chemisorption, π-π bond interaction | pseudo-second order | Freundlich | water | [55] |
corn straw | 300 | — | H3PO4 | 638.1 | — | 79.6 | 96% | atrazine (herbicide) | Van der Waals’ forces, H-bond, electrostatic interaction and porefilling | pseudo-second order | Freundlich | water | [56] |
tangerine seed | 600 | 7 | H3PO4 | 659.62 | 0.6203 | 93.46 | 87.52% | carbamate pesticides (insecticide) | Van der Waals’ forces, H-bond | Pseudo-second order | Langmuir | water | [57] |
peach stones | 500 | 5.2 | orthophosp-horic acid | 6.179 | 0.006 | 39.37 | 99% | imidacloprid (insecticide) | H-bond pi–pi physical interaction | pseudo-second order | Langmuir | water | [58] |
corn straw | 500 | 7 | KOH | 59.23 | 0.0231 | 2.84 | 88% | atrazine (herbicide) | electrostatic interaction | pseudo-second order | Langmuir | water | [59] |
rice straw | 600 | 6.93 | H3PO4 | 192.3 | 0.161 | 0.05 | 89.5% | imidacloprid (insecticide) | — | Elovich | Freundlich | water | [60] |
corn stalk | 600 | 2.38 ±0.01 | K2CO3 H2SO4 HNO3 | 691.28 | 0.943 | 22.84 | 38.07% | 2,4-dichlorophenoxyacetic acid (2,4-D) (herbicide) | π-π interaction, chemical adsorption and H-bond | — | Langmuir | water | [61] |
sludge | 400 | — | FeCl3 | — | — | 1.42 | 92.50% | dicamba (herbicide) | chemical adsorption | pseudo-second order | — | water | [62] |
cotton straw cellulose | 110 | — | the methacrylic acid | 27.77 | — | — | 95% | Sulfonylurea herbicides (SUHs) (herbicide) | π-π interaction and H-bond | pseudo-second order | Freundlich | water | [63] |
tea waste | 500 | 7 ± 0.2 | Chitosan AgNO3 | — | — | 5.643 | 93% | imidacloprid (insecticide) | chemical adsorption | pseudo-second order Elovich | — | water | [64] |
Merremia vitifolia plant | 105 | — | ultrasound H2SO4 | 172.8 | — | 66.93 | 94% | 2,4-D (herbicide) | electrostatic interaction, physical nature | pseudo-first order | Langmuir | water | [65] |
coconut fiber | 600 | — | HCl | 402.4 | 0.151 | 90.9 | 90% | dichlorvos (insecticide) | the pore filling, the hydrophobic interaction, H-bond | pseudo-second order | Langmuir | water | [66] |
date stones | 300 | — | HCl | 421 | — | 8.6 | 93% | aldrin (insecticide) | intra-particle diffusion, external mass transfer and physical adsorption | pseudo-second order | Freundlich | water | [67] |
corn stalk | 800 | — | 2-methylimidazole Co(NO3)2·6H2O | 280 | — | 189 | 97% | imidacloprid (insecticide) | the pore filling, H-bond and π-π interaction | pseudo-second order | Freundlich | water | [68] |
Biochar Type | Pyrolysis Temperature | Contaminant (Pesticide) | Application Effects | Active Matrix | Reference |
---|---|---|---|---|---|
rice straw | field under natural conditions | clomazone (herbicide) | Rice straw residues burnt in an open field considerably reduced clomazone’s herbicidal activity against barnyard grass. | soil | [111] |
wheat straw | 450 °C | atrazine (herbicide) trifluralin (herbicide) | In comparison to unamended soil, a 3.5-fold increase in atrazine application rate was necessary. The herbicides’ effectiveness to suppress weeds remained insufficient even when application dosages were four times greater than the authorized rates. | soil | [112] |
corn straw | 500 °C | 1,3-dichloropropene (fumigant) | To obtain complete nematicidal activity, the dosage of 1,3-dichloropropene fumigant has to be quadrupled at a biochar amendment level of 26 t ha-1 in soil. | soil | [113] |
wheat straw | natural conditions | diuron (herbicide) | Diuron herbicide effectiveness was greatly reduced in char-amended soil. | soil | [114] |
Eucalyptus spp. wood chips | 850 °C | chlorpyrifos (insecticide) carbofuran (insecticide) | Pesticide absorption by plants dropped significantly as soil biochar concentration increased. It slows the rate of pesticide microbial breakdown, hence extending the duration of pesticide residues in the environment. | soil | [115] |
red gum wood chip | 850 °C | diuron (herbicide) | The soil treated with biochar produced by the pyrolysis of red gum chips boosted diuron sorption and increased the nonlinearity of the adsorption isotherm and the degree of sorption-desorption hysteresis. Small quantities of charcoal formed at high temperatures (e.g., the inside of wood logs during a fire) can have a significant influence on the release behavior of organic compounds in soil. | soil | [116] |
sugarcane top | 500 °C | atrazine (herbicide) | Biochar generated from organic matter slowed atrazine breakdown in soils to varied degrees depending on the rate of input. | soil | [117] |
