Properties of Emulsion Paints with Binders Based on Natural Latex Grafting Styrene and Methyl Methacrylate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Method
2.2.1. Preparation of Hight Ammonia Natural Rubber (HANR Latex)
2.2.2. HANR Modification of Latex with Polymerization Grafting
2.2.3. Latex Concentration Process with Creaming Method
2.2.4. Emulsion Paint Manufacturing
2.3. Binder and Emulsion Paint Product Characteristics
3. Results
3.1. Structural Characterization of the Graft Copolymer
3.2. Washability (Wet Scrub Resistence)
3.3. Opacity
3.4. Drying Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abba, Z.Y.; Gumel, S.M.; A.Idris, A.; A.Ibrahim, M. Formulation of Paint using Natural Pigment from Lawsonia Inermis Leaves. Int. J. Adv. Chem. 2020, 8, 155–159. [Google Scholar] [CrossRef]
- Abdulsalam, S.; Maiwada, Z.D. Production of Emulsion House Paint Using Polyvinyl Acetate and Gum Arabic as Binder. Int. J. Mater. Sci. Appl. 2015, 4, 350. [Google Scholar] [CrossRef] [Green Version]
- Patrick, O. Production of Textcoat and Emulsion Paints Stainless For Youth Skill and Entrepreneurship Empowerment Program. J. Educ. Policy Entrep. Res. 2014, 1, 96–102. [Google Scholar]
- McGonigle, F.; Ciullo, P.A. Paints & Coatings. In Industrial Minerals and Their Uses; Ciullo, P.A., Ed.; William Andrew Inc: Norwich, NY, USA, 1996. [Google Scholar]
- Gaylarde, C.; Morton, L.; Loh, K.; Shirakawa, M. Biodeterioration of external architectural paint films—A review. Int. Biodeterior. Biodegradation 2011, 65, 1189–1198. [Google Scholar] [CrossRef]
- Koleske, J.; Springate, R.; Brezinski, D. Additives Handbook. 2011. Available online: https://www.pcimag.com/ext/resources/AdditivesHandbook/PCI-Additive-Definitions-2011-SECURED.pdf (accessed on 22 September 2022).
- Fang, C.Q.; Zhang, M.; Li, T.H.; Zhou, S.S.; Zhao, S. Study on Polyurethane/Polyurethane Emulsion Water-Based Ink. Key Eng. Mater. 2010, 428–429, 524–527. [Google Scholar] [CrossRef]
- Ibrahim, B.; Helwani, Z.; Fadhillah, I.; Wiranata, A.; Miharyono, J. Properties of Emulsion Paint with Modified Natural Rubber Latex/Polyvinyl Acetate Blend Binder. Appl. Sci. 2021, 12, 296. [Google Scholar] [CrossRef]
- Kaboorani, A.; Riedl, B. Mechanical performance of polyvinyl acetate (PVA)-based biocomposites. Biocomposites 2015, 347–364. [Google Scholar] [CrossRef]
- Gadhave, R.V.I.; Dhawale, P.V. State of Research and Trends in the Development of Polyvinyl Acetate-Based Wood Adhesive. Open J. Polym. Chem. 2022, 12, 13–42. [Google Scholar] [CrossRef]
- Lithner, D.; Larsson, Å.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef]
- John, S.M.; Johansen, J.D.; Rustemeyer, T.; Elsner, P.; Maibach, H.I. Kanerva’s Occupational Dermatology; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Taft, W.S.; Mayer, J.W. The Science of Paintings. Meas. Sci. Technol. 2001, 12, 653. [Google Scholar] [CrossRef]
