A Review on Applications of Fuzzy Logic Control for Refrigeration Systems
Abstract
:1. Introduction
2. Fuzzy Controller Design Applied to RACs
Fuzzy Logic Integrated with Other Control Systems for RACs
3. Fuzzy Driver Applications on RACs
3.1. Fuzzy Control in Chillers and Cold Rooms
3.2. Fuzzy Control in Air Conditioning Systems
3.3. Fuzzy Control in Domestic Refrigerators
3.4. Fuzzy Control in Heat Pumps
3.5. Energy Saving
3.6. Future Perspectives for the Application of Fuzzy Controllers in RACs
4. Conclusions
- It was shown that the use of fuzzy controllers in the RACs has allowed the obtaining of a better thermal efficiency than that of classic controllers, such as the ON/OFF and the PID. Additionally, it is possible to improve the results when the controller is integrated with artificial neural networks or genetic algorithms;
- Computer simulations and experimental validation have shown that the use of fuzzy controllers can reduce energy consumption. Furthermore, the implementation using different control strategies, such as fuzzy-PID or the fuzzy neuro-controllers has allowed better energy savings than using only one type of control.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Do | Damper opening |
HR | Relative humidity, % |
Mass flow rate, kg/s | |
SH | Superheating, °C, K |
T | Temperature, °C, K |
Δ | Change |
Subscript | |
amb | Ambient |
b | Wet bulb |
d | Dry bulb |
sc | Secondary fluid |
w | Water |
References
- Dupont, J.L.; Domanski, P.; Lebrun, P.; Ziegler, P. The Role of Refrigeration in the Global Economy (2019), 38th Note on Refrigeration Technologies; IIF-IIR: Paris, France, 2019. [Google Scholar]
- Heredia-Aricapa, Y.; Belman-Flores, J.M.; Mota-Babiloni, A.; Serrano-Arellano, J.; García-Pabón, J.J. Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A Étude des mélanges à faible PRP pour le remplacement des frigorigénes HFC. Int. J. Refrig. 2020, 111, 113–123. [Google Scholar] [CrossRef]
- Azmi, W.H.; Sharif, M.Z.; Yusof, T.M.; Mamat, R.; Redhwan, A.A.M. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system—A review. Renew. Sustain. Energy Rev. 2017, 69, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Catrini, P.; Panno, D.; Cardona, F.; Piacentino, A. Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers. Appl. Energy 2020, 266, 114856. [Google Scholar] [CrossRef]
- Bista, S.; Hosseini, S.E.; Owens, E.; Phillips, G. Performance improvement and energy consumption reduction in refrigeration systems using phase change material (PCM). Appl. Therm. Eng. 2018, 142, 723–735. [Google Scholar] [CrossRef]
- Murthy, A.A.; Subiantoro, A.; Norris, S.; Fukuta, M. A review on expanders and their performance in vapour compression refrigeration systems. Int. J. Refrig. 2019, 106, 427–446. [Google Scholar] [CrossRef]
- Espíndola, R.S.; Knabben, F.T.; Melo, C.; Hermes, C.J.L. Thermal performance of skin-type, hot-wall condensers, Part II: Design guidelines for household applications. Int. J. Refrig. 2020, 110, 262–267. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J. Achieving better energy-efficient air conditioning—A review of technologies and strategies. Appl. Energy 2013, 104, 87–104. [Google Scholar] [CrossRef]
- Goyal, A.; Staedter, M.A.; Garimella, S. A review of control methodologies for vapor compression and absorption heat pumps. Int. J. Refrig. 2019, 97, 1–20. [Google Scholar] [CrossRef]
- Sung, T.; Kim, Y.J.; Kim, H.S.; Kim, J. Empirical modeling and robust control of a novel meso-scale vapor compression refigeration system (mVCRS). Int. J. Refrig. 2017, 77, 99–115. [Google Scholar] [CrossRef]
- Massa Gray, F.; Schmidt, M. A hybrid approach to thermal building modelling using a combination of Gaussian processes and grey-box models. Energy Build. 2018, 165, 56–63. [Google Scholar] [CrossRef]
- Noeding, M.; Tegethoff, W.; Koehler, J. Zero Gradient Control for R-744 refrigeration cycles. Int. J. Refrig. 2019, 106, 283–296. [Google Scholar] [CrossRef]
