The Influence of Thiol Addition on Selenium Stability and Antioxidant Activity of Beetroot Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Samples
2.3. Chromatographic Analysis
2.4. Antioxidant Activity by DPPH Assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Total Se Content and Its Species in Beetroot Juices
3.2. Stability of Selenium Species in Beetroot Juices
3.3. Antioxidant Activity of Beetroot Juices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Liu, Y.; Zhou, Z. Selenium and selenoproteins, from structure, function to food resource and nutrition. Food. Sci. Technol. Res. 2017, 23, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Kiełczykowska, M.; Kocot, J.; Paździor, M.; Musik, I. Selenium—A fascinating antioxidant of protective properties. Adv. Clin. Exp. Med. 2018, 27, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.S.; Crane, S.C. Selenium toxicity from a misformulated dietary supplement, adverse health effects, and the temporal response in the nail biologic monitor. Nutrients 2013, 5, 1024–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, H.; Collings, L.; Harvey, J.; King, M.; Hooper, L.; Bouwman, J.; Gurinovic, M.; Fairweather-Tait, S.J. EURECA-Estimating selenium requirements for deriving dietary reference values. Crit. Rev. Food Sci. Nutr. 2013, 53, 1077–1096. [Google Scholar] [CrossRef] [PubMed]
- Kipp, A.P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechthold, A.; Leschik-Bonnet, E.; Heseker, H. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015, 32, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantinescu-Aruxandei, D.; Frincu, R.M.; Capra, L.; Oancea, F. Selenium analysis and speciation in dietary supplements based on next-generation selenium ingredients. Nutrients 2018, 10, 1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, J.; Zhang, M.; Adhikari, B. Advances in selenium-enriched foods: From the farm to the fork. Trends Food Sci. Technol. 2018, 76, 1–5. [Google Scholar] [CrossRef]
- Moreda-Pineiro, J.; Moreda-Pineiro, A.; Bermejo-Barrera, P. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff. Crit. Rev. Food Sci. Nutr. 2017, 57, 805–833. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Selenium in plant foods: Speciation analysis, bioavailability, and factors affecting composition. Crit. Rev. Food Sci. Nutr. 2021, 61, 1340–1352. [Google Scholar] [CrossRef]
- Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A.P. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic. Biol. Med. 2018, 127, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Chuai, H.; Zhang, S.Q.; Bai, H.; Li, J.; Wang, Y.; Sun, J.; Wen, E.; Zhang, J.; Xin, M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur. J. Med. Chem. 2021, 223, 113621. [Google Scholar] [CrossRef] [PubMed]
- Bierła, K.; Godin, R.; Lobinski, R.; Szpunar, J. Advances in electrospray mass spectrometry for the selenium speciation: Focus on Se-rich yeast. TrAC Trends Anal. Chem. 2018, 104, 87–94. [Google Scholar] [CrossRef]
- LeBlanc, K.L.; Kumkrong, P.; Mercier, P.H.; Mester, Z. Selenium analysis in waters. Part 2: Speciation methods. Sci. Total Environ. 2018, 640–641, 1635–1651. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Liquid chromatographic analysis of selenium species in plant materials. TrAC Trends Anal. Chem. 2019, 111, 128–138. [Google Scholar] [CrossRef]
- Alhasan, R.; Perrin-Sarrado, C.; Jacob, C.; Gaucher, C. Analytical methods for the quantification of selenium species in biological matrix: Where are we? Curr. Nutraceuticals 2022, 3, e171121198032. [Google Scholar]
- Pedrero, Z.; Encinar, J.R.; Madrid, Y.; Cámara, C.; Zayas, Z.P. Application of species-specific isotope dilution analysis to the correction for selenomethionine oxidation in Se-enriched yeast sample extracts during storage. J. Anal. At. Spectrom. 2007, 22, 1061–1066. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzynska, K. Stability of selenium compounds in aqueous extracts of dietary supplements during storage. J. Pharm. Biomed. Anal. 2022, 214, 114714. [Google Scholar] [CrossRef]