- Stoye, D.; Freitag, W. Paints, Coatings and Solvents; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Yaumi, A.L.; Murtala, A.M.; Muhd, H.D.; Saleh, F.M. Determination of physiochemical properties of Gum Arabic as a suitable binder in emulsion house paint. Int. J. Environ. 2016, 5, 67–78. [Google Scholar] [CrossRef]
- Afolabi, A.; Odunola, M.; Ogundipe, K.; Ajao, A.; Ogunbayo, B. Sustainable locally sourced materials for small-scale paint production. J. Physics: Conf. Ser. 2019, 1299, 012124. [Google Scholar] [CrossRef]
- Khan, I.; Poh, B.T. Natural Rubber-Based Pressure-Sensitive Adhesives: A Review. J. Polym. Environ. 2011, 19, 793–811. [Google Scholar] [CrossRef]
- Nordström, E.; Demircan, D.; Fogelström, L.; Khabbaz, F.; Malmström, E. Green binders for wood adhesives. In Applied Adhesive Bonding in Science and Technology; Interhopen Books: London, UK, 2017; pp. 47–71. [Google Scholar] [CrossRef] [Green Version]
- Stelescu, M.-D.; Manaila, E.; Craciun, G.; Chirila, C. Development and Characterization of Polymer Eco-Composites Based on Natural Rubber Reinforced with Natural Fibers. Materials 2017, 10, 787. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Shah, Z.; Kanwal, N.; Zeb, S. Biodegradation of natural and synthetic rubbers: A review. Int. Biodeterior. Biodegradation 2013, 83, 145–157. [Google Scholar] [CrossRef]
- Gawchik, S.M. Latex Allergy. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2011, 78, 759–772. [Google Scholar] [CrossRef]
- Sunheem, P.; Aiyarak, P. A Microwave Transmission Instrument for Rapid Dry Rubber Content Determination in Natural Rubber Latex. MAPAN 2016, 31, 129–136. [Google Scholar] [CrossRef]
- Bahruddin; Helwani, Z.; Fadhillah, I.; Raysa; Rumi; Wiranata, A.; Miharyono, J. Opacity and Washability Properties of Emulsion Paint with Natural Rubber Latex/Polyvinyl Acetate Blend Binder. J. Physics: Conf. Ser. 2021, 2049, 012092. [Google Scholar] [CrossRef]
- Hashim, A.S.; Ong, S.K. Natural Rubber and its Derivatives. In Elastomers; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Wongthong, P.; Nakason, C.; Pan, Q.; Rempel, G.L.; Kiatkamjornwong, S. Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. Eur. Polym. J. 2013, 49, 4035–4046. [Google Scholar] [CrossRef]
- Pichayakorn, W.; Suksaeree, J.; Boonme, P.; Taweepreda, W.; Ritthidej, G.C. Preparation of Deproteinized Natural Rubber Latex and Properties of Films Formed by Itself and Several Adhesive Polymer Blends. Ind. Eng. Chem. Res. 2012, 51, 13393–13404. [Google Scholar] [CrossRef]
- Prastanto, H.; Falaah, A.F.; Maspanger, D.R. Pemekatan lateks kebun secara cepat dengan proses sentrifugasi putaran rendah. J. Penelit. Karet 2014, 32, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Ochigbo, S.S.; Luyt, A.S.; Focke, W.W. Latex derived blends of poly(vinyl acetate) and natural rubber: Thermal and mechanical properties. J. Mater. Sci. 2009, 44, 3248–3254. [Google Scholar] [CrossRef] [Green Version]
- Neoh, S.B.; Lee, X.M.; Azura, A.R.; Hashim, A.S. Effect of In Situ Polymerization of Styrene onto Natural Rubber on Adhesion Properties of Styrene-Natural Rubber (SNR) Adhesives. J. Adhes. 2010, 86, 859–873. [Google Scholar] [CrossRef]
