A GIS-Based Analysis of the Light Rail Transit Systems in Spain
Abstract
:1. Introduction
2. Literature Review
3. Study Area
4. Materials and Methods
- Analysis of previous studies and background. A bibliographic search was made in the main internet sites related to LRT on these topics: advantages and individual LRT in Spain, groups of LRTs in other countries, parametric and geographic analyses of metropolitan public transportation systems, and GIS as a tool for transportation systems.
- Analysis of the sample. The LRTs to be evaluated were determined and divided into subgroups by whether or not there were conventional subway systems in the city itself.
- Data and parameters to be evaluated in the study were defined: the sources cited in the literature review section were checked, and a list was determined (Table 1): Annual service users; line length; number of lines, number of stations, number of shared stations; capture area; potential users; daily users; users per station; acceptance rate; density of capture area; mean distance between stations; passengers per unit line.
- Data processing with QGIS.
- Geometrical data (LRT lines and stations) were drawn.
- A shape with data from official census was included. Some lab work was carried out in order to obtain the population density in each census section.
- Finally, some parameters values were obtained: Line length; number of lines, number of stations, number of shared stations; capture area; potential users; mean distance between stations; passengers per unit line. The population affected in each catchment area was determined under the assumption that the population in each census area (minimum area for which there are census data) is uniformly distributed within each area. Furthermore, the population data was taken from the official 2017 census.
- Results are defined in different tables.
- Ratios were defined after the aforementioned data: daily users; users per station; acceptance rate; density of capture area; passengers per unit line.
- Discussion and conclusions. The values found were analyzed, and the main conclu-sions of the study were outlined.
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vigarié, A. Le tramway de Nantes: Un exemple d’utilisation des transports en commun pour contrôler et orienter l’urbanisation. Gèocarrefour 1983, 58, 41–50. [Google Scholar] [CrossRef]
- Bottoms, G.D. Continuing development in light rail transit in Western Europe—United Kingdom, France, Spain, Portugal and Italy. In Proceedings of the 9th National Light Rail Transit Conference, Portland, Oregon, 16–18 November 2003; pp. 713–728. [Google Scholar]
- Matsoukis, E. The Role of a Feasibility Study in Planning A New LRT System. In Proceedings of the WIT Transactions on The Built Environment; WIT Press: Southampton, UK, 2003; pp. 25–32. [Google Scholar]
- Lane, B.W. Significant characteristics of the urban rail renaissance in the United States: A discriminant analysis. Transp. Res. Part A Policy Pract. 2008, 42, 279–295. [Google Scholar] [CrossRef]
- Giménez, I. Once empresas concurren para redactar el proyecto del futuro tranvía. Diario de Noticias. 12 April 2006. Available online: https://web.archive.org/web/20060526090227/ (accessed on 4 December 2021).
- Redacción. El Tranvía completa otro de los hitos pendientes al adjudicar a Renfe el contrato de pre-explotación por 4,2 millones. Diario de Cádiz. 17 December 2021. Available online: https://www.diariodecadiz.es/noticias-provincia-cadiz/tranvia-completa-hito-adjudicar-Renfe-contrato-pre-eexplotacion-video_0_1642036290.html (accessed on 4 December 2021).
