Research on Control Strategy of a Magnetorheological Fluid Brake Based on an Enhanced Gray Wolf Optimization Algorithm
Abstract
:1. Introduction
2. Design and Transfer Function Acquisition of MRB
2.1. Structure of MRB
2.2. Magnetic Circuit Simulation of MRB
2.3. MRB System
2.4. Transfer Function of MRB System
3. Torque Control Strategy for MRB
3.1. Gray Wolf Optimization Algorithm
3.2. Enhanced Gray Wolf Optimization Algorithm (EGWOA)
Algorithm 1 Pseudo-code of EGWOA |
Initialize the population of grey wolves Find the initial negative value of parameters Calculate the fitness value of grey wolves Assign the value to xα; xβ; xδ While (t < Max Maximum number of iterations) For each search wolf Calculate the value of D1; D2; D3; Dαβ; Dαδ; Dβδ Update the positions of search wolves End for Update parameters Calculate the fitness value of each wolf Update xα; xβ; xδ t = t + 1 End while Return xα |
3.3. Tuning the PID Parameters Based on EGWOA
4. Experimental Results and Analysis
5. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Xie, L.; Choi, Y.-T.; Liao, C.-R.; Zeng, Z.; Wereley, N.M. Synthesis and rheological characteristics of high viscosity linear polysiloxane carrier fluid-based magnetorheological fluids. Smart Mater. Struct. 2022, 31, 015041. [Google Scholar] [CrossRef]
- Lu, H.; Hua, D.; Wang, B.; Yang, C.; Hnydiuk-Stefan, A.; Królczyk, G.; Liu, X.; Li, Z. The Roles of Magnetorheological Fluid in Modern Precision Machining Field: A Review. Front. Mater. 2021, 8, 678882. [Google Scholar] [CrossRef]
- Hua, D.; Liu, X.; Lu, H.; Sun, S.; Sotelo, M.A.; Li, Z.; Li, W. Design, Fabrication, and Testing of a Novel Ferrofluid Soft Capsule Robot. IEEE/ASME Trans. Mechatron. 2021, 27, 1403–1413. [Google Scholar] [CrossRef]
- Hua, D.; Liu, X.; Li, Z.; Fracz, P.; Hnydiuk-Stefan, A.; Li, Z. A Review on Structural Configurations of Magnetorheological Fluid Based Devices Reported in 2018–2020. Front. Mater. 2021, 8, 640102. [Google Scholar] [CrossRef]
- Hua, D.; Liu, X.; Li, W.; Krolczyk, G.; Malekian, R.; Li, Z. A Novel Ferrofluid Rolling Robot: Design, Manufacturing, and Experimental Analysis. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Maas, J.; Güth, D. Experimental investigation of the transient behavior of MR fluids. In Proceedings of the ASME Conference on Smart Materials Adaptive Structures and Intelligent Systems, Scottsdale, AZ, USA, 18–21 September 2011; pp. 229–238. [Google Scholar]
- Wang, H.; Bi, C.; Zhang, Y.; Ji, A.; Qiu, P. Transient behavior of compressed magnetorheological brake excited by step currents. Sci. Rep. 2021, 11, 12193. [Google Scholar] [CrossRef]
- Erol, O.; Gonenc, B.; Senkal, D.; Alkan, S.; Gurocak, H. Magnetic induction control with embedded sensor for elimination of hysteresis in magnetorheological brakes. J. Intell. Mater. Syst. Struct. 2012, 23, 427–440. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Choi, S.B. A new method for speed control of a DC motor using magnetorheological clutch. In SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring; International Society for Optics and Photonics: Bellingham, WA, USA, 2014. [Google Scholar]
- Wang, N.; Wang, S.; Peng, Z.; Song, W.; Xue, X.; Choi, S.-B. Braking control performances of a disk-type magneto-rheological brake via hardware-in-the-loop simulation. J. Intell. Mater. Syst. Struct. 2018, 29, 3937–3948. [Google Scholar] [CrossRef]