- Arayapranee, W.; Prasassarakich, P.; Rempel, G.L. Blends of poly(vinyl chloride) (PVC)/natural rubber-g-(styrene-co-methyl methacrylate) for improved impact resistance of PVC. J. Appl. Polym. Sci. 2004, 93, 1666–1672. [Google Scholar] [CrossRef]
- Ndibe, H.; Iyasele, J.U.; Imanah, E.; Okpara, G.E.; Eriamiatoe, I. Utilization of binary blends of liquid natural rubber and polyvinyl acetate in emulsion paint. J. Chem. Soc. Niger. 2021, 46, 72–78. [Google Scholar] [CrossRef]
- Zainudin, Z.; Baharulrazi, N.; Man, S.H.C. Natural Rubber Derivatives for Adhesives Applications: A Review. Chem. Eng. Trans. 2021, 83, 493–498. [Google Scholar] [CrossRef]
- Poh, B.T.; Teh, Y.Y. Dependence of Adhesion Property of Epoxidized Natural Rubber (ENR 25)/Ethylene-Propylene-Diene Rubber Blend Adhesives Crosslinked by Benzoyl Peroxide. J. Coatings 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Saramolee, P.; Lopattananon, N.; Sahakaro, K. Preparation and some properties of modified natural rubber bearing grafted poly(methyl methacrylate) and epoxide groups. Eur. Polym. J. 2014, 56, 1–10. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, L.; Shao, F.; Chen, L.; Jiao, J.; Gao, W. Grafting of methyl methacrylate onto natural rubber in supercritical carbon dioxide. Polym. Adv. Technol. 2008, 2007, 229–236. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Duy, H.N.; Anh, D.T.; Thi, T.N.; Nguyen, T.H.; Van, N.N.; Quang, T.T.; Huy, T.N.; Thi, T.T. Improvement of Thermal and Mechanical Properties of Vietnam Deproteinized Natural Rubber via Graft Copolymerization with Methyl Methacrylate. Int. J. Polym. Sci. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Rolere, S.; Liengprayoon, S.; Vaysse, L.; Sainte-Beuve, J.; Bonfils, F. Investigating natural rubber composition with Fourier Transform Infrared (FT-R) spectroscopy: A rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polym. Test. 2015, 43, 83–93. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley and Sons Ltd.: Chichester, UK, 2004; ISBN 0470854278. [Google Scholar]
- Pukkate, N.; Yamamoto, Y.; Kawahara, S. Mechanism of graft copolymerization of styrene onto deproteinized natural rubber. Colloid Polym. Sci. 2008, 286, 411–416. [Google Scholar] [CrossRef]
- Khanjani, J.; Hanifpour, A.; Pazokifard, S.; Zohuriaan-Mehr, M.J. Waterborne acrylic-styrene/PDMS coatings formulated by different particle sizes of PDMS emulsions for outdoor applications. Prog. Org. Coatings 2020, 141, 105267. [Google Scholar] [CrossRef]
- Dumitru, F.V.; Comanescu, C.; Oprea, O.; Ficai, D.; Guran, C. Effects of ZnO nanoparticles on the wet scrub resistance and photocatalytic properties of acrylic coatings. Rev. Chim. 2012, 63, 722–726. [Google Scholar]
- Altinkaya, S.A.; Topcuoglu, O.; Yurekli, Y.; Balkose, D. The influence of binder content on the water transport properties of waterborne acrylic paints. Prog. Org. Coatings 2010, 69, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Bieleman, J. Additives for Coatings; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Butler, L.N.; Fellows, C.M.; Gilbert, R.G. Water Sensitivity of Latex-Based Films. Ind. Eng. Chem. Res. 2002, 42, 456–464. [Google Scholar] [CrossRef]