- Cuderman, P.; Stibilj, V. Stability of Se species in plant extracts rich in phenolic substances. Anal. Bioanal. Chem. 2010, 396, 1433–1439. [Google Scholar] [CrossRef]
- Kantorová, V.; Kana, A.; Krausová, G.; Hyrslová, I.; Mestek, O. Effect of protease XXIII on selenium species interconversion during their extraction from biological samples. J. Food Compos. Anal. 2022, 105, 104260. [Google Scholar] [CrossRef]
- Krata, A.A.; Wojciechowski, M.; Karasiński, J.; Bulska, E. Comparative study of high performance liquid chromatography species-specific and species-unspecific isotope dilution inductively coupled plasma mass spectrometry. A case study of selenomethionine and the origin of its oxidized form. Microchem. J. 2018, 143, 416–422. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzynska, K. Analytical problems in separation of selenomethionine and its oxidative product in HILIC HPLC. Molecules 2021, 26, 5073. [Google Scholar] [CrossRef] [PubMed]
- Amoako, P.O.; Kahakachchi, C.L.; Dodova, E.N.; Uden, P.C.; Tyson, J.F. Speciation, quantification and stability of selenomethionine, S-(methylseleno)cysteine and selenomethionine Se-oxide in yeast-based nutritional supplements. J. Anal. At. Spectrom. 2007, 22, 938–946. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, Y.; Lai, F. Effects of different water management on absorption and accumulation of selenium in rice. Saudi J. Biol. Sci. 2018, 25, 1178–1182. [Google Scholar] [CrossRef]
- Le, D.T.; Liang, X.; Fomenko, D.E.; Raza, A.S.; Chong, C.K.; Carlson, B.A.; Hatfield, D.L.; Gladyshev, V.N. Analysis of methionine/selenomethionine oxidation and methionine sulfoxide reductase function using methionine-rich proteins and antibodies against their oxidized forms. Biochemistry 2008, 47, 6685–6694. [Google Scholar] [CrossRef] [Green Version]
- Bangar, S.P.; Sharma, N.; Sanwal, N.; Lorenzo, M.L.; Sahu, J.K. Bioactive potential of beetroot (Beta vulgaris). Food Res. Inter. 2022, 158, 11556. [Google Scholar]
- Mirmiran, P.; Houshialsadat, Z.; Gaeini, Z.; Bahadoran, Z.; Azizi, F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr. Metab. 2020, 17, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corleto, K.A.; Singh, J.; Jayaprakasha, G.K.; Patil, B.S. Storage stability of dietary nitrate and phenolic compounds in beetroot (Beta vulgaris) and arugula (Eruca sativa) juices. Food Sci. 2018, 83, 1237–1248. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzynska, K. Determination of selenium species in beetroot juices. Heiyon 2020, 6, e04194. [Google Scholar] [CrossRef] [PubMed]
- Giri, J.; Usha, K.; Sunhita, T. Evaluation of the selenium and chromium content of plant foods. Plant Foods Hum. Nutr. 1992, 40, 49–59. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An overview of selenium uptake, metabolism and toxicity in plants. Front Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasim, M.J.; Zuraik, M.M.; Abdin, A.Y.; Yannick Ney, Y.; Jacob, C. Selenomethionine: A pink trojan redox horse with implications in aging and various age-related diseases. Antioxidants 2021, 10, 882. [Google Scholar] [CrossRef] [PubMed]
- Larsen, E.H.; Sloth, J.; Hansen, M.; Moesgaard, S. Selenium speciation and isotope composition in 77SeSe-enriched yeast using gradient elution HPLC and ICP-dynamic cell-MS. J. Anal. At. Spectrom. 2003, 18, 310–316. [Google Scholar] [CrossRef]
- Gammelgaard, B.; Cornett, C.; Olsen, J.; Bendahl, L.; Hansen, S.H. Combination of LC-ICP-MS, LC-MS and NMR for investigation of the oxidative degradation of selenomethionine. Talanta 2003, 59, 1165–1171. [Google Scholar] [CrossRef]
- Liu, Q.; Bei, Y. Thermodynamics and dynamic kinetics of the oxidation of selenomethionine to methionine selenooxide: A DFT study. Prog. React. Kin. Mech. 2010, 36, 417–422. [Google Scholar] [CrossRef]