- Bejarano, G.; Vivas, C.; Ortega, M.G.; Vargas, M. Suboptimal hierarchical control strategy to improve energy efficiency of vapour-compression refrigeration systems. Appl. Therm. Eng. 2017, 125, 165–184. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.; Hao, J.-H.; Chen, X.; He, K.-L. Heat current method for analysis and optimization of a refrigeration system for aircraft environmental control system. Int. J. Refrig. 2019, 106, 163–180. [Google Scholar] [CrossRef]
- Toub, M.; Reddy, C.R.; Razmara, M.; Shahbakhti, M.; Robinett, R.D.; Aniba, G. Model-based predictive control for optimal MicroCSP operation integrated with building HVAC systems. Energy Convers. Manag. 2019, 199, 111924. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M.; Sengur, A.; Esen, M. Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems. Int. J. Refrig. 2008, 31, 65–74. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Wang, D.D.; Chen, J.P.; Shen, Y.G.; Du, J. Temperature control for a vehicle climate chamber using chilled water system. Appl. Therm. Eng. 2016, 106, 117–124. [Google Scholar] [CrossRef]
- Mirinejad, H.; Sadati, S.H.; Ghasemian, M.; Torab, H. Control Techniques in heating, ventilating and air conditioning systems. J. Comput. Sci. 2008, 4, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Mirinejad, H.; Welch, K.C.; Spicer, L. A review of intelligent control techniques in HVAC systems. In Proceedings of the 2012 IEEE Energytech, Cleveland, OH, USA, 29–31 May 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice Hall PTR: Hoboken, NJ, USA, 1995; ISBN 0-13-101171-5. [Google Scholar]
- Management Association. Fuzzy Systems: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2017; Volume 1–3, ISBN 9781522519089. [Google Scholar]
- Koprinkova, P. Membership functions shape and its influence on the dynamical behaviour of fuzzy logic controller. Cybern. Syst. 2000, 31, 161–173. [Google Scholar] [CrossRef]
- Islam, M.A.; Hossain, M.S. The Development of Fuzzy Logic Controller (FLC) in Air Conditioning System Using Several Types of Fuzzy Numbers. Intern. J. Fuzzy Math. Arch. 2021, 1, 2320–3250. [Google Scholar] [CrossRef]
- Almasani, S.A.M.; Qaid, W.A.A.; Khalid, A.; Alqubati, I.A.A. Fuzzy Expert Systems to Control the Heating, Ventilating and Air Conditioning (HVAC) Systems. Int. J. Eng. Res. Technol. 2015, 4, 808–815. [Google Scholar]
- Islam, M.; Hossain, M.; Haque, I. Mathematical Comparison of Defuzzification of Fuzzy Logic Controller for Intelligence Air Conditioning System. Int. J. Sci. Res. Math. Stat. Sci. 2021, 8, 29–37. [Google Scholar]
- Barelli, L.; Bidini, G.; Arce, R. Fuzzy logic regulator for the performance improvement and the energy consumption reduction of an industrial chiller. In Proceedings of the 2003 ASME International Mechanical Engineering Congress, Washington, DC, USA, 15–21 November 2003; pp. 1–10. [Google Scholar]
- Silva, F.V.; Neves Filho, L.C.; Silveira, V. Experimental evaluation of fuzzy controllers for the temperature control of the secondary refrigerant in a liquid chiller. J. Food Eng. 2005, 75, 349–354. [Google Scholar] [CrossRef]
- Ekren, O.; Kücüka, S. Energy saving potential of chiller system with fuzzy logic control. Int. J. Energy Res. 2009, 34, 897–906. [Google Scholar] [CrossRef]
- Ekren, O.; Sahin, S.; Isler, Y. Comparison of different controllers for variable speed compressor and electronic expansion valve. Int. J. Refrig. 2010, 33, 1161–1168. [Google Scholar] [CrossRef]
- Yang, Z.; Duan, P.; Li, Z.; Yang, X. Self-Adjusting Fuzzy Logic Controller for Refrigeration Systems. In Proceedings of the International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 2823–2827. [Google Scholar]
- Aprea, C.; Mastrullo, R.; Renno, C. Fuzzy control of the compressor speed in a refrigeration plant. Int. J. Refrig. 2004, 27, 639–648. [Google Scholar] [CrossRef]
- Becker, M.; Oestreich, D.; Hasse, H.; Litz, L. Fuzzy control for temperature and humidity in refrigeration system. In Proceedings of the Third IEEE International Conference on Control and Applications, Glasgow, UK, 24–26 August 1994; Volume 3, pp. 1607–1612. [Google Scholar]
