Study on Kinetics of Trans-Resveratrol, Total Phenolic Content, and Antioxidant Activity Increase in Vine Waste during Post-Pruning Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vine Waste Samples
2.2. Reagent and Chemicals
2.3. Standard Solutions
2.4. Sample Collection and Preparation
2.5. Analytical HPLC Procedure
2.6. Determination of Total Phenolic Content
2.7. Determination of the Antioxidant Activity by the DPPH Method
2.8. Statistical Analysis
3. Results
3.1. Statistical Analysis of Variance
3.2. Kinetics of Resveratrol Increase during Post-Pruning Storage
3.3. Total Phenolic Content
3.4. Antioxidant Activity by the DPPH Method
4. Discussion
4.1. Analysis of Variance of Resveratrol Content, TPC, and Antioxidant Activity in Leaves, Tendrils, and Shoots
4.2. Kinetics of Resveratrol Increase during Post-Pruning Storage
4.3. Total Phenolic Content
4.4. Antioxidant Activity by the DPPH Method
4.5. Influence of Sample Sectioning on Trans-Resveratrol Increase, TPC, and Antioxidant Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 2019 Statistical Report on World Vitiviniculture. Available online: http://oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 15 March 2021).
- Angelov, G.; Boyadzhiev, L.; Georgieva, S. Useful bioactive Substances from Wastes: Recovery of trans-resveratrol from grapevine stems. Open Chem. Eng. J. 2016, 10, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Lambert, C.; Richard, T.; Renouf, E.; Bisson, J.; Waffo-Teguo, P.; Bordenave, L.; Ollat, N.; Merillon, J.-M.; Cluzet, S. Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. J. Agric. Food Chem. 2013, 61, 11392–11399. [Google Scholar] [CrossRef] [PubMed]
- Schnee, S.; Queiroz, E.F.; Voinesco, F.; Marcourt, L.; Dubuis, P.-H.; Wolfender, J.-L.; Gindro, K. Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea. J. Agric. Food Chem. 2013, 61, 5459–5467. [Google Scholar] [CrossRef] [PubMed]
- Gorena, T.; Saez, V.; Mardones, C.; Vergara, C.; Winterhalter, P.; Von Baer, D. Influence of post-pruning storage on stilbenoid levels in Vitis vinifera L. Canes. Food Chem. 2014, 155, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Ehlting, J.; Hamberger, B.; Million-Rousseau, R.; Werck-Reichhart, D. Cytochromes P450 in phenolic metabolism. Phytochem. Rev. 2006, 5, 239–270. [Google Scholar] [CrossRef]
- Ferrer, J.L.; Jez, J.M.; Bowman, M.E.; Dixon, R.A.; Noel, J.P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 1999, 6, 775–784. [Google Scholar] [PubMed]
- Schöppner, A.; Kindl, H. Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. J. Biol. Chem. 1984, 259, 6806–6811. [Google Scholar] [CrossRef]
- Sparvoli, F.; Martin, C.; Scienza, A.; Gavazzi, G.; Tonelli, C. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol. Biol. 1994, 24, 743–755. [Google Scholar] [CrossRef]
- Schröder, G.; Brown, J.W.; Schröder, J. Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur. J. Biochem. 1988, 172, 161–169. [Google Scholar] [CrossRef]
- Richter, H.; Pezet, R.; Viret, O.; Gindro, K. Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. Physiol. Mol. Plant Pathol. 2005, 67, 248–260. [Google Scholar] [CrossRef]