- Okui, M.; Sugibayashi, S.; Suzuki, R.; Nakamura, T. Path restriction and speed regulation via force feedback-type welding teaching device using magnetorheological brakes. Smart Mater. Struct. 2020, 29, 104001. [Google Scholar] [CrossRef]
- Shamieh, H.; Sedaghati, R. Development, optimization, and control of a novel magnetorheological brake with no zero-field viscous torque for automotive applications. J. Intell. Mater. Syst. Struct. 2018, 29, 3199–3213. [Google Scholar] [CrossRef]
- Nordin, N.H.D.; Muthalif, A.G.A.; Razali, M.K.M.; Ali, A.; Salem, A.M. Development and Implementation of Energy-Efficient Magnetorheological Fluid Bypass Damper for Prosthetics Limbs Using a Fuzzy-Logic Controller. IEEE Access 2022, 10, 18978–18987. [Google Scholar] [CrossRef]
- Hou, S.J.; Shi, W.K.; Yang, M.; Li, H.S. Dynamic Performance Experiment and Fuzzy PID Control Method Study on MRF Engine Mount. Adv. Mater. Res. 2012, 542–543, 675–678. [Google Scholar] [CrossRef]
- Seung-Woo, C.; Kang, S.R.; Yong-Hoon, H.; Choi, S.B.; Lee, Y.-S.; Han, M.-S. Design and control of a parallel mechanism haptic master for robot surgery using magneto-rheological clutches and brakes. J. Intell. Mater. Syst. Struct. 2018, 29, 3829–3844. [Google Scholar]
- Wang, Z.; Choi, S.-B. A fuzzy sliding mode control of anti-lock system featured by magnetorheological brakes: Performance evaluation via the hardware-in-the-loop simulation. J. Intell. Mater. Syst. Struct. 2020, 32, 1580–1590. [Google Scholar] [CrossRef]
- Shiao, Y.; Nguyen, Q.-A.; Lin, J.-W. A Study of Novel Hybrid Antilock Braking System Employing Magnetorheological Brake. Adv. Mech. Eng. 2014, 6, 617584. [Google Scholar] [CrossRef]
- Russo, R.; Terzo, M. Design of an adaptive control for a magnetorheological fluid brake with model parameters depending on temperature and speed. Smart Mater. Struct. 2011, 20, 115003. [Google Scholar] [CrossRef]
- Diep, B.T.; Nguyen, Q.H.; Le, T.D. Design and control of 2-DoF joystick using MR-fluid rotary actuator. J. Intell. Mater. Syst. Struct. 2021, 33, 1562–1573. [Google Scholar] [CrossRef]
- Sohn, J.W.; Gang, H.G.; Choi, S.-B. An experimental study on torque characteristics of magnetorheological brake with modified magnetic core shape. Adv. Mech. Eng. 2018, 10, 168781401775222. [Google Scholar] [CrossRef]
- Choi, S.B. Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake. Trans. Korean Soc. Noise Vib. Eng. 2009, 19, 516–522. [Google Scholar]
- Liu, X.; Shi, Y.; Xu, J. Parameters Tuning Approach for Proportion Integration Differentiation Controller of Magnetorheological Fluids Brake Based on Improved Fruit Fly Optimization Algorithm. Symmetry 2017, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Hua, D.; Liu, X.; Gupta, M.K.; Fracz, P.; Li, Z. A new combined braking approach of magnetorheological fluids brake based on fuzzy controller and improved PID controller. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 6644–6658. [Google Scholar] [CrossRef]
- Wang, N.; Liu, X.; Królczyk, G.; Li, Z.; Li, W. Effect of temperature on the transmission characteristics of high-torque magnetorheological brakes. Smart Mater. Struct. 2019, 28, 057002. [Google Scholar] [CrossRef]
- Ningning, W. Research on Power Transfer Mechanism of Magnetorheological Fluids Transmission System; China University of Mining of Technology: Beijing, China, 2021. [Google Scholar]
- Zhang, Q.; Ren, Y.; Wang, L. Liu, X.; Hu, Y. Design and Simulation for Disk type Magnetorheological Fluid Transmission Device. J. Mech. Transm. 2016, 40, 76–78. [Google Scholar]