- Hema, S.; Krishnan, A.; Akther, A.; Suresh, A.; Sambhudevan, S.; Shankar, B. Green nanocomposites based on natural rubber latex containing xylan from sugarcane bagasse—Synthesis, characterization and dye absorption studies. Mater. Today: Proc. 2021, 46, 2950–2954. [Google Scholar] [CrossRef]
- Sriring, M.; Nimpaiboon, A.; Kumarn, S.; Higaki, K.; Higaki, Y.; Kojio, K.; Takahara, A.; Ho, C.C.; Sakdapipanich, J. Film formation process of natural rubber latex particles: Roles of the particle size and distribution of non-rubber species on film microstructure. Colloids Surfaces A: Physicochem. Eng. Asp. 2020, 592, 124571. [Google Scholar] [CrossRef]
- Arayapranee, W.; Prasassarakich, P.; Rempel, G.L. Process variables and their effects on grafting reactions of styrene and methyl methacrylate onto natural rubber. J. Appl. Polym. Sci. 2003, 89, 63–74. [Google Scholar] [CrossRef]
- Khamplod, T.; Loykulnant, S.; Kongkaew, C.; Sureeyatanapas, P.; Prapainainar, P. Electron beam radiation grafting of styrene on natural rubber using Taguchi’s design. Polymer 2015, 79, 135–145. [Google Scholar] [CrossRef]
- Thongnuanchan, B.; Ninjan, R.; Kaesaman, A.; Nakason, C. Synthesis of modified Natural Rubber with grafted poly(acetoacetoxyethyl methacrylate-co -methyl methacrylate) and performance of derived adhesives with GTA crosslinker. Polym. Eng. Sci. 2017, 58, 1610–1618. [Google Scholar] [CrossRef]
- Wichaita, W.; Promlok, D.; Sudjaipraparat, N.; Sripraphot, S.; Suteewong, T.; Tangboriboonrat, P. A concise review on design and control of structured natural rubber latex particles as engineering nanocomposites. Eur. Polym. J. 2021, 159, 110740. [Google Scholar] [CrossRef]
- Yelwa, J.M.; Yelwa, J.M.; Nkafamiya, I.I.; Abdullahi, S.; Joel, J.M. Production Of Emulsion Paint Using Synthesized Hydroxylated Sunflower Seed Oil/Poly Vinyl Acetate Copolymer As A Binder. Int. J. Innov. Res. Adv. Stud. 2017, 4, 426–430. [Google Scholar]
- El-Wahab, H.A.; Attia, M.; Hassan, W.; Nasser, A. Preparation, Characterization and Evaluation of Some Acrylate Polymers Nanoparticles as Binder to Improving the Physical Properties of Water Based Paints. Int. J. Nanoparticles Nanotechnol. 2019, 5, 2–18. [Google Scholar] [CrossRef]
- Sukhawipat, N.; Raksanak, W.; Kalkornsurapranee, E.; Saetung, A.; Saetung, N. A new hybrid waterborne polyurethane coating synthesized from natural rubber and rubber seed oil with grafted acrylate. Prog. Org. Coatings 2020, 141, 105554. [Google Scholar] [CrossRef]
- Thiraphattaraphun, L.; Kiatkamjornwong, S.; Prasassarakich, P.; Damronglerd, S. Natural rubber-g-methyl methacrylate/poly(methyl methacrylate) blends. J. Appl. Polym. Sci. 2001, 81, 428–439. [Google Scholar] [CrossRef]
- Gooch, J.W. Lead-Based Paint Handbook; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Alvarez, V.; Paulis, M. Effect of acrylic binder type and calcium carbonate filler amount on the properties of paint-like blends. Prog. Org. Coatings 2017, 112, 210–218. [Google Scholar] [CrossRef]