- Olesen, M. Framing light rail projects—Case studies from Bergen, Angers and Bern. Case Stud. Transp. Policy 2014, 2, 10–19. [Google Scholar] [CrossRef]
- Cervero, R. Journal Report: Light Rail Transit and Urban Development. J. Am. Plan. Assoc. 1984, 50, 133–147. [Google Scholar] [CrossRef]
- Handy, S. Smart Growth and the Transportation-Land Use Connection: What Does the Research Tell Us? Int. Reg. Sci. Rev. 2005, 28, 146–167. [Google Scholar] [CrossRef]
- Edwards, M.; Mackett, R.L. Developing new urban public transport systems. Transp. Policy 1996, 3, 225–239. [Google Scholar] [CrossRef]
- Huang, R.; Moudon, A.V.; Zhou, C.; Stewart, O.T.; Saelens, B.E. Light rail leads to more walking around station areas. J. Transp. Health 2017, 6, 201–208. [Google Scholar] [CrossRef]
- Casello, J.; Lewis, G.; Yeung, K.; Santiago-Rodríguez, D. A Transit Technology Selection Model. J. Public Transp. 2014, 17, 50–75. [Google Scholar] [CrossRef] [Green Version]
- Mackett, R.; Babalik Sutcliffe, E. New urban rail systems: A policy-based technique to make them more successful. J. Transp. Geogr. 2003, 11, 151–164. [Google Scholar] [CrossRef]
- Whitney, W.J.; O’Mahony, M.M. Transport planning in Dublin and Edinburgh. Proc. Inst. Civ. Eng. Transp. 1999, 135, 163–170. [Google Scholar] [CrossRef]
- Kołoś, A.; Taczanowski, J. The feasibility of introducing light rail systems in medium-sized towns in Central Europe. J. Transp. Geogr. 2016, 54, 400–413. [Google Scholar] [CrossRef]
- Sekasi, J.; Martens, M.L. Assessing the Contributions of Urban Light Rail Transit to the Sustainable Development of Addis Ababa. Sustainability 2021, 13, 5667. [Google Scholar] [CrossRef]
- Mehanović, M. Guidelines for transformation of trams to the light rail system in Sarajevo. Sci. Eng. Technol. 2021, 1, 42–51. [Google Scholar] [CrossRef]
- Chamseddine, Z.; Ait Boubkr, A. Exploring the place of social impacts in urban transport planning: The case of Casablanca City. Urban Plan. Transp. Res. 2020, 8, 138–157. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Peng, J.; Liu, W.; Huang, Z. Stationary Charging Station Design for Sustainable Urban Rail Systems: A Case Study at Zhuzhou Electric Locomotive Co., China. Sustainability 2015, 7, 465–481. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Raguz, J.F. Assessing the impacts of Light Rail Transit on urban land in Manila. J. Transp. Land Use 2010, 3, 113–138. [Google Scholar] [CrossRef] [Green Version]
- Abidoye, R.B.; Fam, F.; Oshodi, O.S.; Oyetunji, A.K. Impact of light rail line on residential property values—A case of Sydney, Australia. Int. J. Hous. Mark. Anal. 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Falamarzi, A.; Moridpour, S.; Nazem, M. A time-based track quality index: Melbourne tram case study. Int. J. Rail Transp. 2021, 9, 23–38. [Google Scholar] [CrossRef]
- Lee, J.; Boarnet, M.; Houston, D.; Nixon, H.; Spears, S. Changes in Service and Associated Ridership Impacts near a New Light Rail Transit Line. Sustainability 2017, 9, 1827. [Google Scholar] [CrossRef] [Green Version]
- Park, E.S.; Sener, I.N. Traffic-related air emissions in Houston: Effects of light-rail transit. Sci. Total Environ. 2019, 651, 154–161. [Google Scholar] [CrossRef]
- Alade, T.; Edelenbos, J.; Gianoli, A. A Sustainable Approach to Innovation Adoption in Light-Rail Transport. Sustainability 2020, 12, 1262. [Google Scholar] [CrossRef] [Green Version]
- Schoner, J.; Cao, X. Walking for Purpose and Pleasure. Transp. Res. Rec. J. Transp. Res. Board 2014, 2464, 67–76. [Google Scholar] [CrossRef]
- Páez, A.; Whalen, K. Enjoyment of commute: A comparison of different transportation modes. Transp. Res. Part A Policy Pract. 2010, 44, 537–549. [Google Scholar] [CrossRef]