- Liu, X.; Wang, N.; Wang, K.; Chen, S.; Sun, S.; Li, Z.; Li, W. A new AI-surrogate model for dynamics analysis of a magnetorheological damper in the semi-active seat suspension. Smart Mater. Struct. 2020, 29, 037001. [Google Scholar] [CrossRef]
- Hatta, N.M.; Zain, A.M.; Sallehuddin, R.; Shayfull, Z.; Yusoff, Y. Recent studies on optimisation method of Grey Wolf Optimiser (GWO): A review (2014–2017). Artif. Intell. Rev. 2018, 52, 2651–2683. [Google Scholar] [CrossRef]
Magnetic Particles | Density (g/mL) | Temperature (°C) | Zero Field Viscosity/mPas (1000 S−1, 0A) | Shear Stress/kPa (10 S−1, 4A) | Yield Stress/ kPa (4A) |
---|---|---|---|---|---|
Carbonyl iron powder | 2.9~3.1 | 40 | 350~450 | ≥70 | ≥45 |
Radial Dimension | Axial Dimension | Average Maximum Magnetic Field | Current Range | Brake Torque | Weight | Inductance of Coil | Wire Diameter |
---|---|---|---|---|---|---|---|
300 mm | 110 mm | 0.6 T | 0–2 A | 4~30 N·m | 24 kg | 1.5 H | 0.96 mm |
Type | Input Channel | Accuracy | Input Range | Sampling Rate | Manufacturer |
---|---|---|---|---|---|
PCI8735 | Double 16 | 0.1% | ±5 V | ≤500 KHz | Beijing Art Science and Technology Development Co., Ltd. |
Type | Torque Signal | Torque Range | Speed Signal | Speed Range | Accuracy | Manufacturer |
---|---|---|---|---|---|---|
HCNJ-101 | 5~15 KHz | ±500 N·m | 60 pulse/roll | 0~3000 r/min | <±0.5% | Beijing haibohua Technology Co., Ltd. |
Fitness Value | Beale | Booth | Dixon–Price | Levy | Rosen Brock | Shubert |
---|---|---|---|---|---|---|
Theoretical value | 0 | 0 | 0 | 0 | 0 | −186.7309 |
GWO | 2.596 × 10−6 | 7.459 × 10−6 | 1.636 × 10−6 | 3.644 × 10−6 | 0.0839 | −186.7291 |
IGWO | 4.308 × 10−8 | 6.112 × 10−7 | 2.701 × 10−7 | 1.213 × 10−7 | 1.109 × 10−4 | −186.7299 |
Controller | σ (%) | tr (s) | ts (s) |
---|---|---|---|
Self-tuning PID | 3.9 | 0.026 | 0.081 |
GWO PID | 0 | 0.062 | 0.123 |
EGWO PID | 0 | 0.031 | 0.057 |
Type | Static Potential Difference Rate (%) | Fluctuation Rate (%) | Response Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | 0 ~ T1 | 0 ~ T2 | 0 ~ T3 | |
PID | 8.33 | 6.34 | 9.85 | 8.42 | 6.4 | 9.91 | 2.2 | 2.1 | 2.2 |
GWO PID | 4.47 | 4.08 | 2.85 | 4.49 | 4.18 | 2.89 | 1 | 1.2 | 1.3 |
EGWO PID | 2.2 | 1.17 | 1.07 | 2.2 | 1.17 | 1.07 | 0.5 | 0.6 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Lu, H.; Hua, D.; Liu, X.; Wang, L.; Li, Q. Research on Control Strategy of a Magnetorheological Fluid Brake Based on an Enhanced Gray Wolf Optimization Algorithm. Appl. Sci. 2022, 12, 12617. https://doi.org/10.3390/app122412617
Dai L, Lu H, Hua D, Liu X, Wang L, Li Q. Research on Control Strategy of a Magnetorheological Fluid Brake Based on an Enhanced Gray Wolf Optimization Algorithm. Applied Sciences. 2022; 12(24):12617. https://doi.org/10.3390/app122412617
Chicago/Turabian StyleDai, Lili, He Lu, Dezheng Hua, Xinhua Liu, Lifeng Wang, and Qiang Li. 2022. "Research on Control Strategy of a Magnetorheological Fluid Brake Based on an Enhanced Gray Wolf Optimization Algorithm" Applied Sciences 12, no. 24: 12617. https://doi.org/10.3390/app122412617
APA StyleDai, L., Lu, H., Hua, D., Liu, X., Wang, L., & Li, Q. (2022). Research on Control Strategy of a Magnetorheological Fluid Brake Based on an Enhanced Gray Wolf Optimization Algorithm. Applied Sciences, 12(24), 12617. https://doi.org/10.3390/app122412617