- Krause, R.J.; Glocke, S.C.; Sicuri, A.R.; Ripp, S.L.; Elfarra, A.A. Oxidative metabolism of seleno-L-methionine to L-methionine selenoxide by flavin-containing mono-oxygenases. Chem. Res. Toxicol. 2006, 19, 1643–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchley, J.A.; Davis, B.M.; Pleban, P.A.; Bayse, C.A. Experimental and theoretical evidence for cyclic selenurane formation during selenomethionine oxidation. Org. Biomol. Chem. 2005, 3, 4337–4342. [Google Scholar] [CrossRef]
- Krause, R.J.; Elffara, A.A. Reduction of L-methionine oxide to seleno-L-methionine by endogenous thiol, ascorbic acid, or methimazole. Biochem. Pharmacol. 2009, 77, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, L.; Pattison, D.I.; Fu, S.; Schiesser, C.H.; Davies, M.J.; Clare, L.; Hawkinsa, C.L. Catalytic oxidant scavenging by selenium-containing compounds: Reduction of selenoxides and N-chloramines by thiols and redox enzymes. Redox Biol. 2017, 12, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Bierla, K.; Szpunar, J.; Yiannikouris, A.; Łobiński, R. Comprehensive speciation of selenium in selenium-rich yeast. TrAC Trends Anal. Chem. 2012, 41, 122–132. [Google Scholar] [CrossRef]
- Koterbai, M.; Tyson, J.F.; Block, E.; Uden, P.C. High-performance liquid chromatography of selenium compounds utilizing perfluorinated carboxylic acid ion-pairing agents and inductively coupled plasma and electrospray ionization mass spectrometric detection. J. Chromatogr. A 2000, 866, 51–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasowska, K.; Sancineto, L.; Deska, M.; Drabowicz, J. Optically active selenoxides: Structural and synthetic aspects. Symmetry 2020, 12, 349. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Biosynthesis of selenium nanoparticles using plant extracts. J. Nanostruct. Chem. 2022, 12, 467–480. [Google Scholar] [CrossRef]
- Ramírez-Melo, L.M.; del Socorro Cruz-Cansino, N.; Delgado-Olivares, L.; Ramírez-Moreno, E.; Zafra-Rojas, Q.Y.; Hernández-Traspeňa, J.L.; Suárez-Jacobo, A. Optimization of antioxidant activity properties of a thermosonicated beetroot (Beta vulgaris L.) juice and further in vitro bioaccessibility comparison with thermal treatments. LWT-Food Sci. Technol. 2022, 154, 112780. [Google Scholar] [CrossRef]
- Arnaud, J.; van Dael, P. Selenium interactions with other trace elements, with nutrients (and drugs) in humans. In Molecular and Integrative Toxicology, 1st ed.; Michalke, B., Ed.; Springer: Cham, Switzerland, 2018; pp. 413–447. [Google Scholar]
- Jeffery, E. Component interactions for efficacy of functional foods. J. Nutrit. 2005, 135, 1223–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlović, N.; Zdravković, M.; Mladenović, J.; Tomić, D.; Marjanović, M.; Moravčević, D.; Zdravković, J. The change of phytochemical profile in beet juice and the influence of different storage conditions during one year. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12761. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Betalains and their applications in food: The current state of processing, stability and future opportunities in the industry. Food Chem. Mol. Sci. 2022, 4, 100089. [Google Scholar] [CrossRef] [PubMed]
- Ceclu, L.; Nistor, O.V. Red beetroot: Composition and health effects—A review. J. Nutri. Med. Diet Care 2020, 6, 043. [Google Scholar]
- Monono, E.M.; Wiesenborn, D.P.; Vargas-Ramirez, J.M.; Zhou, R. Preserving juice from industrial beets using organic acids. Trans. ASABE 2019, 62, 177–185. [Google Scholar] [CrossRef]
- Straus, S.; Bavec, F.; Turinek, M.; Slatnar, A.; Rozman, C.; Bavec, M. Nutritional value and economic feasibility of red beetroot (Beta vulgaris L. ssp. vulgaris Rote Kugel) from different production systems. Afr. J. Agric. Res. 2012, 7, 5653–5660. [Google Scholar]
