Steric, Activation Method and Solvent Effects on the Structure of Paddlewheel Diruthenium Complexes
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Measurements
2.3. Crystallography
2.4. Synthesis
2.4.1. Synthesis of [Ru2Cl(µ-O2CC6H4-o-OMe)4]n (1a)
2.4.2. Synthesis of [Ru2Cl(µ-O2CC6H4-o-OMe)4(EtOH)] (1b)
2.4.3. Synthesis of [Ru2(µ-O2CC6H4-o-OMe)4(MeOH)2][Ru2Cl2(µ-O2CC6H4-o-OMe)4] (1c)
2.4.4. Synthesis of [Ru2Cl(µ-O2CC6H4-m-OMe)4]n (2)
2.4.5. Synthesis of [Ru2Cl(µ-O2CC6H4-p-OMe)4]n (3)
3. Results and Discussion
3.1. Synthesis
3.2. Crystal Structures
3.3. Spectroscopic Properties
3.4. Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cotton, F.A.; Murillo, C.A.; Walton, R.A. (Eds.) Multiple Bonds between Metal Atoms, 3rd ed.; Springer Science and Business Media: New York, NY, USA, 2005; ISBN 978-0-387-25084-7. [Google Scholar]
- Liddle, S.T. (Ed.) Molecular Metal-Metal Bonds: Compounds, Synthesis, Properties; Wiley-VCH: Weinheim, Germany, 2015; ISBN 978-3-527-33541-1. [Google Scholar]
- Cortijo, M.; González-Prieto, R.; Herrero, S.; Priego, J.L.; Jiménez-Aparicio, R. The Use of Amidinate Ligands in Paddlewheel Diruthenium Chemistry. Coord. Chem. Rev. 2019, 400, 213040. [Google Scholar] [CrossRef]
- Aquino, M.A.S. Recent Developments in the Synthesis and Properties of Diruthenium Tetracarboxylates. Coord. Chem. Rev. 2004, 248, 1025–1045. [Google Scholar] [CrossRef]
- Miyazawa, T.; Suzuki, T.; Kumagai, Y.; Takizawa, K.; Kikuchi, T.; Kato, S.; Onoda, A.; Hayashi, T.; Kamei, Y.; Kamiyama, F.; et al. Chiral Paddle-Wheel Diruthenium Complexes for Asymmetric Catalysis. Nat. Catal. 2020, 3, 851–858. [Google Scholar] [CrossRef]
- Thompson, D.J.; Barker Paredes, J.E.; Villalobos, L.; Ciclosi, M.; Elsby, R.J.; Liu, B.; Fanwick, P.E.; Ren, T. Diruthenium(II,III) Tetracarboxylates Catalyzed H2O2 Oxygenation of Organic Sulfides. Inorg. Chim. Acta 2015, 424, 150–155. [Google Scholar] [CrossRef]
- De Oliveira Silva, D. Ruthenium Compounds Targeting Cancer Therapy. In Frontiers in Anti-Cancer Drug Discovery; Atta-ur-Rahman, Iqbal Choudhary, M., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2014; Volume 4, pp. 88–156. ISBN 978-1-60805-922-5. [Google Scholar]
- Barresi, E.; Tolbatov, I.; Marzo, T.; Zappelli, E.; Marrone, A.; Re, N.; Pratesi, A.; Martini, C.; Taliani, S.; Settimo, F.D.; et al. Two Mixed Valence Diruthenium(II,III) Isomeric Complexes Show Different Anticancer Properties. Dalton Trans. 2021, 50, 9643–9647. [Google Scholar] [CrossRef] [PubMed]
- Coloma, I.; Cortijo, M.; Fernández-Sánchez, I.; Perles, J.; Priego, J.L.; Gutiérrez, C.; Jiménez-Aparicio, R.; Desvoyes, B.; Herrero, S. pH- and Time-Dependent Release of Phytohormones from Diruthenium Complexes. Inorg. Chem. 2020, 59, 7779–7788. [Google Scholar] [CrossRef] [PubMed]
- Messori, L.; Marzo, T.; Sanches, R.N.F.; Hanif, U.R.; de Oliveira Silva, D.; Merlino, A. Unusual Structural Features in the Lysozyme Derivative of the Tetrakis(Acetato)Chloridodiruthenium(II,III) Complex. Angew. Chem. Int. Ed. 2014, 53, 6172–6175. [Google Scholar] [CrossRef] [PubMed]