- Jiang, S.; Van Dyk, A.; Maurice, A.; Bohling, J.; Fasano, D.; Brownell, S. Design colloidal particle morphology and self-assembly for coating applications. Chem. Soc. Rev. 2017, 46, 3792–3807. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, H.; Bagheri, R.; Asadinezhad, A. Effect of silica nanoparticles on surface properties, particle size, and distribution of poly (methyl methacrylate-co-butyl acrylate-co-acrylic acid) synthesized by in situ emulsion polymerization. Prog. Org. Coatings 2019, 129, 278–284. [Google Scholar] [CrossRef]
- Ambegoda, V.T.; Egodage, S.M.; Blum, F.D.; Maddumaarachchi, M. Enhancement of hydrophobicity of natural rubber latex films using diatomaceous earth. J. Appl. Polym. Sci. 2020, 138, 50047. [Google Scholar] [CrossRef]
Sample | NRL (%) | Styrene Monomer (%) | MMA Monomer (%) | Initiator (phr) |
---|---|---|---|---|
NRL−g−St | 90 | 10 | - | 1.5 |
85 | 15 | - | ||
80 | 20 | - | ||
75 | 25 | - | ||
70 | 30 | - | ||
NRL−g−MMA | 90 | - | 10 | 1.5 |
85 | - | 15 | ||
80 | - | 20 | ||
75 | - | 25 | ||
70 | - | 30 |
Components | Utility | Manufacturer/Grade |
---|---|---|
Water | Dispersion medium | N/A |
Hydroxyethyl cellulose | Thickening agent | Industrial |
Caustic soda | Ph control | Industrial |
Ultramarine blue | Blue pigment | Industrial |
Alkhylpenol ethoxylate | Surfactant | Industrial |
TiO2 | Opacity agent/White agent | Industrial |
CaO | Hiding power agent | Industrial |
CaCO3 | Extender | Industrial |
Polipropilen glycol | Anti-settling agent | Industrial |
Eastment | Additive agent | Industrial |
Dodecylbenzene sulfonat | Wetting agent | Industrial |
NRL−g−MMA | Binder-1 | |
NRL−g−St | Binder-2 | |
NRL−g−(MMA-co-St) | Binder-3 | |
PVAc | Binder-4 | Industrial |
No | Sample | Sample Code | Binder (%) |
---|---|---|---|
1 | PVAc | PVAc-4 | 4 |
2 | PVAc | PVAc-6 | 6 |
3 | PVAc | PVAc-8 | 8 |
4 | PVAc | PVAc-10 | 10 |
5 | Concentrated NRL | CNRL-4 | 4 |
6 | Concentrated NRL | CNRL-6 | 6 |
7 | Concentrated NRL | CNRL-8 | 8 |
8 | Concentrated NRL | CNRL-10 | 10 |
9 | NRL−g−10%St | NgSt10-4 | 4 |
10 | NRL−g−15%St | NgSt15-4 | 4 |
11 | NRL−g−20%St | NgSt20-4 | 4 |
12 | NRL−g−25%St | NgSt25-4 | 4 |
13 | NRL−g−30%St | NgSt30-4 | 4 |
14 | NRL−g−10%MMA | NgMMA10-4 | 4 |
15 | NRL−g−15%MMA | NgMMA15-4 | 4 |
16 | NRL−g−20%MMA | NgMMA20-4 | 4 |
17 | NRL−g−25%MMA | NgMMA25-4 | 4 |
18 | NRL−g−30%MMA | NgMMA30-4 | 4 |
19 | NRL−g−20%St | NgSt20-4 | 4 |
20 | NRL−g−20%St | NgSt20-6 | 6 |
21 | NRL−g−20%St | NgSt20-8 | 8 |
22 | NRL−g−20%St | NgSt20-10 | 10 |
23 | NRL−g−30%MMA | NgMMA30-4 | 4 |
24 | NRL−g−30%MMA | NgMMA30-6 | 6 |
25 | NRL−g−30%MMA | NgMMA30-8 | 8 |
26 | NRL−g−30%MMA | NgMMA30-10 | 10 |
27 | NRL−g−20%St/ NRL−g−30%MMA | NgSt/NgMMA-4 | 4 |
28 | NRL−g−20%St/ NRL−g−30%MMA | NgSt/NgMMA-6 | 6 |
29 | NRL−g−20%St/ NRL−g−30%MMA | NgSt/NgMMA-8 | 8 |
30 | NRL−g−20%St/ NRL−g−30%MMA | NgSt/NgMMA-10 | 10 |
31 | NRL−g−20%St/PVAc (70/30) | NgSt20/PVAc-4 | 4 |