- Roberts, J.; Hu, M.; Saksvig, B.; Brachman, M.; Durand, C. Examining the Influence of a New Light Rail Line on the Health of a Demographically Diverse and Understudied Population within the Washington, D.C. Metropolitan Area: A Protocol for a Natural Experiment Study. Int. J. Environ. Res. Public Health 2018, 15, 333. [Google Scholar] [CrossRef] [Green Version]
- Pulugurtha, S.S.; Srirangam, L.P. Pedestrian safety at intersections near light rail transit stations. Public Transp. 2021, 1–26. [Google Scholar] [CrossRef]
- Credit, K. Transit-oriented economic development: The impact of light rail on new business starts in the Phoenix, AZ Region, USA. Urban Stud. 2018, 55, 2838–2862. [Google Scholar] [CrossRef]
- Lin, J.; Chen, T.; Han, Q. Simulating and Predicting the Impacts of Light Rail Transit Systems on Urban Land Use by Using Cellular Automata: A Case Study of Dongguan, China. Sustainability 2018, 10, 1293. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Guthrie, A.E.; Levinson, D.M. Impact of light rail implementation on labor market accessibility: A transportation equity perspective. J. Transp. Land Use 2012, 5, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Sovacool, B.K.; Yazdi, A.H. Technological frames and the politics of automated electric Light Rail Rapid Transit in Poland and the United Kingdom. Technol. Soc. 2019, 59, 101190. [Google Scholar] [CrossRef]
- Ferbrache, F.; Knowles, R.D. City boosterism and place-making with light rail transit: A critical review of light rail impacts on city image and quality. Geoforum 2017, 80, 103–113. [Google Scholar] [CrossRef]
- Van Der Bijl, R.; Van Oort, N.; Bukman, B. Light Rail in Bird’s Eye View. In Light Rail Transit Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–15. [Google Scholar]
- Van Der Bijl, R.; Van Oort, N.; Bukman, B. Making Light Rail. In Light Rail Transit Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 155–196. [Google Scholar]
- Ibrahim, A.N.H.; Borhan, M.N.; Md. Yusoff, N.I.; Ismail, A. Rail-based Public Transport Service Quality and User Satisfaction—A Literature Review. Promet Traffic Transp. 2020, 32, 423–435. [Google Scholar] [CrossRef]
- Chowdhury, S.; Ceder, A. Users’ willingness to ride an integrated public-transport service: A literature review. Transp. Policy 2016, 48, 183–195. [Google Scholar] [CrossRef]
- Shen, W.; Xiao, W.; Wang, X. Passenger satisfaction evaluation model for Urban rail transit: A structural equation modeling based on partial least squares. Transp. Policy 2016, 46, 20–31. [Google Scholar] [CrossRef]
- Ibrahim, A.N.H.; Borhan, M.N.; Mat Yazid, M.R.; Rahmat, R.A.; Yukawa, S. Factors Influencing Passengers’ Satisfaction with the Light Rail Transit Service in Alpha Cities: Evidence from Kuala Lumpur, Malaysia Using Structural Equation Modelling. Mathematics 2021, 9, 1954. [Google Scholar] [CrossRef]
- De Oña, J.; de Oña, R.; Eboli, L.; Mazzulla, G. Perceived service quality in bus transit service: A structural equation approach. Transp. Policy 2013, 29, 219–226. [Google Scholar] [CrossRef]
- Kingham, S.; Dickinson, J.; Copsey, S. Travelling to work: Will people move out of their cars. Transp. Policy 2001, 8, 151–160. [Google Scholar] [CrossRef]
- Galdames, C.; Tudela, A.; Carrasco, J.-A. Exploring the Role of Psychological Factors in Mode Choice Models by a Latent Variables Approach. Transp. Res. Rec. J. Transp. Res. Board 2011, 2230, 68–74. [Google Scholar] [CrossRef]
- Guo, Z.; Wilson, N.H.M. Modeling Effects of Transit System Transfers on Travel Behavior. Transp. Res. Rec. J. Transp. Res. Board 2007, 2006, 11–20. [Google Scholar] [CrossRef]
- Albalate, D.; Bel, G.; Fageda, X. When supply travels far beyond demand: Causes of oversupply in Spain’s transport infrastructure. Transp. Policy 2015, 41, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Donaire, G. El tranvía de Jaén, 120 millones tirados a una vía muerta. El País. 26 May 2013. Available online: https://elpais.com/ccaa/2013/05/24/andalucia/1369396376_116395.html (accessed on 4 December 2021).