- Wang, W.; Tang, K.; Yang, H.R.; Wen, P.F.; Zhang, P.; Wang, H.L.; Huang, W.D. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. Cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol. Biochem. 2010, 48, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Fang, Y.; Li, X.; Meng, J.; Wang, H.; Li, H.; Zhang, Z.; Guo, Z. Occurrence and estimation of trans-resveratrol in one-year-old canes from seven major Chinese grape producing regions. Molecules 2011, 16, 2846–2861. [Google Scholar] [CrossRef] [PubMed]
- Houillé, B.; Besseau, S.; Courdavault, V.; Oudin, A.; Glévarec, G.; Delanoue Guérin, L.; Simkin, A.J.; Papon, N.; Clastre, M.; Giglioli-Guivarc’h, N.; et al. Byosynthetic origin of trans-resveratrol acummulation in grape canes during pastharvest storage. J. Agric. Food Chem. 2015, 63, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, G.; Babykutty, S.; Sothiadevan, P.; Srinivas, P. Molecular mechanism of emodin action: Transition from laxative ingredient to an antitumor agent. Med. Res. 2007, 2715, 591–608. [Google Scholar]
- Berchová-Bimová, K.; Soltysiak, J.; Vach, M. Role of different taxa and cytotyses in heavy metals eabsorption in knotweeds (Fallopia). Sci. Agric. 2014, 45, 11–18. [Google Scholar]
- Billet, K.; Houillé, B.; Besseau, S.; Mélin, C.; Oudin, A.; Papon, N.; Courdavault, V.; Clastre, M.; Giglioli-Guivarc’h, N.; Lanoue, A. Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food chem. 2018, 240, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Karacabey, E.; Bayindirli, L.; Artik, N.; Mazza, G. Modeling solid−liquid extraction kinetics of trans-resveratrol and trans-ε-viniferin from grape cane. J. Food Process Eng. 2013, 36, 103–112. [Google Scholar] [CrossRef]
- Vergara, C.; von Baer, D.; Mardones, C.; Wilkens, A.; Wernekinck, K.; Damm, A.; Macke, S.; Gorena, T.; Winterhalter, P. Stilbene levels in grape cane of different cultivars in southern Chile: Determination by HPLC−DAD−MS/MS method. J. Agric. Food Chem. 2012, 60, 929–933. [Google Scholar] [CrossRef]
- Gyöngyi, N.; Orsolya, H.; Attila, D.; Laszlo, K. Stilbenes in the different organs of Vitis vinifera cv. Merlot grafted on TK5BB rootstock. OENO One 2017, 51, 323–328. [Google Scholar]
- Marshall, D.A.; Stringer, S.J.; Spiers, J.D. Stilbene, ellagic acid, flavonol, and phenolic content of muscadine grape (Vitis rotundifolia Michx) Cultivars. Pharm Crops 2012, 3, 69–77. [Google Scholar] [CrossRef]
- Luque-Rodríguez, J.M.; Pérez-Juan, P.; Luque De Castro, M.D. Extraction of polyphenols from vine shoots of Vitis vinifera by superheated ethanol− water mixtures. J. Agric. Food Chem. 2006, 54, 8775–8781. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Antoniou, J.; Yue, L.Y.J.; Yokoyama, W.; Ma, J.; Zhong, F. Preparation of gelatin films incorporated with tea polyphenol nanoparticles for enhancing controlled-release antioxidant properties. J. Agric. Food Chem. 2015, 63, 3987–3995. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rayne, S.; Karacabey, E.; Mazza, G. Vine wastewaste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phyto-pathogenic applications. Ind. Crops Prod. 2008, 27, 335–340. [Google Scholar] [CrossRef]
- Lachman, J.; Kotíková, Z.; Hejtmánková, A.; Pivec, V.; Pšeničnaja, O.; Šulc, M.; Střalková, R.; Dědina, M. Resveratrol and piceid isomers concentrations in grapevine shoots, leaves, and tendrils. Hortic. Sci. 2016, 43, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Melzoch, K.; Hanzlíková, I.; Filip, V.; Buckiová, D.; Šmidrkal, J. Resveratrol in parts of vine and wine originating from Bohemian and Moravian vineyard regions. Agric. Conspec. Sci. 2001, 66, 53–57. [Google Scholar]
