Double-Peaked Mid-Infrared Generation Based on Intracavity Difference Frequency Generation
Abstract
:1. Introduction
2. Experimental Setup and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, G.; Zhang, Z.; Zhang, X.; Wu, Y.; Ma, K.; Jiao, Y.; Zhao, H.; Song, Y.; Liu, Y.; Zhai, S. Performance of a Mid-Infrared Sensor for Simultaneous Trace Detection of Atmospheric CO and N2O Based on PSO-KELM. Front. Chem. 2022, 10, 930766. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Kulkarni, P.; Zheng, L.; Ashley, K. Aerosol Analysis Using Quantum Cascade Laser Infrared Spectroscopy: Application to Crystalline Silica Measurement. J. Aerosol Sci. 2020, 150, 105643. [Google Scholar] [CrossRef]
- Akhgar, C.K.; Ebner, J.; Alcaraz, M.R.; Kopp, J.; Goicoechea, H.; Spadiut, O.; Schwaighofer, A.; Lendl, B. Application of Quantum Cascade Laser-Infrared Spectroscopy and Chemometrics for In-Line Discrimination of Coeluting Proteins from Preparative Size Exclusion Chromatography. Anal. Chem. 2022, 94, 11192–11200. [Google Scholar] [CrossRef]
- Lamard, L.; Balslev-Harder, D.; Peremans, A.; Petersen, J.C.; Lassen, M. Versatile Photoacoustic Spectrometer Based on a Mid-Infrared Pulsed Optical Parametric Oscillator. Appl. Opt. 2019, 58, 250. [Google Scholar] [CrossRef] [PubMed]
- Fjodorow, P.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Schulz, C.; Leonov, S.O.; Skasyrsky, Y.K. Room-Temperature Fe:ZnSe Laser Tunable in the Spectral Range of 3.7–5.3 μm Applied for Intracavity Absorption Spectroscopy of CO2 Isotopes, CO and N2O. Opt. Express 2021, 29, 12033. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Li, B.; Zhou, X.; Qin, Z.; Xie, G. Laser Deicing for High-Voltage Composite Insulator by High-Power Mid-Infrared Fiber Laser. Opt. Eng. 2021, 61, 021005. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, H.; Li, M.; Lin, W.; Shen, Z.; Zhang, J.; Fan, Z. Laser Technology for Direct IR Countermeasure System. Infrared Laser Eng. 2018, 47, 1105009. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Liu, J.; Song, Y.; Zhang, H. Recent Developments in Mid-Infrared Fiber Lasers: Status and Challenges. Opt. Laser Technol. 2020, 132, 106497. [Google Scholar] [CrossRef]
- Xu, M.; Yu, F.; Hassan, M.R.A.; Knight, J.C. Continuous-Wave Mid-Infrared Gas Fiber Lasers. IEEE J. Select. Topics Quantum Electron. 2018, 24, 0902308. [Google Scholar] [CrossRef]
- Täschler, P.; Bertrand, M.; Schneider, B.; Singleton, M.; Jouy, P.; Kapsalidis, F.; Beck, M.; Faist, J. Femtosecond Pulses from a Mid-Infrared Quantum Cascade Laser. Nat. Photon. 2021, 15, 919–924. [Google Scholar] [CrossRef]
- Gu, C.; Zuo, Z.; Luo, D.; Peng, D.; Di, Y.; Zou, X.; Yang, L.; Li, W. High-Repetition-Rate Femtosecond Mid-Infrared Pulses Generated by Nonlinear Optical Modulation of Continuous-Wave QCLs and ICLs. Opt. Lett. 2019, 44, 5848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, H.; Li, W.; Dutta, N.K. Mid-Infrared Supercontinuum Generation in Tapered As2S3 Chalcogenide Planar Waveguide. J. Mod. Opt. 2016, 63, 1965–1971. [Google Scholar] [CrossRef]
- O’Donnell, C.F.; Kumar, S.C.; Paoletta, T.; Ebrahim-Zadeh, M. Widely Tunable Femtosecond Soliton Generation in a Fiber-Feedback Optical Parametric Oscillator. Optica 2020, 7, 426. [Google Scholar] [CrossRef]
- Yang, K.; Li, J.; Gao, Y.; Wei, D.; Yao, B.; Wang, J.; Cheng, H.; Tang, J.; Mi, S.; Duan, X.; et al. Watt-Level Long-Wave Infrared CdSe Pulsed-Nanosecond Optical Parametric Oscillator. Opt. Laser Technol. 2022, 145, 107491. [Google Scholar] [CrossRef]
- He, Y.; Ji, Y.; Wan, H.; Yu, D.; Zhang, K.; Pan, Q.; Sun, J.; Chen, Y.; Chen, F. High-Power Mid-Infrared Pulse MgO:PPLN Optical Parametric Oscillator Pumped by Linearly Polarized Yb-Doped All-Fiber Laser. Opt. Laser Technol. 2022, 146, 107545. [Google Scholar] [CrossRef]
