An In-House Cone-Beam Tomographic Reconstruction Package for Laboratory X-ray Phase-Contrast Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propagation-Based PCI
2.2. Grating-Based PCI
3. Results and Discussion
3.1. Example for the Paganin Method
3.2. Example BAC Method
3.3. Example for Grating-Based PCI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ART | algebraic reconstruction technique |
BAC | Bronnikov-aided correction |
CCD | charge-coupled device |
CNR | contrast-to-noise ratio |
CT | computed tomography |
DFI | dark-field image |
DPC | differential phase contrast |
FBP | filtered back projection |
FDK | Feldkamp-Davis-Kress algorithm |
FFT | Fast Fourier Transform |
GPU | graphics processing unit |
MBA | modified Bronnikov algorithm |
PCI | phase-contrast imaging |
ROI | region of interest |
TIE | transport of intensity equation |
References
- Pogany, A.; Gao, D.; Wilkins, S. Contrast and resolution in imaging with a microfocus X-ray source. Rev. Sci. Instrum. 1997, 68, 2774–2782. [Google Scholar] [CrossRef]
- Salditt, T.; Aspelmeier, T.; Aeffner, S. Biomedical Imaging: Principles of Radiography, Tomography and Medical Physics; Walter de Gruyter GmbH & Co. KG: Berlin, Germany, 2017. [Google Scholar]
- Endrizzi, M. X-ray phase-contrast imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 878, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, F.; Bech, M.; Bunk, O.; Kraft, P.; Eikenberry, E.F.; Brönnimann, C.; Grünzweig, C.; David, C. Hard-X-ray dark-field imaging using a grating interferometer. Nat. Mater. 2008, 7, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Yashiro, W.; Terui, Y.; Kawabata, K.; Momose, A. On the origin of visibility contrast in X-ray Talbot interferometry. Opt. Express 2010, 18, 16890–16901. [Google Scholar] [CrossRef] [PubMed]
- Strobl, M. General solution for quantitative dark-field contrast imaging with grating interferometers. Sci. Rep. 2014, 4, 7243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloetens, P.; Barrett, R.; Baruchel, J.; Guigay, J.P.; Schlenker, M. Phase objects in synchrotron radiation hard X-ray imaging. J. Phys. D Appl. Phys. 1996, 29, 133. [Google Scholar] [CrossRef]
- Wilkins, S.; Gureyev, T.E.; Gao, D.; Pogany, A.; Stevenson, A. Phase-contrast imaging using polychromatic hard X-rays. Nature 1996, 384, 335–338. [Google Scholar] [CrossRef]
- Momose, A.; Kawamoto, S.; Koyama, I.; Hamaishi, Y.; Takai, K.; Suzuki, Y. Demonstration of X-ray Talbot interferometry. Jpn. J. Appl. Phys. 2003, 42, L866. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Weitkamp, T.; Bunk, O.; David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2006, 2, 258–261. [Google Scholar] [CrossRef]
- Diemoz, P.; Bravin, A.; Coan, P. Theoretical comparison of three X-ray phase-contrast imaging techniques: Propagation-based imaging, analyzer-based imaging and grating interferometry. Opt. Express 2012, 20, 2789–2805. [Google Scholar] [CrossRef] [Green Version]
- Bech, M.; Jensen, T.H.; Feidenhans, R.; Bunk, O.; David, C.; Pfeiffer, F. Soft-tissue phase-contrast tomography with an X-ray tube source. Phys. Med. Biol. 2009, 54, 2747. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Bunk, O.; Kottler, C.; David, C. Tomographic reconstruction of three-dimensional objects from hard X-ray differential phase contrast projection images. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 580, 925–928. [Google Scholar] [CrossRef]
- Mayo, S.C.; Stevenson, A.W.; Wilkins, S.W. In-line phase-contrast X-ray imaging and tomography for materials science. Materials 2012, 5, 937–965. [Google Scholar] [CrossRef] [Green Version]
- Zdora, M.C. State of the art of X-ray speckle-based phase-contrast and dark-field imaging. J. Imaging 2018, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Zamir, A.; Hagen, C.; Diemoz, P.C.; Endrizzi, M.; Vittoria, F.; Chen, Y.; Anastasio, M.A.; Olivo, A. Recent advances in edge illumination X-ray phase-contrast tomography. J. Med. Imaging 2017, 4, 040901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weitkamp, T.; Haas, D.; Wegrzynek, D.; Rack, A. ANKAphase: Software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J. Synchrotron Radiat. 2011, 18, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Gürsoy, D.; De Carlo, F.; Xiao, X.; Jacobsen, C. TomoPy: A framework for the analysis of synchrotron tomographic data. J. Synchrotron Radiat. 2014, 21, 1188–1193. [Google Scholar] [CrossRef] [Green Version]
- Mirone, A.; Brun, E.; Gouillart, E.; Tafforeau, P.; Kieffer, J. The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2014, 324, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Brun, F.; Brombal, L.; Di Trapani, V.; Delogu, P.; Donato, S.; Dreossi, D.; Rigon, L.; Longo, R. Post-reconstruction 3D single-distance phase retrieval for multi-stage phase-contrast tomography with photon-counting detectors. J. Synchrotron Radiat. 2019, 26, 510–516. [Google Scholar] [CrossRef] [Green Version]
- Lohse, L.M.; Robisch, A.L.; Töpperwien, M.; Maretzke, S.; Krenkel, M.; Hagemann, J.; Salditt, T. A phase-retrieval toolbox for X-ray holography and tomography. J. Synchrotron Radiat. 2020, 27, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Langer, M.; Zhang, Y.; Figueirinhas, D.; Forien, J.B.; Mom, K.; Mouton, C.; Mokso, R.; Villanueva-Perez, P. PyPhase—A Python package for X-ray phase imaging. J. Synchrotron Radiat. 2021, 28, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Ruhlandt, A.; Salditt, T. Three-dimensional propagation in near-field tomographic X-ray phase retrieval. Acta Crystallogr. Sect. A Found. Adv. 2016, 72, 215–221. [Google Scholar] [CrossRef] [PubMed]
- The ASTRA Toolbox. Available online: https://www.astra-toolbox.com/ (accessed on 1 October 2020).