32 | NRL−g−20%St/PVAc (70/30) | NgSt20/PVAc -6 | 6 |
33 | NRL−g−20%St/PVAc (70/30) | NgSt20/PVAc -8 | 8 |
34 | NRL−g−20%St/PVAc (70/30) | NgSt20/PVAc -10 | 10 |
35 | NRL−g−30%MMA/PVAc (70/30) | NgMMA30/PVAc -4 | 4 |
36 | NRL−g−30%MMA/PVAc (70/30) | NgMMA30/PVAc -6 | 6 |
37 | NRL−g−30%MMA/PVAc (70/30) | NgMMA30/PVAc -8 | 8 |
38 | NRL−g−30%MMA/PVAc (70/30) | NgMMA30/PVAc -10 | 10 |
No | Sample Code | Binder (%) | Opacity (Failed/Pass) | Drying Time |
---|---|---|---|---|
1 | PVAc-4 | 4 | Passed | 45.28 |
2 | PVAc-6 | 6 | Passed | 58.33 |
3 | PVAc-8 | 8 | Passed | 56.33 |
4 | PVAc-10 | 10 | Passed | 60.45 |
5 | CNRL-4 | 4 | Failed | 44.48 |
6 | CNRL-6 | 6 | Passed | 48.24 |
7 | CNRL-8 | 8 | Passed | 61.25 |
8 | CNRL-10 | 10 | Passed | 75.15 |
9 | NgSt10-4 | 4 | Failed | 49.15 |
10 | NgSt15-4 | 4 | Failed | 52.34 |
11 | NgSt20-4 | 4 | Passed | 55.30 |
12 | NgSt25-4 | 4 | Passed | 56.32 |
13 | NgSt30-4 | 4 | Passed | 58.34 |
14 | NgMMA10-4 | 4 | Failed | 43.15 |
15 | NgMMA15-4 | 4 | Failed | 47.10 |
16 | NgMMA20-4 | 4 | Passed | 44.15 |
17 | NgMMA25-4 | 4 | Passed | 48.23 |
18 | NgMMA30-4 | 4 | Passed | 50.20 |
19 | NgSt20-4 | 4 | Passed | 55.30 |
20 | NgSt20-6 | 6 | Passed | 67.38 |
21 | NgSt20-8 | 8 | Passed | 79.38 |
22 | NgSt20-10 | 10 | Passed | 85.33 |
23 | NgMMA30-4 | 4 | Passed | 44.15 |
24 | NgMMA30-6 | 6 | Passed | 63.15 |
25 | NgMMA30-8 | 8 | Passed | 72.33 |
26 | NgMMA30-10 | 10 | Passed | 81.05 |
27 | NgSt/NgMMA-4 | 4 | Passed | 48.38 |
28 | NgSt/NgMMA-6 | 6 | Passed | 60.22 |
29 | NgSt/NgMMA-8 | 8 | Passed | 71.34 |
30 | NgSt/NgMMA-10 | 10 | Passed | 80.39 |
31 | NgSt20/PVAc-4 | 4 | Passed | 50.44 |
32 | NgSt20/PVAc-6 | 6 | Passed | 60.45 |
33 | NgSt20/PVAc-8 | 8 | Passed | 75.30 |
34 | NgSt20/PVAc-10 | 10 | Passed | 85.40 |
35 | NgMMA30/PVAc-4 | 4 | Passed | 48.33 |
36 | NgMMA30/PVAc-6 | 6 | Passed | 55.49 |
37 | NgMMA30/PVAc-8 | 8 | Passed | 68.37 |
38 | NgMMA30/PVAc-10 | 10 | Passed | 80.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, B.; Helwani, Z.; Wiranata, A.; Fadhillah, I.; Miharyono, J.; -, N. Properties of Emulsion Paints with Binders Based on Natural Latex Grafting Styrene and Methyl Methacrylate. Appl. Sci. 2022, 12, 12802. https://doi.org/10.3390/app122412802
Ibrahim B, Helwani Z, Wiranata A, Fadhillah I, Miharyono J, - N. Properties of Emulsion Paints with Binders Based on Natural Latex Grafting Styrene and Methyl Methacrylate. Applied Sciences. 2022; 12(24):12802. https://doi.org/10.3390/app122412802
Chicago/Turabian StyleIbrahim, Bahruddin, Zuchra Helwani, Arya Wiranata, Ivan Fadhillah, Joni Miharyono, and Nasruddin -. 2022. "Properties of Emulsion Paints with Binders Based on Natural Latex Grafting Styrene and Methyl Methacrylate" Applied Sciences 12, no. 24: 12802. https://doi.org/10.3390/app122412802
APA StyleIbrahim, B., Helwani, Z., Wiranata, A., Fadhillah, I., Miharyono, J., & -, N. (2022). Properties of Emulsion Paints with Binders Based on Natural Latex Grafting Styrene and Methyl Methacrylate. Applied Sciences, 12(24), 12802. https://doi.org/10.3390/app122412802