- Ulvila, V.; Vainio, M. Diode-Laser-Pumped Continuous-Wave Optical Parametric Oscillator with a Large Mid-Infrared Tuning Range. Opt. Commun. 2019, 439, 99–102. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, X.; Ning, J.; Lv, X.; Zhao, G.; Xie, Z.; Zhu, S. A High-Power Continuous-Wave Mid-Infrared Optical Parametric Oscillator Module. Appl. Sci. 2017, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Dong, J.; Zeng, X.; Zhou, J.; Cui, S.; Qi, W.; Lin, Z.; Jiang, H.; Feng, Y. 130 W Continuous-Wave Supercontinuum Generation within a Random Raman Fiber Laser. Opt. Fiber Technol. 2022, 68, 102825. [Google Scholar] [CrossRef]
- Ren, T.; Wu, C.; Yu, Y.; Dai, T.; Chen, F.; Pan, Q. Development Progress of 3–5 µm Mid-Infrared Lasers: OPO, Solid-State and Fiber Laser. Appl. Sci. 2021, 11, 11451. [Google Scholar] [CrossRef]
- Jindal, M.K.; Veerabuthiran, S.; Mainuddin; Razdan, A.K. Integrated Path DIAL for Standoff Detection of Acetone Vapors under Topographic Target Condition. Opt. Laser Technol. 2021, 143, 107299. [Google Scholar] [CrossRef]
- Veerabuthiran, S.; Razdan, A.K.; Jindal, M.K.; Prasad, G. Open Field Testing of Mid IR DIAL for Remote Detection of Thiodiglycol Vapor Plumes in the Topographic Target Configuration. Sens. Actuators B Chem. 2019, 298, 126833. [Google Scholar] [CrossRef]
- Romanovskii, O.A.; Sadovnikov, S.A.; Kharchenko, O.V.; Yakovlev, S.V. Development of Near/Mid IR Differential Absorption OPO Lidar System for Sensing of Atmospheric Gases. Opt. Laser Technol. 2019, 116, 43–47. [Google Scholar] [CrossRef]
- Gong, Y.; Bu, L.; Yang, B.; Mustafa, F. High Repetition Rate Mid-Infrared Differential Absorption Lidar for Atmospheric Pollution Detection. Sensors 2020, 20, 2211. [Google Scholar] [CrossRef] [Green Version]
- Van Nguyen, D.; Cadatal-Raduban, M.; Van Pham, D.; Nguyen, T.X.; Van Vu, T.; Pham, M.H. Tunable Dual Wavelength and Narrow Linewidth Laser Using a Single Solid-State Gain Medium in a Double Littman Resonator. Opt. Commun. 2021, 496, 127131. [Google Scholar] [CrossRef]
- Mariani, Z.; Stanton, N.; Whiteway, J.; Lehtinen, R. Toronto Water Vapor Lidar Inter-Comparison Campaign. Remote Sens. 2020, 12, 3165. [Google Scholar] [CrossRef]
- Pencheva, V.; Penchev, S.; Dreischuh, T. Development of Lidar for Remote Methane Sensing Using an Optimal Configuration of High-Power Laser Diodes. J. Phys. Conf. Ser. 2022, 2240, 012033. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Chen, Y.; Li, X.; Jiang, Y.; Feng, Z.; Deng, B.; Chen, C.; Zhou, D. Simultaneous Detection of Multiple Gaseous Pollutants Using Multi-Wavelength Differential Absorption LIDAR. Opt. Commun. 2022, 518, 128359. [Google Scholar] [CrossRef]
- Veerabuthiran, S.; Razdan, A.K.; Jindal, M.K.; Sharma, R.K.; Sagar, V. Development of 3.0–3.45µm OPO Laser Based Range Resolved and Hard-Target Differential Absorption Lidar for Sensing of Atmospheric Methane. Opt. Laser Technol. 2015, 73, 1–5. [Google Scholar] [CrossRef]
- Romanovskii, O.A.; Sadovnikov, S.A.; Kharchenko, O.V.; Yakovlev, S.V. Remote Analysis of Methane Concentration in the Atmosphere with an IR Lidar System in the 3300–3430 μm Spectral Range. Atmos. Ocean Opt. 2020, 33, 188–194. [Google Scholar] [CrossRef]