- Spiteri, S.; Reznik, L.; Vilas-boas, P. Embedded Fuzzy Control for Reefer Refrigeration Systems. In Proceedings of the 2001 IEEE International Fuzzy Systems Conference, Melbourne, Australia, 2–5 December 2001; pp. 1088–1091. [Google Scholar]
- Lea, R.N.; Dohmann, E.; Prebilsky, W.; Jani, Y. An HVAC fuzzy logic zone control system and performance results. In Proceedings of the IEEE 5th International Fuzzy Systems, New Orleans, LA, USA, 11 September 1996; Volume 3, pp. 2175–2180. [Google Scholar]
- Tobi, T.; Hanafusa, T. A practical application of fuzzy control for an air-conditioning system. Int. J. Approx. Reason. 1991, 5, 331–348. [Google Scholar] [CrossRef] [Green Version]
- Piao, Y.-G.; Zhang, H.-G.; Zeungnam, B. A simple fuzzy adaptive control method and application in HVAC. In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228), Anchorage, AK, USA, 4–9 May 1998; Volume 1, pp. 528–532. [Google Scholar]
- Al-Aifan, B.; Parameshwaran, R.; Mehta, K.; Karunakaran, R. Performance evaluation of a combined variable refrigerant volume and cool thermal energy storage system for air conditioning applications. Int. J. Refrig. 2017, 76, 271–295. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Deng, S.; Pan, D. A novel proportional-derivative (PD) law based fuzzy logic principles assisted controller for simultaneously controlling indoor temperature and humidity using a direct expansion (DX) air conditioning (A/C) system gulateur assist e pa. Int. J. Refrig. 2015, 7, 239–256. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Deng, S.; Pan, D. A novel neural network aided fuzzy logic controller for a variable speed (VS) direct expansion (DX) air conditioning (A/C) system. Appl. Therm. Eng. 2015, 78, 9–23. [Google Scholar] [CrossRef]
- Xiaoqing, Z. Self-Tuning Fuzzy Controller for Air-Conditioning Systems. Master’s Thesis, National University of Singapore, Singapore, 2002. [Google Scholar]
- Chu, C.-M.; Jong, T.-L.; Huang, Y.-W. Thermal comfort control on multi-room fan coil unit system using LEE-based fuzzy logic. Energy Convers. Manag. 2005, 46, 1579–1593. [Google Scholar] [CrossRef]
- Islam, M.S.; Sarker, M.S.Z.; Rafi, K.A.A.; Othman, M. Development of a Fuzzy Logic Controller Algorithm for Air-conditioning System. In Proceedings of the 2006 IEEE International Conference on Semiconductor Electronics, Kuala Lumpur, Malaysia, 29 October–1 December 2006; pp. 830–834. [Google Scholar] [CrossRef]
- García Arenas, D. Control Ambiental Psicométrico Mediante Lógica Difusa. Bachelor’s Thesis, Universidad Carlos III de Madrid, Madrid, Spain, 2010. [Google Scholar]
- Parameshwaran, R.; Karunakaran, R.; Kumar, C.V.R.; Iniyan, S. Energy conservative building air conditioning system controlled and optimized using fuzzy-genetic algorithm. Energy Build. 2010, 42, 745–762. [Google Scholar] [CrossRef]
- Marvuglia, A.; Messineo, A.; Nicolosi, G. Coupling a neural network temperature predictor and a fuzzy logic controller to perform thermal comfort regulation in an office building. Build. Environ. 2014, 72, 287–299. [Google Scholar] [CrossRef]
- Hasim, N.; Mohd Shahrieel, M.A. Intelligent Room Temperature Controller System Using MATLAB Fuzzy Logic Toolbox. Int. J. Sci. Res. 2012, 3, 1748–1753. [Google Scholar]
- Kang, C.S.; Hyun, C.H.; Park, M. Fuzzy logic-based advanced on-off control for thermal comfort in residential buildings. Appl. Energy 2015, 155, 270–283. [Google Scholar] [CrossRef]
- Lin, L.; Wang, X. Design for refrigerator evaporator superheat based on direct adaptive fuzzy controller. In Proceedings of the 28th Chinese Control and Decision Conference, CCDC 2016, Yinchuan, China, 28–30 May 2016; pp. 6297–6300. [Google Scholar] [CrossRef]
- Fakhruddin, H.N.; Ali, S.A.; Muzafar, M.; Azam, S. Fuzzy Logic in HVAC for Human Comfort. Int. J. Sci. Eng. Res. 2016, 7, 83–86. [Google Scholar]
