Aquatic Products’ Quality, Processing and Preserving: Recent Developments, Trends and Advances
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022. In Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Rituparna, B.; Naveena, B.M. Superchilling of muscle foods: Potential alternative for chilling and freezing. Criti. Rev. Food Sci. 2019, 59, 1256–1263. [Google Scholar] [CrossRef]
- Naimeh, K.; Mohsen, E.; Zahra, E.D. Application of active edible coating made from basil seed gum and thymol for quality maintenance of shrimp during cold storage. J. Sci. Food Agric. 2017, 97, 1837–1845. [Google Scholar] [CrossRef]
- Diao, Y.D.; Cheng, X.Y.; Wang, L.X.; Xia, W.S. Effects of immersion freezing methods on water holding capacity, ice crystals and water migration in grass carp during frozen storage. Int. J. Refrig. 2021, 131, 581–591. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Burke, C.M.; Bolch, C.C.J.; Stanley, R. Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int. J. Food Microbiol. 2018, 280, 87–99. [Google Scholar] [CrossRef]
- Walayat, N.; Tang, W.; Wang, X.; Yi, M.; Guo, L.; Ding, Y.; Liu, J. Effective role of konjac oligosaccharide against oxidative changes in silver carp proteins during fluctuated frozen storage. Food Hydrocolloid 2022, 131, 107761. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Lei, J.; Ma, J.J.; Yuan, G.F.; Sun, H.Y. Effect of chitosan-carvacrol coating on the quality of Pacific white shrimp during iced storage as affected by caprylic acid. Int. J. Biol. Macromol. 2018, 106, 123–129. [Google Scholar] [CrossRef]
- Salihah, N.T.; Hossain, M.M.; Lubis, H.; Ahmed, M.U. Trends and advances in food analysis by real-time polymerase chain reaction. J. Food Sci. Technol. 2016, 53, 2196–2209. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.U.; Saaem, I.; Wu, P.C.; Brown, A.S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol. 2014, 34, 180–196. [Google Scholar] [CrossRef]
- Lim, S.A.; Yoshikawa, H.; Tamiya, E.; Yasin, H.M.; Ahmed, M.U. A highly sensitive gold nanoparticle bioprobe based electrochemical immunosensor using screen printed graphene biochip. RSC Adv. 2014, 4, 58460–58466. [Google Scholar] [CrossRef]
- López-Calleja, I.M.; de la Cruz, S.; Pegels, N.; González, I.; Martín, R.; García, T. Sensitive and specific detection of almond (Prunus dulcis) in commercial food products by real-time PCR. LWT Food Sci. Technol. 2014, 56, 31–39. [Google Scholar] [CrossRef]
- Pan, C.; Sun, K.T.; Yang, X.Q.; Wang, D.; Hu, X.; Chen, S.J. Insights on Litopenaeus vannamei quality deterioration during partial freezing storage from combining traditional quality studies and label-free based proteomic analysis. J. Food Comps. Anal. 2022, 112, 104655. [Google Scholar] [CrossRef]
- Xu, W.; Ma, Q.; Sun, J.; Li, Y.; Wang, J.; Tang, Y.; Liu, Y.; Mu, J.; Wang, W. Changes in quality characteristics of shrimp (Penaeus chinensis) during refrigerated storage and their correlation with protein degradation. J. Food Comps. Anal. 2022, 114, 104773. [Google Scholar] [CrossRef]