- Hofmann, J.; Flisch, A.; Zboray, R. Principles for an Implementation of a Complete CT Reconstruction Tool Chain for Arbitrary Sized Data Sets and its GPU Optimization. J. Imaging 2022, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1984, 1, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Teague, M.R. Deterministic phase retrieval: A Green’s function solution. J. Opt. Soc. Am. 1983, 73, 1434–1441. [Google Scholar] [CrossRef]
- Bronnikov, A.V. Reconstruction formulas in phase-contrast tomography. Opt. Commun. 1999, 171, 239–244. [Google Scholar] [CrossRef]
- Boone, M.; De Witte, Y.; Dierick, M.; Van den Bulcke, J.; Vlassenbroeck, J.; Van Hoorebeke, L. Practical use of the modified Bronnikov algorithm in micro-CT. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2009, 267, 1182–1186. [Google Scholar] [CrossRef] [Green Version]
- De Witte, Y.; Boone, M.; Vlassenbroeck, J.; Dierick, M.; Van Hoorebeke, L. Bronnikov-aided correction for X-ray computed tomography. J. Opt. Soc. Am. A 2009, 26, 890–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paganin, D.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Wilkins, S.W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002, 206, 33–40. [Google Scholar] [CrossRef]
- Carrel, M.; Beltran, M.A.; Morales, V.L.; Derlon, N.; Morgenroth, E.; Kaufmann, R.; Holzner, M. Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools. PLoS ONE 2017, 12, e0180374. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, R.; Plamondon, M.; Hofmann, J.; Neels, A. Comparison of different phase retrieval algorithms. In Developments in X-ray Tomography XI; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10391, p. 1039115. [Google Scholar]
- Beltran, M.; Paganin, D.M.; Siu, K.; Fouras, A.; Hooper, S.; Reser, D.; Kitchen, M. Interface-specific X-ray phase retrieval tomography of complex biological organs. Phys. Med. Biol. 2011, 56, 7353. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, M.J.; Buckley, G.A.; Gureyev, T.E.; Wallace, M.J.; Andres-Thio, N.; Uesugi, K.; Yagi, N.; Hooper, S.B. CT dose reduction factors in the thousands using X-ray phase contrast. Sci. Rep. 2017, 7, 15953. [Google Scholar] [CrossRef] [PubMed]
- Zboray, R. Optimizing and applying high-resolution, in-line laboratory phase-contrast X-ray imaging for low-density material samples. J. Microsc. 2021, 282, 123–135. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, J.; Zboray, R. An In-House Cone-Beam Tomographic Reconstruction Package for Laboratory X-ray Phase-Contrast Imaging. Appl. Sci. 2022, 12, 1430. https://doi.org/10.3390/app12031430
Hofmann J, Zboray R. An In-House Cone-Beam Tomographic Reconstruction Package for Laboratory X-ray Phase-Contrast Imaging. Applied Sciences. 2022; 12(3):1430. https://doi.org/10.3390/app12031430
Chicago/Turabian StyleHofmann, Jürgen, and Robert Zboray. 2022. "An In-House Cone-Beam Tomographic Reconstruction Package for Laboratory X-ray Phase-Contrast Imaging" Applied Sciences 12, no. 3: 1430. https://doi.org/10.3390/app12031430
APA StyleHofmann, J., & Zboray, R. (2022). An In-House Cone-Beam Tomographic Reconstruction Package for Laboratory X-ray Phase-Contrast Imaging. Applied Sciences, 12(3), 1430. https://doi.org/10.3390/app12031430