- Abdo-Allah, A.; Iqbal, T.; Pope, K. Modeling, Analysis, and Design of a Fuzzy Logic Controller for an AHU in the S.J. Carew Building at Memorial University. J. Energy 2018, 2018, 4540387. [Google Scholar] [CrossRef] [Green Version]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; McGraw-Hill: New York, NY, USA, 1972; ISBN 0070199159. [Google Scholar]
- Dounis, A.I.; Santamouris, M.J.; Lefas, C.C.; Argiriou, A. Design of a fuzzy set environment comfort system. Energy Build. 1995, 22, 81–87. [Google Scholar] [CrossRef]
- Dounis, A.I.; Manolakis, D.E. Design of a fuzzy system for living space thermal-comfort regulation. Appl. Energy 2001, 69, 119–144. [Google Scholar] [CrossRef]
- Hamdi, M.; Lachiver, G. A fuzzy control system based on the human sensation of thermal comfort. In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; Volume 1, pp. 487–492. [Google Scholar] [CrossRef]
- Calvino, F.; La Gennusa, M.; Rizzo, G.; Scaccianoce, G. The control of indoor thermal comfort conditions: Introducing a fuzzy adaptive controller. Energy Build. 2004, 36, 97–102. [Google Scholar] [CrossRef]
- Ciabattoni, L.; Cimini, G.; Ferracuti, F.; Grisostomi, M.; Ippoliti, G.; Pirro, M. Indoor thermal comfort control through fuzzy logic PMV optimization. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 11–16 July 2015; Volume 2015, pp. 1–6. [Google Scholar]
- Yan, H.; Pan, Y.; Li, Z.; Deng, S. Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system. Appl. Energy 2018, 219, 312–324. [Google Scholar] [CrossRef]
- Davis, L.I.; Sieja, T.F.; Matteson, R.W.; Dage, G.A.; Ames, R. Fuzzy logic for vehicle climate control. In Proceedings of the 1994 IEEE 3rd International Fuzzy Systems Conference, Orlando, FL, USA, 26–29 June 1994; Volume 1, pp. 530–534. [Google Scholar]
- Nasution, H. Development of fuzzy logic control for vehicle air conditioning system. Telkomnika 2008, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Khayyam, H.; Nahavandi, S.; Hu, E.; Kouzani, A.; Chonka, A.; Abawajy, J.; Marano, V.; Davis, S. Intelligent energy management control of vehicle air conditioning via look-ahead system. Appl. Therm. Eng. 2011, 31, 3147–3160. [Google Scholar] [CrossRef]
- Ibrahim, B.S.K.K.; Aziah, M.A.N.; Ahmad, S.; Akmeliawati, R.; Nizam, H.M.I.; Muthalif, A.G.A.; Toha, S.F.; Hassan, M.K. Fuzzy-based temperature and humidity control for HVAC of electric vehicle. Procedia Eng. 2012, 41, 904–910. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.J.; Han, S.-W.; Hong, S.-K. Refrigerator temperature control using fuzzy logic and neural network. In Proceedings of the IEEE International Symposium on Industrial Electronics. Proceedings. ISIE’98 (Cat. No.98TH8357), Pretoria, South Africa, 7–10 July 1998; Volume 1, pp. 186–191. [Google Scholar]
- Mraz, M. The design of intelligent control of a kitchen refrigerator. Math. Comput. Simul. 2001, 56, 259–267. [Google Scholar] [CrossRef]
- Rashid, M.M.; Islam, A. Design and implementation of a fuzzy logic based controller for refrigerating systems. In Proceedings of the International Conference on Computer and Communication Engineering (ICCCE’10), Kuala Lumpur, Malaysia, 11–12 May 2010; pp. 1–5. [Google Scholar]
- Azam Baleghy, N.; Mousavi Mashhadi, S.K. Design and implementation fuzzy controller in the frost-free refrigerator by using multivariate regression. In Proceedings of the 20th Iranian Conference on Electrical Engineering (ICEE2012), Tehran, Iran, 15–17 May 2012; pp. 840–844. [Google Scholar]
- Arfaoui, J.; Feki, E.; Mami, A. PID and fuzzy logic optimized controller for temperature control in a cavity of refrigeration. In Proceedings of the IREC2015 The Sixth International Renewable Energy Congress, Sousse, Tunisia, 24–26 March 2015; pp. 1–6. [Google Scholar]
- Belman-Flores, J.M.; Ledesma, S.; Rodríguez-Valderrama, D.A.; Hernández-Fusilier, D. Energy optimization of a domestic refrigerator controlled by a fuzzy logic system using the status of the door. Int. J. Refrig. 2019, 104, 1–8. [Google Scholar] [CrossRef]