- Vila, Á. Caballero, tajante sobre el regreso del tranvía a Vigo: “Las ciudades que lo hicieron quebraron”. Metropolitano Gal. 3 February 2021. Available online: https://metropolitano.gal/enfoque/caballero-tajante-sobre-el-regreso-del-tranvia-a-vigo-las-ciudades-que-lo-hicieron-quebraron/ (accessed on 4 December 2021).
- Lamas, J. Un metro llamado ligero que el viento se llevó. La Voz Galicia. 8 November 2021. Available online: https://www.lavozdegalicia.es/noticia/vigo/vigo/2021/11/09/metro-llamado-ligero-viento-llevo/0003_202111V9C8991.htm (accessed on 4 December 2021).
- Kim, K.W.; Lee, D.W.; Chun, Y.H. A comparative study on the service coverages of subways and buses. KSCE J. Civ. Eng. 2010, 14, 915–922. [Google Scholar] [CrossRef]
- Vitosoglu, Y.; Ozden, R.; Yaliniz, P.; Bilgic, S. Comparison of Light Rail Systems in Turkey with the Method of Comparative Standard Determination. Transp. Res. Procedia 2014, 3, 670–679. [Google Scholar] [CrossRef] [Green Version]
- Alpkokin, P.; Topuz Kiremitci, S.; Black, J.A.; Cetinavci, S. LRT and street tram policies and implementation in turkish cities. J. Transp. Geogr. 2016, 54, 476–487. [Google Scholar] [CrossRef]
- Van der Bijl, R.; Utsunomiya, K.; van Oort, N. Failed projects offer valuable lessons for future schemes. Int. Railway J. 2020. Available online: https://www.railjournal.com/in_depth/failed-projects-valuable-lessons-future-schemes (accessed on 4 December 2021).
- Monzón de Cáceres, A.; López García de Léaniz, C.; Del Cuvillo, R.; Julio Castillo, R.; Sánchez Sacristán, C.M. Observatorio de la Movilidad Metropolitana. Available online: http://www.observatoriomovilidad.es/es/publicaciones/informes.html (accessed on 8 March 2020).
- Martín Urbano, P.; Ruiz Rúa, A.; Sánchez Gutiérrez, J.I. El sistema de transporte público en España: Una perspectiva interregional. Cuad. Econ. 2012, 31, 195–228. [Google Scholar]
- Navarro-Ligero, M.L.; Valenzuela-Montes, L.M. The performance of planning hypotheses about urban-transport futures: The Light Rail Transit in Granada. Transp. Res. Procedia 2019, 41, 596–608. [Google Scholar] [CrossRef]
- Talavera García, R.; Valenzuela Montes, L.M.; Soria Lara, J.A. Evaluando la influencia de la calidad de la distancia peatonal en la cobertura de paradas del metro ligero de Granada (España). Bol. La Asoc. Geógr. Españoles 2018, 79, 1–25. [Google Scholar] [CrossRef]
- Jiménez-Torrecillas, A.; Hernández-Soriano, R.; Ruiz, L.M.; Rodríguez-Aguilera, A.; Tienza, C.; Garzón, F.; Carvajal, R.; Sánchez-López, A.; Moreno, J.D. Integración de restos arqueológicos Almohades en el metropolitano de Granada. La investigación multidisciplinar para el proyecto y desarrollo de infraestructuras contemporáneas en los centros históricos. Inf. Constr. 2014, 66, e036. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.L.E.; Landex, A. Catchment areas for public transport. WIT Trans. Built Environ. 2008, 101, 175–184. [Google Scholar]
- Cervero, R.; Kang, C.D. Bus rapid transit impacts on land uses and land values in Seoul, Korea. Transp. Policy 2011, 18, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Hess, D.B. Walking to the bus: Perceived versus actual walking distance to bus stops for older adults. Transp. 2012, 39, 247–266. [Google Scholar] [CrossRef]
- Park, S.; Deakin, E.; Jang, K. Can Good Walkability Expand the Size of Transit-Oriented Developments? Transp. Res. Rec. J. Transp. Res. Board 2015, 2519, 157–164. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the Built Environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Sarker, R.I.; Mailer, M.; Sikder, S.K. Walking to a public transport station. Smart Sustain. Built Environ. 2019, 9, 38–53. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Jin, Y.; He, M. Measuring Bikeshare Access/Egress Transferring Distance and Catchment Area around Metro Stations from Smartcard Data. Information 2018, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Hess, D.B.; Almeida, T.M. Impact of Proximity to Light Rail Rapid Transit on Station-area Property Values in Buffalo, New York. Urban Stud. 2007, 44, 1041–1068. [Google Scholar] [CrossRef]