- Sadowska-Bartosz, I.; Bartosz, G. Biological properties and applications of betalains. Molecules 2021, 26, 2520. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.Y.; Kim, Y.J. Activity of catechins and their applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Kaźmierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Püssa, T.; Matt, D.; Luik, A.; Gozdowski, D.; Rembiałkowska, E. Beetroot (Beta vulgaris L.) and naturalny fermented beetroot juices from organic and conventional production: Metabolomics, antioxidant levels and anticancer activity. J. Sci. Food Agric. 2014, 94, 2618–2629. [Google Scholar] [CrossRef] [PubMed]
- Natalia Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of phenolic acids and flavonoids of red beet and its fermentation products. does long-term consumption of fermented beetroot juice affect phenolics profile in human blood plasma and urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzynska, K. Investigation of antioxidant activity of selenium compounds and their mixtures with tea polyphenols. Mol. Biol. Rep. 2019, 46, 3019–3024. [Google Scholar] [CrossRef]
Juice | Total Se | MeSeCys | SeMet | SeMetO | Se(IV) |
---|---|---|---|---|---|
Purchased organic | 1.85 ± 0.003 a | 0.29 ± 0.004 a | 0.11 ± 0.005 a | 0.94 ± 0.008 a | 0.45 ± 0.007 a |
Homemade squeezed | 3.60 ± 0.004 b | 0.28 ± 0.003 a | 0.08 ± 0.001 b | 1.44 ± 0.006 b | 1.73 ± 0.008 b |
Organic Beetroot Juice | |||||||
Compound | −19 °C | 4 °C | 20 °C | ||||
Initial | 4 Days | 8 Days | 4 Days | 8 Days | 4 Days | 8 Days | |
Betanin | 763 ± 25 a | 740 ± 32 a | 675 ± 31 b | 725 ± 30 c | 650 ± 25 c | 690 ± 27 b | 656 ± 19 c |
Vulgaxantin I | 413 ± 17 a | 393 ± 17 b | 360 ± 15 c | 371 ± 18 c | 341 ± 13 d | 350 ± 15 d | 312 ± 12 e |
pHBA | 9.00 ± 0.347 a | 4.33 ± 0.210 b | 4.10 ± 0.181 b | 3.91 ± 0.150 b | <LOD | 3.92 ± 0.111 b | <LOD |
Gallic acid | 0.20 ± 0.01 a | 0.11 ± 0.01 b | 0.12 ± 0.01 b | 0.10 ± 0.02 b | 0.060 ± 0.01 c | 0.10 ± 0.02 b | 0.05 ± 0.01 c |
Ferulic acid | 16.2 ± 0.60 a | 0.27 ± 0.02 b | 0.23 ± 0.01 c | 0.30 ± 0.03 d | <LOD | 0.25 ± 0.02 c | 0.21 ± 0.01 d |
EGCG | 26.1 ± 0.904 a | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Epicatechin | <LOD | <LOD | 0.12 ± 0.01 a | <LOD | 0.058 ± 0.002 b | <LOD | <LOD |
Catechin | <LOD | <LOD | 23.3 ± 0.902 a | <LOD | 17.57 ± 0.731 b | <LOD | <LOD |
Squeezed beetroot juice | |||||||
Compound | −19 °C | 4 °C | 20 °C | ||||
Initial | 4 days | 8 days | 4 days | 8 days | 4 days | 8 days | |
Betanin | 563 ± 20 a | 506 ± 23 b | 473 ± 19 c | 485 ± 21 c | 455 ± 20 d | 450 ± 20 d | 410 ± 13 e |
Vulgaxantin I | 327 ± 14 a | 300 ± 10 b | 270 ± 12 c | 273 ± 11 c | 240 ± 10 d | 230 ±12 d | 195 ± 8 e |
pHBA | <LOD | <LOD | <LOD | <LOD | <LOD | 1.47 ± 0.060 a | <LOD |
Gallic acid | 0.14 ± 0.04 a | 0.05 ± 0.002 b | <LOD | 0.06 ± 0.001 b | <LOD | 0.05 ± 0.002 b | <LOD |
Ferulic acid | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
EGCG | 20.4 ± 0.930 a | <LOD | <LOD | 0.33 ± 0.02 b | 0.13 ± 0.01 c | <LOD | <LOD |
Epicatechin | <LOD | 0.83 ± 0.03 a | 0.93 ± 0.05 b | 1.58 ± 0.08 c | 1.67 ± 0.08 d | 1.08 ± 0.05 e | 1.23 ± 0.04 f |
Catechin | <LOD | <LOD | <LOD | <LOD | <LOD | 6.25 ± 0.20 a | 6.30 ± 0.15 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sentkowska, A.; Pyrzynska, K. The Influence of Thiol Addition on Selenium Stability and Antioxidant Activity of Beetroot Juice. Appl. Sci. 2022, 12, 12634. https://doi.org/10.3390/app122412634
Sentkowska A, Pyrzynska K. The Influence of Thiol Addition on Selenium Stability and Antioxidant Activity of Beetroot Juice. Applied Sciences. 2022; 12(24):12634. https://doi.org/10.3390/app122412634
Chicago/Turabian StyleSentkowska, Aleksandra, and Krystyna Pyrzynska. 2022. "The Influence of Thiol Addition on Selenium Stability and Antioxidant Activity of Beetroot Juice" Applied Sciences 12, no. 24: 12634. https://doi.org/10.3390/app122412634
APA StyleSentkowska, A., & Pyrzynska, K. (2022). The Influence of Thiol Addition on Selenium Stability and Antioxidant Activity of Beetroot Juice. Applied Sciences, 12(24), 12634. https://doi.org/10.3390/app122412634