- Lozano, G.; Jimenez-Aparicio, R.; Herrero, S.; Martinez-Salas, E. Fingerprinting the Junctions of RNA Structure by an Open-Paddlewheel Diruthenium Compound. RNA 2016, 22, 330–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolbatov, I.; Marrone, A. Reaction of Dirhodium and Diruthenium Paddlewheel Tetraacetate Complexes with Nucleophilic Protein Sites: A Computational Study. Inorg. Chim. Acta 2022, 530, 120684. [Google Scholar] [CrossRef]
- Malinski, T.; Chang, D.; Feldmann, F.N.; Bear, J.L.; Kadish, K.M. Electrochemical Studies of a Novel Ruthenium(II, III) Dimer, Trifluoroacetamidatoruthenium Chloride (Ru2(HNOCCF3)4Cl). Inorg. Chem. 1983, 22, 3225–3233. [Google Scholar] [CrossRef]
- Barral, M.C.; Jiménez-Aparicio, R.; Priego, J.L.; Royer, E.C.; Urbanos, F.A.; Monge, A.; Ruíz-Valero, C. Tert-Butylbenzamidate Diruthenium(II, III) Compounds. Crystal Structure of [Ru2(μ-HNOCC6H4-p-CMe3)4(OPPh3)2]BF4. Polyhedron 1993, 12, 2947–2953. [Google Scholar] [CrossRef]
- Ryde, K.; Tocher, D.A. The Electro-Oxidation of the Binuclear Ruthenium(II/III) Tetra-Amidate Complex, Ru2(Me3CCONH)4Cl. Inorg. Chim. Acta 1986, 118, L49–L51. [Google Scholar] [CrossRef]
- Chakravarty, A.R.; Cotton, F.A.; Tocher, D.A. Synthesis and Structure of a Binuclear Ruthenium 4-Chlorobenzamidato Complex. Polyhedron 1985, 4, 1097–1102. [Google Scholar] [CrossRef]
- Chavan, M.Y.; Feldmann, F.N.; Lin, X.Q.; Bear, J.L.; Kadish, K.M. Generation of Dinuclear Ruthenium Acetamidate Complexes with Variable Ruthenium-Ruthenium Bond Orders. Inorg. Chem. 1984, 23, 2373–2375. [Google Scholar] [CrossRef]
- Barral, M.C.; de la Fuente, I.; Jiménez-Aparicio, R.; Priego, J.L.; Torres, M.R.; Urbanos, F.A. Synthesis of Diruthenium(II,III) Amidate Compounds. Crystal Structure of [Ru2(μ-HNOCC4H3S)4(Thf)2]SbF6·0.5cyclohexane. Polyhedron 2001, 20, 2537–2544. [Google Scholar] [CrossRef]
- Villalobos, L.; Cao, Z.; Fanwick, P.E.; Ren, T. Diruthenium(II,III) Tetramidates as a New Class of Oxygenation Catalysts. Dalton Trans. 2011, 41, 644–650. [Google Scholar] [CrossRef]
- Herrero, S.; Jiménez-Aparicio, R.; Perles, J.; Priego, J.L.; Urbanos, F.A. First Microwave Synthesis of Multiple Metal-Metal Bond Paddlewheel Compounds. Green Chem. 2010, 12, 965–967. [Google Scholar] [CrossRef]
- Herrero, S.; Jiménez-Aparicio, R.; Perles, J.; Priego, J.L.; Saguar, S.; Urbanos, F.A. Microwave Methods for the Synthesis of Paddlewheel Diruthenium Compounds with N,N-Donor Ligands. Green Chem. 2011, 13, 1885–1890. [Google Scholar] [CrossRef]
- González-Prieto, R.; Herrero, S.; Jiménez-Aparicio, R.; Morán, E.; Prado-Gonjal, J.; Priego, J.L.; Schmidt, R. 13. Microwave-Assisted Solvothermal Synthesis of Inorganic Compounds (Molecular and Non Molecular); De Gruyter: Berlin, Germany, 2017; pp. 225–247. ISBN 978-3-11-047993-5. [Google Scholar]
- Delgado, P.; González-Prieto, R.; Jiménez-Aparicio, R.; Perles, J.; Priego, J.L.; Torres, R.M. Comparative Study of Different Methods for the Preparation of Tetraamidato- and Tetracarboxylatodiruthenium Compounds. Structural and Magnetic Characterization. Dalton Trans. 2012, 41, 11866–11874. [Google Scholar] [CrossRef]