- Cebrián, C.; Sánchez-Gómez, R.; Salinas, M.R.; Alonso, G.L.; Zalacain, A. Effect of post-pruning vine-shoots storage on the evolution of high-value compounds. Ind. Crops Prod. 2017, 109, 730–736. [Google Scholar] [CrossRef]
- Ewald, P.; Delker, U.; Winterhalter, P. Quantification of stilbenoids in grapevine canes and grape cluster stems with a focus on long-term storage effects on stilbenoid concentration in grapevine canes. Food Res. Int. 2017, 100, 326–331. [Google Scholar] [CrossRef]
- Jesus, M.S.; Genisheva, Z.; Romaní, A.; Pereira, R.N.; Teixeira, J.A.; Domingues, L. Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Ind. Crops Prod. 2019, 132, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Li, P.; Ma, L.; Li, J. Separation and purification of four stilbenes from Vitis vinifera L. cv. cabernet sauvignon roots through high-speed counter-current chromatography. S. Afr. J. Enol. Vitic. 2014, 35, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.M.; Barroso, M.F.; Porto, J.V.; Ramalhosa, M.J.; Švarc-Gajić, J.; Estevinho, L.; Morais, S.; Delerue-Matos, C. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çetin, E.S.; Altinöz, D.; Tarçan, E.; Baydar, N.G. Chemical composition of grape canes. Ind. Crops Prod. 2011, 34, 994–998. [Google Scholar] [CrossRef]
- Alexandru, L.; Binello, A.; Mantegna, S.; Boffa, L.; Chemat, F.; Cravotto, G. Efficient green extraction of polyphenols from post-harvested agro-industry vegetal sources in Piedmont. Comptes Rendus Chim. 2014, 17, 212–217. [Google Scholar] [CrossRef]
- Farhadi, K.; Esmaeilzadeh, F.; Hatami, M.; Forough, M.; Molaie, R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem. 2016, 199, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Lastra, C.A.; Villegas, I. Resveratrol as an atioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 2007, 35, 1156–1160. [Google Scholar] [PubMed] [Green Version]
- Ruiz-Moreno, M.J.; Raposo, R.; Cayuela, J.M.; Zafrilla, P.; Pineiro, Z.; Moreno-Rojas, J.M.; Mulero, J.; Puertas, B.; Giron, F.; Guerrero, R.F.; et al. Valorization of grape stems. Ind. Crops Prod. 2015, 63, 152–157. [Google Scholar] [CrossRef]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.A.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly) phenolic compounds: A comparative study. Food Res. Int. 2014, 65, 375–384. [Google Scholar] [CrossRef]
- Ju, Y.; Zhang, A.; Fang, Y.; Liu, M.; Zhao, X.; Wang, H.; Zhang, Z. Phenolic compounds and antioxidant activities of grape canes extracts from vineyards. Span. J. Agric. Res. 2016, 14, 18. [Google Scholar] [CrossRef] [Green Version]
- Karacabey, E.; Mazza, G. Optimisation of antioxidant activity of vine wasteextracts using response surface methodology. Food Chem. 2010, 119, 343–348. [Google Scholar] [CrossRef]
- Rajha, H.N.; Chacar, S.; Afif, C.; Vorobiev, E.; Louka, N.; Maroun, R.G. β-Cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars. J. Agric. Food Chem. 2015, 63, 3387–3393. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Biais, B.; Richard, T.; Puertas, B.; Waffo-Teguo, P.; Merillon, J.M.; Cantos-Villar, E. Grapevine cane’s waste is a source of bioactive stilbenes. Ind. Crops Prod. 2016, 94, 884–892. [Google Scholar] [CrossRef]