- Choi, J.W.; Lee, G.; Kim, M.S. Capacity control of a heat pump system applying a fuzzy control method. Appl. Therm. Eng. 2011, 31, 2332–2339. [Google Scholar] [CrossRef]
- Tsai, C.C.; Tsai, K.I.; Su, C.T. Cascaded fuzzy-PID control using PSO-EP algorithm for air source heat pumps. In Proceedings of the 2012 International Conference on Fuzzy Theory and Its Applications (iFUZZY2012), Taichung, Taiwan, 16–18 November 2012; pp. 163–168. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M.; Sengur, A.; Esen, M. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system. Energy Build. 2008, 40, 1074–1083. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M. ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system. Expert Syst. Appl. 2010, 37, 8134–8147. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, M.; Jang, B.; Yoo, C.; Kim, S.; Park, Y. Fuzzy Precompensated PI Controller for A Variable Capacity Heat Pump. In Proceedings of the International Conference on Control Applications, Trieste, Italy, 4 September 1998; pp. 953–957. [Google Scholar]
- Sözen, A.; Arcaklioǧlu, E.; Erisen, A.; Akçayol, M.A. Performance prediction of a vapour-compression heat-pump. Appl. Energy 2004, 79, 327–344. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, Z.; Zhao, F. Simultaneous control of drying temperature and superheat for a closed-loop heat pump dryer. Appl. Therm. Eng. 2016, 93, 571–579. [Google Scholar] [CrossRef]
- Şahin, A.Ş.; Kılıç, B.; Kılıç, U. Optimization of heat pump using fuzzy logic and genetic algorithm. Heat Mass Transf. 2011, 47, 1553–1560. [Google Scholar] [CrossRef]
- Schmitz, J.E.; Silva, F.V.; Neves Filho, L.C.; Fileti, A.M.F.; Silveira, V. Multivariable fuzzy control strategy for an experimental chiller system. J. Food Process. Eng. 2014, 37, 160–168. [Google Scholar] [CrossRef]
Inputs | Outputs | ||||
---|---|---|---|---|---|
Variable | Linguistic Term | Description | Variable | Linguistic Term | Description |
Temperature | VHP | Very high positive | Compressor speed, airspeed, fan speed, opening percentage of EEV | VHS | Very high speed |
MP | Medium positive | MED | Medium | ||
LP | Low positive | SLH | Slightly high | ||
Z | Zero | VH | Very high | ||
SHN | Slightly high negative | NM | Normal | ||
HN | High negative | SLL | Slightly low | ||
VHN | Very high negative | VLS | Very low speed | ||
Humidity | H | High | SLS | Slightly low speed | |
VL | Very low | LS | Low speed | ||
SH | Slightly high | MS | Medium speed | ||
M | Medium | SHS | Slightly high speed | ||
L | Low | VLS | Very low speed | ||
SH | Slightly high | OFF | Off |
Authors | Application | Controller | Inference Method | Control Loop | Inputs | Inference Rules | Outputs | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inputs | Universe | Number of Functions | Function | Output | Universe | Number of Functions | Function | ||||||
Becker et al. [32] | Cold room | Fuzzy | Max-Min | T | Error, error derivative | −1 to 1 | 5 | Triangular and trapezoidal | 25 | Compressor power | −1 to 1 | 5 | Triangular and trapezoidal |
HR | 45 | Fan power | |||||||||||
Spiteri et al. [33] | Refrigeration system | Fuzzy | - | T | SH and ΔSH | - | 3 | - | 9 | Valve opening | 1 to 5 | 2 | Triangular and trapezoidal |
Barelli et al. [26] | Chiller | Fuzzy-PID | Mamdani | T | Error | −10 to 10 | 5 | Triangular and Gaussian | 25 | Compressor frequency | 30 to 80 | 5 | Triangular |
Error derivative | −0.005 to 0.0025 | ||||||||||||
Aprea et al. [31] | Industrial plant | Fuzzy | Larsen | T | error | 0 to 13 | 6 | Triangular | 25 | Compressor frequency | 30 to 50 Hz | 5 | Triangular |
Error derivative | 0.001 to 0.013 | 5 | |||||||||||
Silva et al. [27] | Chiller | Fuzzy- PID | Mamdani | T | Error | −2.0 to 1.0 | 7 | Triangular | 98 | Compressor frequency | 30 to 70 | 7 | Triangular |
Error derivative | −0.5 to 0.5 | Compressor frequency change | −5 to 5 | ||||||||||