- Delgado-Martínez, P.; González-Prieto, R.; Gómez-García, C.J.; Jiménez-Aparicio, R.; Priego, J.L.; Torres, M.R. Structural, Magnetic and Electrical Properties of One-Dimensional Tetraamidatodiruthenium Compounds. Dalton Trans. 2014, 43, 3227–3237. [Google Scholar] [CrossRef]
- Delgado-Martínez, P.; Freire, C.; González-Prieto, R.; Jiménez-Aparicio, R.; Priego, J.; Torres, M. Synthesis, Crystal Structure, and Magnetic Properties of Amidate and Carboxylate Dimers of Ruthenium. Crystals 2017, 7, 192. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Martínez, P.; Elvira-Bravo, A.; González-Prieto, R.; Priego, J.; Jimenez-Aparicio, R.; Torres, M. Synthesis of Ru2Br(μ-O2CC6H4–R)4 (R = o-Me, m-Me, p-Me) Using Microwave Activation: Structural and Magnetic Properties. Inorganics 2014, 2, 524–536. [Google Scholar] [CrossRef] [Green Version]
- Terán, A.; Cortijo, M.; Gutiérrez, A.; Sánchez-Peláez, A.E.; Herrero, S.; Jiménez-Aparicio, R. Ultrasound-Assisted Synthesis of Water-Soluble Monosubstituted Diruthenium Compounds. Ultrason. Sonochemistry 2021, 80, 105828. [Google Scholar] [CrossRef]
- Das, B.K.; Chakravarty, A.R. The First Structurally Characterized Diruthenium(II,III) Complex with Four Bridging Arylcarboxylato Ligands. Polyhedron 1991, 10, 491–494. [Google Scholar] [CrossRef]
- Stephenson, T.A.; Wilkinson, G. New Ruthenium Carboxylate Complexes. J. Inorg. Nucl. Chem. 1966, 28, 2285–2291. [Google Scholar] [CrossRef]
- Urbanos, F.A. Program MASAS V 3.1; UCM: Madrid, Spain, 2002. [Google Scholar]
- Barral, M.C.; Jiménez-Aparicio, R.; Priego, J.L.; Royer, E.C.; Urbanos, F.A.; Amador, U. Diruthenium(II,III) Carboxylate Compounds: Existence of Both Polymeric and Ionic Forms in Solution and Solid State. Inorg. Chem. 1998, 37, 1413–1416. [Google Scholar] [CrossRef] [PubMed]
- Barral, M.C.; González-Prieto, R.; Jiménez-Aparicio, R.; Priego, J.L.; Torres, M.R.; Urbanos, F.A. Polymeric, Molecular, and Cation/Anion Arrangements in Chloro-, Bromo-, and Iododiruthenium(II,III) Carboxylate Compounds. Eur. J. Inorg. Chem. 2003, 2003, 2339–2347. [Google Scholar] [CrossRef]
- Aquino, M. Diruthenium and Diosmium Tetracarboxylates: Synthesis, Physical Properties and Applications. Coord. Chem. Rev. 1998, 170, 141–202. [Google Scholar] [CrossRef]
- Barral, M.C.; Jiménez-Aparicio, R.; Priego, J.L.; Royer, E.C.; Urbanos, F.A. Liquid Secondary Ion Mass Spectrometric Study of Diruthenium(II,III) Complexes. Inorg. Chim. Acta 1998, 277, 76–82. [Google Scholar] [CrossRef]
- Miskowski, V.M.; Loehr, T.M.; Gray, H.B. Electronic and Vibrational Spectra of Ru2(Carboxylate)4+ Complexes. Characterization of a High-Spin Metal-Metal Ground State. Inorg. Chem. 1987, 26, 1098–1108. [Google Scholar] [CrossRef]
- Miskowski, V.M.; Gray, H.B. Electronic Spectra of Ru2(Carboxylate)4+ Complexes. Higher Energy Electronic Excited States. Inorg. Chem. 1988, 27, 2501–2506. [Google Scholar] [CrossRef]
- Miskowski, V.M.; Hopkins, M.D.; Winkler, J.R.; Gray, H.B. Multiple Metal-Metal Bonds. In Inorganic Electronic Structure and Spectroscopy, Volume II: Applications and Case Studies; Solomon, E.I., Lever, A.B.P., Eds.; Wiley: New York, NY, USA, 1999; pp. 343–402. ISBN 978-0-471-32683-0. [Google Scholar]