- Vannozzi, A.; Dry, I.B.; Fasoli, M.; Zenoni, S.; Lucchin, M. Genome-wide analysis of the grapevine stilbene synthase multigenic family: Genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol. 2012, 12, 1–22. [Google Scholar] [CrossRef] [PubMed]
Parameters | Waste Type | F-Ratio | ||
---|---|---|---|---|
Leaves | Shoots | Tendrils | ||
Resveratrol content, mg/kg D.W. | 43.54 (±0.08) | 1658.22 (±0.17) | 169.92 (±0.03) | 131,472,834.15 *** |
TPC mg GAE/g D.W. | 30.42 (±0.32) | 29.36 (±0.41) | 28.65 (±0.81) | 50.43 *** |
DPPH % | 73.19 (±0.04) | 52.72 (±0.22) | 14.19 (±0.05) | 95,811.06 *** |
Parameters | Storage Days | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | F-Ratio | |
Resveratrol content, mg/kg D.W. | 86.58 (±1.24) | 163.56 (±2.31) | 282.53 (±3.01) | 386.44 (±5.12) | 557.92 (±7.89) | 923.10 (±13.05) | 1190.79 (±16.84) | 1236.28 (±17.48) | 1349.59 (±19.09) | 1401.91 (±19.24) | 1510.93 (±18.62) | 1524.73 (±19.40) | 1563.39 (±22.24) | 1605.61 (±22.70) | 1753.50 (±24.80) | 1532.31 (±21.67) | 1335.31 (±18.89) | 1135.43 (±16.05) | 2044.65 *** |
TPC mg GAE/g D.W. | 35.86 (±0.53) | 24.75 (±0.34) | 26.45 (±0.37) | 35.43 (±0.58) | 28.16 (±0.45) | 28.48 (±0.41) | 23.53 (±0.34) | 20.64 (±0.35) | 25.86 (±0.43) | 27.09 (±0.41) | 35.38 (±0.56) | 20.30 (±0.32) | 20.45 (±0.35) | 29.37 (±0.42) | 21.97 (0.36) | 23.24 (±0.37) | 23.70 (±0.31) | 29.18 (±0.43) | 3380.74 *** |
DPPH % | 31.90 (±0.45) | 39.84 (±0.56) | 44.09 (±0.62) | 35.16 (±0.50) | 41.77 (±0.59) | 35.81 (±0.51) | 44.19 (±0.62) | 58.06 (±0.82) | 48.09 (±0.68) | 58.22 (±0.82) | 59.53 (±0.84) | 56.34 (±0.80) | 60.72 (±0.86) | 50.85 (±0.72) | 51.38 (±0.73) | 48.44 (±0.69) | 76.52 (±1.08) | 35.97 (±0.51) | 518.39 *** |
Parameters | Shoot Length | ||||||||
---|---|---|---|---|---|---|---|---|---|
<1 cm | 1 cm | 2 cm | 3 cm | 4 cm | 5 cm | 10 cm | Uncut | F-Ratio | |
Resveratrol content, mg/kg D.W. | 1667.49 (±23.82) | 231.6 (±3.31) | 509.92 (±7.28) | 525.285 (±7.50) | 618.67 (±8.84) | 999.03 (±14.27) | 1406.09 (±20.09) | 1641.64 (±23.45) | 2619.29 *** |
TPC mg GAE/g D.W. | 22.03 (±0.31) | 22.95 (±0.41) | 22.14 (±0.32) | 28.63 (±0.44) | 35.55 (±0.52) | 26.45 (±0.43) | 24.75 (±0.41) | 29.03 (±0.42) | 2963.32 *** |
DPPH % | 78.45 (±1.12) | 52.725 (±0.76) | 36.74 (±0.52) | 39.255 (±0.56) | 22.515 (±0.32) | 32.135 (±0.46) | 50.64 (±0.72) | 52.195 (±0.74) | 1225.19 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crăciun, A.L.; Gutt, G. Study on Kinetics of Trans-Resveratrol, Total Phenolic Content, and Antioxidant Activity Increase in Vine Waste during Post-Pruning Storage. Appl. Sci. 2022, 12, 1450. https://doi.org/10.3390/app12031450
Crăciun AL, Gutt G. Study on Kinetics of Trans-Resveratrol, Total Phenolic Content, and Antioxidant Activity Increase in Vine Waste during Post-Pruning Storage. Applied Sciences. 2022; 12(3):1450. https://doi.org/10.3390/app12031450
Chicago/Turabian StyleCrăciun, Alina Lenuța, and Gheorghe Gutt. 2022. "Study on Kinetics of Trans-Resveratrol, Total Phenolic Content, and Antioxidant Activity Increase in Vine Waste during Post-Pruning Storage" Applied Sciences 12, no. 3: 1450. https://doi.org/10.3390/app12031450
APA StyleCrăciun, A. L., & Gutt, G. (2022). Study on Kinetics of Trans-Resveratrol, Total Phenolic Content, and Antioxidant Activity Increase in Vine Waste during Post-Pruning Storage. Applied Sciences, 12(3), 1450. https://doi.org/10.3390/app12031450