rice straw | 550 °C | bispyribac-sodium (herbicide) | Increased microbial activity and bacterial population in soil following amendment with URS and biochars revealed the significance of amendment in preserving soil quality and function by increasing microbial parameters. | soil | [118] |
wheat straw | 700 °C | tebuconazole (bactericide) | Not only did the biochar-immobilized WZ-2 speed tebuconazole breakdown, but it also restored native soil microbial enzyme activity and community composition. | soil | [119] |
rice hull | 600 °C | fomesafen (herbicide) | In agricultural soils, biochar additions likely change the fate of herbicides by reducing their transit via improved adsorption. | soil | [120] |
corn stalk | 600 °C | atrazine (herbicide) | bFeMBC protected the function and metabolic activity of beneficial bacteria susceptible to atrazine contamination during the early stage of pollution, hence preserving their relative abundance. | soil | [121] |
walnut shell | 900 °C | linuron diuron monuron (herbicide) | Pesticides entrapped in biochar have a restricted uptake by organisms, and as a result, their toxicity decreases, resulting in low pest control efficacy of pesticides in biochar-amended soils. | soil | [122] |
Eucalyptus wood | 800 °C | metolachlor (herbicide) sulfentrazone (herbicide) | It may have an effect on pest control and necessitates a greater pesticide application rate, directly increasing production costs and maybe introducing a new risk to the environment. | soil | [123] |
magnolia tree woodchip | 500 °C | thiacloprid (insecticide) | While biochar decreases thiacloprid’s bioavailability in soil, the delayed degradation and increased earthworm concentration in old biochar-amended soil signal that the environmental hazards associated with biochar application to earthworms persist. | soil | [124] |
crofton weed | 500 °C | acetochlor (herbicide) | These findings show that ageing biochar in soil for an extended length of time may enhance the pesticide hazard to crops. | soil | [125] |
oil palm empty fruit bunches | 300 °C | imidazolinone (herbicide) | The developed EFB and RH biochars have the potential to be employed in the soil as an eco-friendly and cost-effective biosorbent to mitigate the dangers of imidazolinone herbicides and safeguard the environment from their contamination. | soil | [126] |
eucalyptus origin | 400-500 °C | diuron (herbicide) | Due to the increased diuron sorption capacity and decreased diuron desorption capacity of sandy soils following biochar application, the danger of diuron leaching and pollution of subsurface water may be reduced. | soil | [127] |
rice husk | 550 °C | fenoxaprop-ethyl (herbicide) | The use of biochar resulted in a decrease in the toxicity of earthworms. Biochar was found to have a beneficial effect on residues and toxicity. Biochar has a high potential for soil remediation and may be a positive agricultural approach for the soil environment. | soil | [128] |
wheat straw | 500 °C | fomesafen (herbicide) | Biochar made from wheat straw can help to minimize the danger of fomesafen contamination in soil and improve the soil microbial ecology. | soil | [129] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.; Mao, L.; Zhang, H.; Wang, P.; Wu, C.; Xie, J.; Yu, B.; Sial, M.U.; Zhang, L.; Zhang, Y.; et al. Modified Biochar as a More Promising Amendment Agent for Remediation of Pesticide-Contaminated Soils: Modification Methods, Mechanisms, Applications, and Future Perspectives. Appl. Sci. 2022, 12, 11544. https://doi.org/10.3390/app122211544
Pan L, Mao L, Zhang H, Wang P, Wu C, Xie J, Yu B, Sial MU, Zhang L, Zhang Y, et al. Modified Biochar as a More Promising Amendment Agent for Remediation of Pesticide-Contaminated Soils: Modification Methods, Mechanisms, Applications, and Future Perspectives. Applied Sciences. 2022; 12(22):11544. https://doi.org/10.3390/app122211544
Chicago/Turabian StylePan, Lixuan, Liangang Mao, Haonan Zhang, Pingping Wang, Chi Wu, Jun Xie, Bochi Yu, Muhammad Umair Sial, Lan Zhang, Yanning Zhang, and et al. 2022. "Modified Biochar as a More Promising Amendment Agent for Remediation of Pesticide-Contaminated Soils: Modification Methods, Mechanisms, Applications, and Future Perspectives" Applied Sciences 12, no. 22: 11544. https://doi.org/10.3390/app122211544
APA StylePan, L., Mao, L., Zhang, H., Wang, P., Wu, C., Xie, J., Yu, B., Sial, M. U., Zhang, L., Zhang, Y., Zhu, L., Jiang, H., Zheng, Y., & Liu, X. (2022). Modified Biochar as a More Promising Amendment Agent for Remediation of Pesticide-Contaminated Soils: Modification Methods, Mechanisms, Applications, and Future Perspectives. Applied Sciences, 12(22), 11544. https://doi.org/10.3390/app122211544