- Oluyomi, A.O.; Knell, G.; Durand, C.P.; Mercader, C.; Salvo, D.; Sener, I.N.; Gabriel, K.P.; Hoelscher, D.M.; Kohl, H.W. Foot-based audit of streets adjacent to new light rail stations in Houston, Texas: Measurement of health-related characteristics of the built environment for physical activity research. BMC Public Health 2019, 19, 238. [Google Scholar] [CrossRef] [Green Version]
- Kuby, M.; Barranda, A.; Upchurch, C. Factors influencing light-rail station boardings in the United States. Transp. Res. Part A Policy Pract. 2004, 38, 223–247. [Google Scholar] [CrossRef]
- Fajri, F.M.; Sumabrata, J. Analysis of Transit Oriented Development Potential on Light Rail Transit Palembang, Simpang Polda Station Area. MATEC Web Conf. 2019, 259, 5003. [Google Scholar] [CrossRef]
- O’Sullivan, S.; Morrall, J. Walking Distances to and from Light-Rail Transit Stations. Transp. Res. Rec. J. Transp. Res. Board 1996, 1538, 19–26. [Google Scholar] [CrossRef]
- Ortega Ortiz, C. Estudio de Viabilidad, Anteproyecto, Proyecto Constructivo de Referencia, Documentación Ambiental, Plan de Explotación y Programa Económico de una Línea de Tranvía Este—Oeste en Zaragoza; University of Zaragoza: Barcelona, Spain, 2017. [Google Scholar]
- Gutiérrez, J.; García-Palomares, J.C. Distance-Measure Impacts on the Calculation of Transport Service Areas Using GIS. Environ. Plan. B Plan. Des. 2008, 35, 480–503. [Google Scholar] [CrossRef]
- Magalhães, M.T. Spatial coverage index for assessing national and regional transportation infrastructures. J. Transp. Geogr. 2016, 56, 53–61. [Google Scholar] [CrossRef]
- Furth, P.G.; Mekuria, M.C.; SanClemente, J.L. Stop Spacing Analysis Using Geographic Information System Tools with Parcel and Street Network Data. Transp. Res. Rec. J. Transp. Res. Board 2007, 2034, 73–81. [Google Scholar] [CrossRef]
- Banai, R. Transit Station Area Land Use/Site Assessment with Multiple Criteria: An Integrated GIS-Expert System Prototype. J. Public Transp. 2000, 3, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Bhuyan, I.A.; Chavis, C.; Nickkar, A.; Barnes, P. GIS-Based Equity Gap Analysis: Case Study of Baltimore Bike Share Program. Urban Sci. 2019, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.J.; Shaw, S.-L. Geographic Information Systems for Transportation in the 21st Century. Geogr. Compass 2015, 9, 180–189. [Google Scholar] [CrossRef]
- Breje, M.; Bilaşco, Ş.; Roşca, S.; Fodorean, I.; Vescan, I. GIS spatial analysis model for access time to public health infrastructure. Case study: Arad County, Romania. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM, Albena, Bulgaria, 28 June–9 July 2019; pp. 865–872. [Google Scholar]
- Hamed, M.M.; Easa, S.M. Integrated Modeling of Urban Shopping Activities. J. Urban Plan. Dev. 1998, 124, 115–131. [Google Scholar] [CrossRef]
- Prasertsri, N.; Sangpradid, S. Parking Site Selection for Light Rail Stations in Muaeng District, Khon Kaen, Thailand. Symmetry 2020, 12, 1055. [Google Scholar] [CrossRef]
- Farooq, A.; Xie, M.; Stoilova, S.; Ahmad, F.; Guo, M.; Williams, E.J.; Gahlot, V.K.; Yan, D.; Mahamat Issa, A. Transportation Planning through GIS and Multicriteria Analysis: Case Study of Beijing and XiongAn. J. Adv. Transp. 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Farooq, A.; Xie, M.; Stoilova, S.; Ahmad, F. Multicriteria Evaluation of Transport Plan for High-Speed Rail: An Application to Beijing-Xiongan. Math. Probl. Eng. 2019, 2019, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Tejedor, S.D. El 53,5% de los gijoneses estará a menos de 15 minutos de una estación. El Comercio. 10 March 2021. Available online: https://www.elcomercio.es/gijon/gijoneses-minutos-estacion-20210310001620-ntvo.html (accessed on 4 December 2021).