Ekren and Kücüka [28] | Chiller | Fuzzy | Max-Min | Tw | Error | −8 to 8 | 5 | Triangular and Gaussian | 25 | Compressor frequency | 30 to 60 Hz | 5 | Triangular and Gaussian |
Previous change in compressor frequency | 0 to 20 | ||||||||||||
SH | Error | −5 to 5 | 5 | Triangular and Gaussian | 25 | Valve opening | 10 to 45% | 5 | Triangular and Gaussian | ||||
Previous change in the opening of the electro expansion valve | −20 to 0 | ||||||||||||
Ekren et al. [29] | Chiller | Fuzzy | Max-Min | Tw | Error | −8 to 8 | 5 | Triangular and Gaussian | 25 | Compressor frequency | 30 to 60 Hz | 5 | Triangular and Gaussian |
Previous change in compressor frequency | 0 to 20 | ||||||||||||
SH | Error | −5 to 5 | 5 | Triangular and Gaussian | 25 | Valve opening | 10 to 45% | 5 | Triangular and Gaussian | ||||
Previous change in the opening of the electro expansion valve | −20 to 0 | ||||||||||||
Schmitz et al. [76] | Chiller | Fuzzy | Mamdani | Tsc | Error | −2 to 2 | 7 | Triangular | 49 | Compressor frequency change | −5 to 5 | 7 | Triangular |
Error derivative | −0.5 to 0.5 | Pump frequency change | −3 to 3 | ||||||||||
Yang et al. [30] | Cooling chamber | Fuzzy | Max-Min | T | Error and Error derivative | −2 to 2 | 5 | Gaussian | 25 | Valve opening | −2 to 2 | 5 | Gaussian |
Lin and Wang [48] | Evaporator overheating | Fuzzy adaptative | - | SH | Error and Error derivative | −2 to 2 | 18 | Singleton | 216 | - | - | - | Gaussian |
Tobi and Hanafusa [35] | Air conditioning | Fuzzy | Mamdani | T and HR | Error and Error derivative | - | - | - | 22 | - | - | - | - |
Lea et al. [34] | Air conditioning | Fuzzy | Mamdani | T | Temperature | 23 to 26 | 3 | Triangular and trapezoidal | 11 | Compressor frequency | 0 to 100 | 3 | Triangular and trapezoidal |
Error | −2 to 2 | ||||||||||||
HR | Relative humidity | 0 to 100 | 3 | Triangular and trapezoidal | |||||||||
Xiaoqing [40] | Air conditioning | Neuro-Fuzzy | Max-Min | T | Error | −2.94 to 3.06 | 7 | Triangular and trapezoidal | 49 | Valve opening | - | - | - |
Error derivative | −2.5 to 2.44 | ||||||||||||
Error | −3.18 to 3.14 | Fan speed | - | - | - | ||||||||
Error derivative | −2.56 to 2.72 | ||||||||||||
Chu et al. [41] | Air conditioning | Fuzzy | Max-Min | T | Error and error derivative | −2 to 2 | 5 | Triangular and trapezoidal | 25 | Fan speed | - | - | - |
Islam et al. [42] | Air conditioning | Fuzzy | Max-Min | T | Temperature | 0 to 40 °C | 5 | Triangular | 25 | Fan speed | 0 to 100% | 5 | Triangular |
HR | Relative humidity | 0 to 100% | |||||||||||
García Arenas [43] | Air conditioning | Fuzzy | Mamdani | T | Temperature | −10 to 35 | 3 | Gaussian | 12 | Temperature increase | −8 to 8 | 3 | Gaussian |
7 to 27 | |||||||||||||
HR | Absolute humidity | −5 to 35 | Increased humidity | −3 to 3 | |||||||||
Reference humidity | 5 to 13 | ||||||||||||
Parameshwaran et al. [44] | Air conditioning | Fuzzy | Mamdani | T | Ambient temperature | 20 to 40 | 2 | Trapezoidal | 81 | Compressor speed | 0 to 7000 | 9 | |
Error | −25 to 5 | 9 | Triangular and trapezoidal | ||||||||||
Suction pressure | 600 to 700 | 9 | Triangular and trapezoidal | ||||||||||
Static pressure | 300 to 1000 | 5 | Triangular and trapezoidal | 25 | Fan speed | 2500 to 3500 | 5 | Triangular and trapezoidal | |||||
Airspeed | 3 to 6 | 5 | |||||||||||
Do | Ambient temperature | 20 to 40 | 2 | Trapezoidal | 25 | Damper opening | 0 to 100 | 5 | |||||
CO2 concentration | 300 to 1200 | 5 | Triangular and trapezoidal | ||||||||||
Marvuglia et al. [45] | Air conditioning | Neuro-Fuzzy | - | T | Winter temperature | 9 to 27 | 5 | Triangular | 25 | Compressor speed | - | - | - |
Summer temperature | 18 to 38 | ||||||||||||
error | −9 to 9 | ||||||||||||
Hasim and Shahrieel [46] | Air conditioning | Fuzzy | Mamdani | T | Temperature | 0 to 28 | 5 | Triangular and polynomial | 29 | Compressor speed | 0 to 100 | 6 | Triangular and polynomial |
Error | −5 to 5 | 5 | Fan speed | 0 to 100 | 5 | ||||||||
HR | Dew point | 0 to 20 | 3 | Operation mode | −2 to 2 | 2 | |||||||