- Romanovskii, O.A.; Sadovnikov, S.A.; Kharchenko, O.V.; Shumsky, V.K.; Yakovlev, S.V. Optical Parametric Oscillators in Lidar Sounding of Trace Atmospheric Gases in the 3–4 μm Spectral Range. Opt. Mem. Neural Netw. 2016, 25, 88–94. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, T.; Kang, P.; Huang, J. Compact Dual-Crystal Tm, Ho:YLF Laser with Balanced Orthogonal Polarization Output Power. Opt. Express 2021, 29, 25762. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Shi, J.; Liu, P.; Zhang, Z. Broadband Mid-Infrared Coherent Light Source from Fiber-Laser-Pumped Difference Frequency Generators Based on Cascaded Crystals. Opt. Express 2020, 28, 14310. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Xu, L.; Liang, S.; Shardlow, P.C.; Shepherd, D.P.; Alam, S.; Richardson, D.J. High-Average-Power Picosecond Mid-Infrared OP-GaAs OPO. Opt. Express 2020, 28, 5741. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.P.; Camenzind, S.L.; Pupeikis, J.; Willenberg, B.; Phillips, C.R.; Keller, U. Dual-Comb Optical Parametric Oscillator in the Mid-Infrared Based on a Single Free-Running Cavity. Opt. Express 2022, 30, 19904. [Google Scholar] [CrossRef]
- Boutabba, N.; Grira, S.; Eleuch, H. Analysis of a Q-Deformed Hyperbolic Short Laser Pulse in a Multi-Level Atomic System. Sci. Rep. 2022, 12, 9308. [Google Scholar] [CrossRef] [PubMed]
- Boutabba, N.; Grira, S.; Eleuch, H. Atomic Population Inversion and Absorption Dispersion-Spectra Driven by Modified Double-Exponential Quotient Pulses in a Three-Level Atom. Results Phys. 2021, 24, 104108. [Google Scholar] [CrossRef]
- Gasmi Cherifi, T. New All-Solid-State KTA-Based DIAL for Tropospheric Methane Monitoring. EPJ Web Conf. 2020, 237, 03017. [Google Scholar] [CrossRef]
- Romanovskii, O.A.; Sadovnikov, S.A.; Kharchenko, O.V.; Yakovlev, S.V. Opo Lidar Sounding of Trace Atmospheric Gases in the 3–4 Μm Spectral Range. EPJ Web Conf. 2018, 176, 05016. [Google Scholar] [CrossRef]
- Ning, C.; Feng, X.; Heng, J.; Zhang, Z. Supercontinuum Generation from a Quasi-Stationary Doubly Resonant Optical Parametric Oscillator. Opt. Lett. 2021, 46, 4280. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, X.; Wang, M.; Wang, Z. Suppression of Stimulated Brillouin Scattering in Optical Fibers by Tilted Fiber Bragg Gratings. Opt. Lett. 2020, 45, 4802. [Google Scholar] [CrossRef]
- Feng, J.; Cheng, X.; Li, X.; Wang, P.; Hua, W.; Han, K. Highly Efficient Mid-Infrared Generation from Low-Power Single-Frequency Fiber Laser Using Phase-Matched Intracavity Difference Frequency Mixing. Appl. Sci. 2020, 10, 7454. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, P.; Li, X.; Zhou, P.; Xiao, H.; Liu, Z.; Han, K. Low Threshold, Dual-Wavelength, Mid-Infrared Optical Parametric Oscillator. IEEE Photonics J. 2019, 11, 7100307. [Google Scholar] [CrossRef]
- Yanagawa, T.; Kanbara, H.; Tadanaga, O.; Asobe, M.; Suzuki, H.; Yumoto, J. Broadband Difference Frequency Generation around Phase-Match Singularity. Appl. Phys. Lett. 2005, 86, 161106. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Li, X.; Wang, P.; Wang, M.; Hua, W.; Han, K.; Wang, Z. Double-Peaked Mid-Infrared Generation Based on Intracavity Difference Frequency Generation. Appl. Sci. 2022, 12, 11644. https://doi.org/10.3390/app122211644
Wang K, Li X, Wang P, Wang M, Hua W, Han K, Wang Z. Double-Peaked Mid-Infrared Generation Based on Intracavity Difference Frequency Generation. Applied Sciences. 2022; 12(22):11644. https://doi.org/10.3390/app122211644
Chicago/Turabian StyleWang, Kaifeng, Xiao Li, Peng Wang, Meng Wang, Weihong Hua, Kai Han, and Zefeng Wang. 2022. "Double-Peaked Mid-Infrared Generation Based on Intracavity Difference Frequency Generation" Applied Sciences 12, no. 22: 11644. https://doi.org/10.3390/app122211644
APA StyleWang, K., Li, X., Wang, P., Wang, M., Hua, W., Han, K., & Wang, Z. (2022). Double-Peaked Mid-Infrared Generation Based on Intracavity Difference Frequency Generation. Applied Sciences, 12(22), 11644. https://doi.org/10.3390/app122211644