- Redacción. El Mitma Destina otro Millón de Euros al Proyecto de la MetroGuagua de Las Palmas de Gran Canaria; Europa Press: London, UK, 2022; Available online: https://www.europapress.es/islas-canarias/noticia-mitma-destina-otro-millon-euros-proyecto-metroguagua-palmas-gran-canaria-20220104134455.html (accessed on 4 December 2021).
- Redacción. Un Proyecto Conjunto Fijará Plazos Para El Plan de Vías y El Metrotrén. Mi Gijón. 15 December 2021. Available online: https://migijon.com/proyecto-conjunto-fijara-plazos-plan-vias-metrotren-gijon/ (accessed on 4 December 2021).
Description | ||
---|---|---|
1 | Annual service users (million pax) | |
2 | Line length (km) | |
3 | Number of lines (units) | |
4 | Number of stations (units) | |
5 | Number of shared stations (units) | |
6 | Capture area (km2) | Urban area within 500 m of a station |
7 | Potential users (pop) | Population of the capture area |
8 | Daily users (pax) | |
9 | Users per station (pax) | |
10 | Acceptance rate | |
11 | Density of capture area | |
12 | Mean distance between stations (m) | |
13 | Passengers per unit line |
Granada | Murcia | Tenerife | Vitoria | Zaragoza | ||
---|---|---|---|---|---|---|
1 | Annual service users (million pax) | 10.20 | 5.10 | 14.10 | 8.30 | 28.20 |
2 | Line length (km) | 15.90 | 18.00 | 16.10 | 12.72 | 12.80 |
3 | Number of lines (units) | 1.00 | 2.00 | 2.00 | 2.00 | 1.00 |
4 | Number of stations (units) | 26.00 | 28.00 | 25.00 | 20.00 | 33.00 |
5 | Number shared stations (units) | 0.00 | 1.00 | 2.00 | 6.00 | 0.00 |
6 | Capture area (km2) | 14.08 | 14.33 | 12.79 | 7.06 | 11.76 |
7 | Potential users (pop) | 26,131.00 | 21,705.00 | 29,713.00 | 17,900.00 | 22,286.00 |
8 | Daily users (pax) | 18,214.29 | 9107.14 | 25,178.57 | 14,821.43 | 50,357.14 |
9 | Users per station | 700.55 | 325.26 | 1.007.14 | 741.07 | 1525.97 |
10 | Acceptance rate | 70% | 42% | 85% | 83% | 226% |
11 | Density of capture area | 1855.89 | 1514.65 | 2323.14 | 2535.41 | 1895.07 |
12 | Mean distance between stations (m) | 636.00 | 666.67 | 644.00 | 530.00 | 400.00 |
13 | Passengers per unit line | 0.64 | 0.28 | 0.88 | 0.65 | 2.20 |
Group 2 | Group 3 | ||||||
---|---|---|---|---|---|---|---|
Barcelona | Bilbao | Madrid | Seville | Valencia | Alicante | ||
1 | Annual service users (million pax) | 29.10 | 2.99 | 16.90 | 3.97 | 8.80 | 11.10 |
2 | Line length (km) | 29.20 | 5.57 | 35.64 | 2.20 | 21.10 | 112.60 |
3 | Number of lines (unit) | 6.00 | 1.00 | 4.00 | 1.00 | 3.00 | 5.00 |
4 | Number of stations (units) | 53.00 | 14.00 | 55.00 | 5.00 | 43.00 | 69.00 |
5 | Number shared stations (units) | 10.00 | 0.00 | 1.00 | 0.00 | 12.00 | 9.00 |
6 | Capture area (km2) | 23.36 | 5.06 | 28.20 | 2.62 | 20.03 | 40.52 |