Li et al. [39] | Air conditioning | Fuzzy-PD and Neuro-Fuzzy | - | Tb | Error | −2 to 2 | 11 | Triangular | 121 | Compressor speed | - | - | - |
Error derivative | |||||||||||||
Td | error | −2 to 2 | Fan speed | ||||||||||
Error derivative | |||||||||||||
Error derivative | |||||||||||||
Kang et al. [47] | Air conditioning | Fuzzy-ON/OFF | Mamdani | T | Error | - | 3 | Gaussian | 27 | Operation time | 0 to 100 | 7 | Singleton |
Error derivative | - | 9 | |||||||||||
Almasani et al. [24] | Air conditioning | Fuzzy | Mamdani | T | Temperature | −15 to 30 | 5 | Gaussian | 100 | Heating valve | 0 to 1 | 3 | Triangular and trapezoidal |
HR | Humidity | −15 to 30 | 4 | Cooling valve | |||||||||
Oxygen | % Oxygen | −15 to 20 | 4 | Pump speed | |||||||||
Tamb | Ambient temperature | −100 to 100 | 2 | Compressor speed | |||||||||
Fakhruddin et al. [49] | Air conditioning | Fuzzy | Mamdani | T | Temperature | 18 to 30 | 3 | Triangular and trapezoidal | 216 | Compressor speed | 0 to 100 | 3 | Triangular and trapezoidal |
Error | −1 to 3 | 3 | Fan speed | 0 to 100 | 3 | ||||||||
HR | Dew point | 2 | Operation mode | 0 to 1 | 2 | ||||||||
Time of the day | 0 to 24 | 3 | Air propagation angle | 0 to 90 | 2 | ||||||||
Occupants | 0 to 10 | 3 | |||||||||||
Al-Aifan et al. [37] | Air conditioning | Fuzzy | Mamdani | T | Ambient temperature | 20 to 45 | 2 | Trapezoidal | 81 | Compressor speed | 0 to 7000 | 9 | Triangular and trapezoidal |
Supply air temperature | −25 to 5 | 7 | Triangular and trapezoidal | ||||||||||
Suction pressure | 600 to 700 | 5 | Triangular and trapezoidal | ||||||||||
HR | Static pressure | 300 to 1000 | 5 | Triangular and trapezoidal | 25 | Fan speed | 2500 to 3500 | 5 | |||||
Airspeed | 3 to 6 | ||||||||||||
CO2 concentration | Temperature | 20 to 45 | 2 | Trapezoidal | 25 | Damper opening | 0 to 100 | 5 | |||||
Static pressure | 300 to 1200 | 5 | Triangular and trapezoidal | ||||||||||
Dounis and Manolakis [53] | Air conditioning | Fuzzy | Max-Min | T | Ambient temperature | 15 to 30 | 5 | Triangular and trapezoidal | 69 | Heating or cooling | 0 to 21 | 10 | Triangular and trapezoidal |
PMV | −3 to 3 | Valve opening | 0 to 35 | 4 | |||||||||
Ciabattoni et al. [56] | Air conditioning | Fuzzy | Mamdani | Comfort | PMV | −0.7 to 0.7 | 5 | Triangular and trapezoidal | 120 | Fan speed | 0 to1 | 5 | Trapezoidal |
PMV change | −2 to 2 | 7 | Trapezoidal | ||||||||||
Yan et al. [57] | Air conditioning | Fuzzy | Max-Min | Tb | Error | −0.3 to 0.4 | 6 | Triangular and trapezoidal | 42 | Compressor speed | - | - | - |
Error derivative | −5 to 5 | 7 | |||||||||||
Td | Error | −0.3 to 0.4 | 6 | Fan speed | |||||||||
Error derivative | −5 to 5 | 7 | |||||||||||
Nasution [59] | Air conditioning | Fuzzy | - | T | Error and Error derivative | −2 to 2 | 3 | Triangular | 9 | Compressor speed | 0 to 5 | 3 | Triangular |
Khayyam et al. [60] | Air conditioning | Fuzzy | Mamdani | - | Temperature | 0 to 90 | 5 | Triangular and trapezoidal | 28 | Energy consumption | 0 to 1000 | 5 | Triangular and trapezoidal |
CO2 concentration | 0 to 5000 | 3 | Trapezoidal | Blower power consumption | 200 to 700 | 3 | |||||||
Humidity | 0 to 100 | 3 | Trapezoidal | Gate opening | 0 to 100% | 2 | Trapezoidal | ||||||
- | −5 to 5 | 3 | Triangular and trapezoidal | Recirculation air | 0 to 100% | 2 | |||||||
Ibrahim et al. [61] | Air conditioning | Fuzzy | Mamdani | T and HR | Error | −20 to 20 | 3 | Triangular and trapezoidal | 81 | Motor damper voltage | 0 to 15 | 3 | Triangular and trapezoidal |
Error derivative | −200 to 200 | Air outlet damper voltage | |||||||||||
Relative humidity | 0 to 1 | Fan voltage | |||||||||||
Bung-Joon et al. [62] | Domestic refrigerator | Neuro-Fuzzy | Sugeno | T | Error | - | 5 | Triangular | 50 | - | - | 5 | Triangular and trapezoidal |
Error derivative | - | ||||||||||||
Mraz [63] | Domestic refrigerator | Fuzzy-ON/OFF | Sugeno | T | - | - | 4 | Gaussian | - | ON/OFF compressor | 2 | Singleton | |