- Barral, M.C.; González-Prieto, R.; Jiménez-Aparicio, R.; Priego, J.L.; Torres, M.R.; Urbanos, F.A. Synthesis, Properties, and Structural Characterization of Bromo- and Iodotetracarboxylatodiruthenium(II,III) Compounds. Eur. J. Inorg. Chem. 2004, 2004, 4491–4501. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Franks, M.L. Resonance Raman Spectra of Chlorotetra-Acetato- and Chlorotetrabutyrato-Diruthenium. J. Chem. Soc. Dalton Trans. 1976, 1825–1828. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Ferris, L.T.H. Resonance Raman, Excitation Profile and Electronic Structural Studies of Diruthenium Tetracarboxylate Complexes. Inorg. Chem. 1981, 20, 2759–2766. [Google Scholar] [CrossRef]
- Castro, M.A.; Roitberg, A.E.; Cukiernik, F.D. Theoretical and Experimental Studies of Diruthenium Tetracarboxylates Structure, Spectroscopy, and Electrochemistry. Inorg. Chem. 2008, 47, 4682–4690. [Google Scholar] [CrossRef] [PubMed]
- Cotton, F.A.; Walton, R.A. Multiple Bonds between Metal Atoms, 2nd ed.; Clarendon Press: New York, NY, USA; Oxford University Press: Oxford, UK, 1993; ISBN 978-0-19-855649-7. [Google Scholar]
- Norman, J.G.; Renzoni, G.E.; Case, D.A. Electronic Structure of Ru2(O2CR)4+ and Rh2(O2CR)4+ Complexes. J. Am. Chem. Soc. 1979, 101, 5256–5267. [Google Scholar] [CrossRef]
- Cukiernik, F.D.; Luneau, D.; Marchon, J.-C.; Maldivi, P. Mixed-Valent Diruthenium Long-Chain Carboxylates. 2. Magnetic Properties. Inorg. Chem. 1998, 37, 3698–3704. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.J. Magnetochemistry—Advances in Theory and Experimentation. In Progress in Inorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1982; pp. 203–283. ISBN 978-0-470-16630-7. [Google Scholar]
- Telser, J.; Drago, R.S. Reinvestigation of the Electronic and Magnetic Properties of Ruthenium Butyrate Chloride. Inorg. Chem. 1984, 23, 3114–3120, Correction in 1985, 24, 4765. [Google Scholar] [CrossRef]
- Mikuriya, M.; Yoshioka, D.; Handa, M. Magnetic Interactions in One-, Two-, and Three-Dimensional Assemblies of Dinuclear Ruthenium Carboxylates. Coord. Chem. Rev. 2006, 250, 2194–2211. [Google Scholar] [CrossRef]
- Estiú, G.; Cukiernik, F.D.; Maldivi, P.; Poizat, O. Electronic, Magnetic, and Spectroscopic Properties of Binuclear Diruthenium Tetracarboxylates: A Theoretical and Experimental Study. Inorg. Chem. 1999, 38, 3030–3039. [Google Scholar] [CrossRef]
- Jiménez-Aparicio, R.; Urbanos, F.A.; Arrieta, J.M. Magnetic Properties of Diruthenium(II,III) Carboxylate Compounds with Large Zero-Field Splitting and Strong Antiferromagnetic Coupling. Inorg. Chem. 2001, 40, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Cotton, F.A.; Kim, Y.; Ren, T. Molecular Structure and Magnetic Properties of a Linear Chain Compound, Ru2(O2CCMePh2)4Cl. Polyhedron 1993, 12, 607–611. [Google Scholar] [CrossRef]
- Olea, D.; González-Prieto, R.; Priego, J.L.; Barral, M.C.; de Pablo, P.J.; Torres, M.R.; Gómez-Herrero, J.; Jiménez-Aparicio, R.; Zamora, F. MMX Polymer Chains on Surfaces. Chem. Commun. 2007, 1591–1593. [Google Scholar] [CrossRef] [PubMed]