7 | Potential users (pop) | 22,287.00 | 20,255.00 | 7080.00 | 2165.00 | 46,428.00 | 30,638.00 |
8 | Daily users (pax) | 51.964.29 | 5.339.29 | 30.178.57 | 7.089.29 | 15.714.28 | 19.821.43 |
9 | Users per station | 980.46 | 381.38 | 548.70 | 1.417.86 | 365.45 | 287.27 |
10 | Acceptance rate | 233% | 26% | 426% | 327% | 34% | 65% |
11 | Density of capture area | 954.07 | 4.002.96 | 251.06 | 826.34 | 2317.92 | 756.12 |
12 | Mean distance between stations (m) | 512.18 | 428.46 | 685.38 | 550.00 | 405.77 | 1.542.47 |
13 | Passengers per unit line | 1.00 | 0.54 | 0.47 | 1.80 | 0.42 | 0.10 |
City | Population in Thousands (1 January 2021) | Metro/LRT | Notes |
---|---|---|---|
Madrid | 3305 | Metro and LRT | |
Barcelona | 1636 | Metro and LRT | |
Valencia | 789 | Metro and LRT | |
Seville | 684 | Metro and LRT | |
Zaragoza | 675 | LRT | |
Málaga | 577 | Metro | |
Murcia | 460 | LRT | |
Palma | 419 | Metro | |
Las Palmas | 378 | - | Future BTR [84] |
Bilbao | 346 | Metro and LRT | |
Alicante | 337 | Tram-train | |
Córdoba | 322 | - | - |
Valladolid | 297 | - | - |
Vigo | 293 | - | - |
Gijón | 268 | - | Future train system [85] |
Vitoria | 253 | LRT | |
A Coruña | 245 | - | - |
Elche | 234 | - | - |
Granada | 231 | LRT | |
Oviedo | 217 | - | - |
Cartagena | 216 | - | - |
Jerez de la Frontera | 212 | - | Future tram-train [6] |
Santa Cruz de Tenerife | 208 | LRT | |
Pamplona | 203 | - | - |
Almería | 200 | - | - |
Ankara | Bursa | Adana | Kayseri | Samsum | |
---|---|---|---|---|---|
Annual service users (million pax) | 35.59 | 63.87 | 24.84 | 14.60 | 11.71 |
Length of lines (km) | 8.70 | 30.50 | 17.40 | 14.20 | 15.70 |
Number of stations (unit) | 11.00 | 31.00 | 28.00 | 13.00 | 21.00 |
Daily users (pax) | 63,553.57 | 114,053.57 | 44,357.14 | 26,071.43 | 20,910.71 |
Users per station (pax) | 5777.60 | 3679.15 | 1584.18 | 2005.49 | 995.75 |
Mean distance between stations (m) | 538–994 | 600–800 | 800–1000 | 400–800 | 600–800 |
Passengers per unit line | 4.09 | 2.09 | 1.43 | 1.03 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantiga-Facal, E.; Plasencia-Lozano, P. A GIS-Based Analysis of the Light Rail Transit Systems in Spain. Appl. Sci. 2022, 12, 1282. https://doi.org/10.3390/app12031282
Pantiga-Facal E, Plasencia-Lozano P. A GIS-Based Analysis of the Light Rail Transit Systems in Spain. Applied Sciences. 2022; 12(3):1282. https://doi.org/10.3390/app12031282
Chicago/Turabian StylePantiga-Facal, Estela, and Pedro Plasencia-Lozano. 2022. "A GIS-Based Analysis of the Light Rail Transit Systems in Spain" Applied Sciences 12, no. 3: 1282. https://doi.org/10.3390/app12031282
APA StylePantiga-Facal, E., & Plasencia-Lozano, P. (2022). A GIS-Based Analysis of the Light Rail Transit Systems in Spain. Applied Sciences, 12(3), 1282. https://doi.org/10.3390/app12031282