Rashid and Islam [64] | Domestic refrigerator | Fuzzy | Mamdani | T | Error | −10 to 10 | 3 | Triangular | 9 | Compressor frequency | 35 to 50 | 3 | Triangular |
Error derivative | −5 to 5 | ||||||||||||
Baleghy and Mashhadi [65] | Domestic refrigerator | Fuzzy | Mamdani | T | Error | 0 to 10 | 5 | Triangular | 15 | Compressor frequency | 0 to 50 | 5 | Triangular |
Error derivative | −5 to 5 | 3 | |||||||||||
HR | Error | −10 to 10 | 3 | Triangular and trapezoidal | 9 | Fan voltage | 0 to 220 | 3 | Trapezoidal | ||||
Relative humidity | 0 to 100 | 3 | Trapezoidal | ||||||||||
Arfaoui et al. [66] | Domestic refrigerator | Fuzzy and genetic-algorithms | - | T | Error | −3 to 3 | 3 | Triangular and trapezoidal | 9 | Evaporator temperature | −10 to 10 | 3 | Triangular and trapezoidal |
Error derivative | |||||||||||||
Belman-Flores et al. [67] | Domestic refrigerator | Fuzzy | Mamdani | T | Temperature | 3 to 7 | 3 | Triangular and trapezoidal | 10 | Compressor frequency | 0 to 150 | 4 | Triangular and trapezoidal |
Door opening | 0 to 80 | 2 | Trapezoidal | ||||||||||
Choi et al. [68] | Heat pump | Fuzzy | Sugeno | T | Error | −9 to 9 | 7 | Triangular and trapezoidal | 49 | Compressor frequency | - | - | Singleton |
Error derivative | −4.5 to 4.5 | Valve opening | |||||||||||
Esen et al. [70] | Heat pump | Neuro-Fuzzy | Sugeno | - | - | 0 to 1 | 8 | Triangular | 7 | - | 0 to 1 | 8 | Triangular |
Esen and Inalli [71] | Heat pump | Neuro-Fuzzy | Sugeno | - | - | −20 to 20 | 5 | Triangular, trapezoidal, gaussian | - | - | - | - | - |
Lee et al. [72] | Heat pump | Fuzzy-PI | Mamdani | T | Temperature | 13 to 30 | 3 | Triangular and trapezoidal | 12 | Compensation factor | - | - | - |
Error | −1 to −6 | 4 | |||||||||||
Sözen et al. [73] | Heat pump | Fuzzy | Max-Min | - | Temperature | −4.7 to 10 | 8 | Triangular and trapezoidal | - | COP | 4.101 to 7.919 | 26 | Triangular and trapezoidal |
Pressure | 700 to 1400 | 8 | Rational efficiency | 0.5202 to 0.9398 | |||||||||
% of refrigerant | 0.5 to 1.0 | 6 | |||||||||||
Yang et al. [74] | Heat pump | Fuzzy | Mamdani | T | Error | −6 to 6 | - | - | 252 | Compressor frequency | −7 to 7 | - | - |
error derivative |
Authors | Control Application | Simulation | Experimental Study | Energy Saving |
---|---|---|---|---|
Barelli et al. [26] | Chiller | X | 1% | |
Aprea et al. [31] | Industrial plant | X | 13% | |
Ekren et al. [28] | Chiller | X | 17% | |
Schmitz et al. [76] | Chiller | X | −3.15% 5.27% | |
Chu et al. [41] | Air conditioning | X | 35.59% daily | |
Parameshwaran et al. [44] | Air conditioning | X | 36% annual | |
Nasution [59] | Air conditioning | X | 39.14% to 64.35% | |
Khayyam et al. [60] | Air conditioning | X | 12% | |
Mraz [63] | Domestic refrigerator | X | 3% | |
Arfaoui et al. [66] | Domestic refrigerator | X | 0.3957 W | |
Belman-Flores et al. [67] | Domestic refrigerator | X | 3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belman-Flores, J.M.; Rodríguez-Valderrama, D.A.; Ledesma, S.; García-Pabón, J.J.; Hernández, D.; Pardo-Cely, D.M. A Review on Applications of Fuzzy Logic Control for Refrigeration Systems. Appl. Sci. 2022, 12, 1302. https://doi.org/10.3390/app12031302
Belman-Flores JM, Rodríguez-Valderrama DA, Ledesma S, García-Pabón JJ, Hernández D, Pardo-Cely DM. A Review on Applications of Fuzzy Logic Control for Refrigeration Systems. Applied Sciences. 2022; 12(3):1302. https://doi.org/10.3390/app12031302
Chicago/Turabian StyleBelman-Flores, Juan Manuel, David Alejandro Rodríguez-Valderrama, Sergio Ledesma, Juan José García-Pabón, Donato Hernández, and Diana Marcela Pardo-Cely. 2022. "A Review on Applications of Fuzzy Logic Control for Refrigeration Systems" Applied Sciences 12, no. 3: 1302. https://doi.org/10.3390/app12031302
APA StyleBelman-Flores, J. M., Rodríguez-Valderrama, D. A., Ledesma, S., García-Pabón, J. J., Hernández, D., & Pardo-Cely, D. M. (2022). A Review on Applications of Fuzzy Logic Control for Refrigeration Systems. Applied Sciences, 12(3), 1302. https://doi.org/10.3390/app12031302