- Li, R.; Sun, Z.L.; Zhao, Y.Q.; Li, L.H.; Yang, X.Q.; Cen, J.W.; Chen, S.J.; Li, C.S.; Wang, Y.Q. Application of UHPLC-Q-TOF-MS/MS metabolomics approach to investigate the taste and nutrition changes in tilapia fillets treated with different thermal processing methods. Food Chem. 2021, 356, 129737. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Li, C.S.; Li, L.H.; Yang, X.Q.; Chen, S.J.; Wu, Y.Y.; Zhao, Y.Q.; Wang, J.X.; Wei, Y.; Yang, D.Q. Application of UHPLC-Q/TOF-MS-based metabolomics in the evaluation of metabolites and taste quality of Chinese fish sauce (Yu-lu) during fermentation. Food Chem. 2019, 296, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Caba, K.; Guerrero, P.; Trung, T.S.; Cruz-Romero, M.; Kerry, J.P.; Fluhr, J.; Maurer, M.; Kruijssen, F.; Albalat, A.; Bunting, S.; et al. From seafood waste to active seafood packaging: An emerging opportunity of the circular economy. J. Clean. Prod. 2019, 20, 86–98. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.; Li, L.; Hao, S.; Wei, Y.; Cen, J.; Lin, H. Chemical, Microbiological, Color and Textural Changes in Nile Tilapia (Oreochromis niloticus) Fillets Sterilized by Ozonated Water Pretreatment During Frozen Storage. J. Food Process. Preserv. 2017, 41, e12746. [Google Scholar] [CrossRef]
- Ghosh, T.; Bhagya Raj, G.V.S.; Kumar Dash, K. A comprehensive review on nanotechnology based sensors for monitoring quality and shelf life of food products. Meas. Food 2022, 7, 100049. [Google Scholar] [CrossRef]
- Xiang, Y.; Sun, C.; Zhao, Y.; Li, L.; Yang, X.; Wu, Y.; Chen, S.; Wei, Y.; Li, C.; Wang, Y. Label-free proteomic analysis reveals freshness-related proteins in sea bass (Lateolabrax japonicus) fillets stored on ice. LWT Food Sci. Technol. 2022, 155, 112885. [Google Scholar] [CrossRef]
- Niina, H.; Petra, S.P.; Andrea, B.; Cecilia, F.; Rakesh, N.; Giorgia, S.; Krisztian, K. Bio-Based Smart Materials for Food Packaging and Sensors—A Review. Front. Mater. 2020, 7, 82. [Google Scholar] [CrossRef]
- Mishra, G.K.; Barfidokht, A.; Tehrani, F.; Mishra, R.K. Food Safety Analysis Using Electrochemical Biosensors. Foods 2018, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Shinoda, R.; Murata, M.; Matsumoto, H.; Ohnuki, H.; Endo, H. Real-time fish stress visualization came true: A novel multi-stage color-switching wireless biosensor system. Biosens. Bioelectron. 2019, 130, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, D.; Zhou, X.; Yu, Y.; Liu, J.; Hu, N.; Wu, Y. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends Anal. Chem. 2019, 121, 115668. [Google Scholar] [CrossRef]
- Neethirajan, S.; Ragavan, V.; Weng, X.; Chand, R. Biosensors for Sustainable Food Engineering: Challenges and Perspectives. Biosensors 2018, 8, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1465–1487. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Ogata, M.; Ohnuki, H.; Endo, H. Development of biosensor for measuring oxidative stress of fish. Fish. Sci. 2021, 87, 151–159. [Google Scholar] [CrossRef]
- Endo, H.; Wu, H. Biosensors for the assessment of fish health: A review. Fish Sci. 2019, 85, 641–654. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Wu, H.; Zhao, Y. Aquatic Products’ Quality, Processing and Preserving: Recent Developments, Trends and Advances. Appl. Sci. 2022, 12, 12924. https://doi.org/10.3390/app122412924
Pan C, Wu H, Zhao Y. Aquatic Products’ Quality, Processing and Preserving: Recent Developments, Trends and Advances. Applied Sciences. 2022; 12(24):12924. https://doi.org/10.3390/app122412924
Chicago/Turabian StylePan, Chuang, Haiyun Wu, and Yongqiang Zhao. 2022. "Aquatic Products’ Quality, Processing and Preserving: Recent Developments, Trends and Advances" Applied Sciences 12, no. 24: 12924. https://doi.org/10.3390/app122412924
APA StylePan, C., Wu, H., & Zhao, Y. (2022). Aquatic Products’ Quality, Processing and Preserving: Recent Developments, Trends and Advances. Applied Sciences, 12(24), 12924. https://doi.org/10.3390/app122412924