- Welte, L.; González-Prieto, R.; Olea, D.; Torres, M.R.; Priego, J.L.; Jiménez-Aparicio, R.; Gómez-Herrero, J.; Zamora, F. Time-Dependence Structures of Coordination Network Wires in Solution. ACS Nano 2008, 2, 2051–2056. [Google Scholar] [CrossRef] [PubMed]
1b | 1c | |
---|---|---|
Empirical formula | C34H33ClO13Ru2 | C66H62Cl2O26Ru4 |
Formula weight | 887.03 | 1746.33 |
Temperature/K | 293(2) | 293(2) |
Crystal system | Triclinic | triclinic |
Space group | P-1 | P-1 |
a/Å | 8.6893(9) | 10.5091(13) |
b/Å | 14.4399(15) | 10.6029(13) |
c/Å | 14.5070(16) | 15.938(2) |
α/° | 84.308(2) | 85.170(2) |
β/° | 79.522(2) | 75.587(2) |
γ/° | 80.622(2) | 84.125(2) |
Volume/Å3 | 1761.4(3) | 1707.8(4) |
Z | 2 | 1 |
ρcalc/g cm−3 | 1.672 | 1.698 |
μ/mm−1 | 0.998 | 1.028 |
Reflections collected | 13207 | 12851 |
Independent reflections | 6018 [Rint = 0.0387, Rsigma = 0.0568] | 5837 [Rint = 0.0871, Rsigma = 0.0883] |
Goodness-of-fit on F2 | 1.036 | 0.967 |
Final R indexes [I >= 2σ (I)] | R1 = 0.0488, wR2 = 0.1250 | R1 = 0.0387, wR2 = 0.0861 |
Final R indexes [all data] | R1 = 0.0855, wR2 = 0.1438 | R1 = 0.0673, wR2 = 0.1003 |
1b | 1c | ||
---|---|---|---|
Ru1-Ru2 | 2.2827(6) | Ru1-Ru1 | 2.2950(5) |
Ru2-Ru2 | 2.2667(5) | ||
Ru1-Cl1 | 2.508(2) | Ru1-Cl1 | 2.550(1) |
Ru2-O9 | 2.286(6) | Ru2-O11 | 2.296(3) |
Compound | σ(Axial Ligand)→σ*(Ru2) | π(RuO,Ru2)→π*(Ru2) | δ(Ru2)→δ*(Ru2) |
---|---|---|---|
1a | 332sh | 450 | 1088 |
2 | 328sh | 490 | 1169 |
3 | 352 | 474 | 1162 |
Compound | g | D/cm−1 | zJ/cm−1 | TIP/emu mol−1 | P/% | σ2 |
---|---|---|---|---|---|---|
1a | 2.00 a,c 2.21 b | 59.25 82.23 | −11.57 −14.11 | 9.83 × 10−4 3.40 × 10−5 | 2.60 12.54 | 8.32 × 10−5 1.30 × 10−5 |
1b | 2.22 | 67.47 | −0.16 | 2.76 × 10−7 | 2.80 | 1.07 × 10−4 |
2 | 2.12 | 59.66 | −0.09 | 2.24 × 10−4 | 2.67 × 10−7 | 3.24 × 10−5 |
3 | 2.02 | 60.31 | −0.32 | 5.80 × 10−3 | 0.47 | 4.46 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Martínez, P.; Moreno-Martínez, L.; González-Prieto, R.; Herrero, S.; Priego, J.L.; Jiménez-Aparicio, R. Steric, Activation Method and Solvent Effects on the Structure of Paddlewheel Diruthenium Complexes. Appl. Sci. 2022, 12, 1000. https://doi.org/10.3390/app12031000
Delgado-Martínez P, Moreno-Martínez L, González-Prieto R, Herrero S, Priego JL, Jiménez-Aparicio R. Steric, Activation Method and Solvent Effects on the Structure of Paddlewheel Diruthenium Complexes. Applied Sciences. 2022; 12(3):1000. https://doi.org/10.3390/app12031000
Chicago/Turabian StyleDelgado-Martínez, Patricia, Luis Moreno-Martínez, Rodrigo González-Prieto, Santiago Herrero, José L. Priego, and Reyes Jiménez-Aparicio. 2022. "Steric, Activation Method and Solvent Effects on the Structure of Paddlewheel Diruthenium Complexes" Applied Sciences 12, no. 3: 1000. https://doi.org/10.3390/app12031000
APA StyleDelgado-Martínez, P., Moreno-Martínez, L., González-Prieto, R., Herrero, S., Priego, J. L., & Jiménez-Aparicio, R. (2022). Steric, Activation Method and Solvent Effects on the Structure of Paddlewheel Diruthenium Complexes. Applied Sciences, 12(3), 1000. https://doi.org/10.3390/app12031000