Comprehensive Characterization and Quantification of Antioxidant Compounds in Finger Lime (Citrus australasica L.) by HPLC-QTof-MS and UPLC-MS/MS
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemical and Reagents
2.2. Plant Material and Compounds Extraction
2.3. Determination of Total Phenolic Content
2.4. Ferric Reducing Ability Power (FRAP) Assay
2.5. Characterization of the Most Active Fraction of C. australasica L. Using HPLC-QTof Mass Spectrometry
2.6. Quantification of Phenolic Compounds Using UPLC-MS/MS
2.7. Statistical Analysis
3. Results and Discussion
3.1. TPC and Antioxidant Activity
3.2. Chemical Characterization of C. australasica Peel Using HPLC-QTof-MS
3.3. Quantification of Polar Compounds from C. australasica L. Peel Using UPLC-MS/MS
3.4. Structure Bioactivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panwar, D.; Panesar, P.S.; Chopra, H.K. Recent trends on the valorization strategies for the management of citrus by-products. Food Rev. Int. 2019, 37, 91–120. [Google Scholar] [CrossRef]
- Citrus: World Markets and Trade|USDA Foreign Agricultural Service. Available online: https://www.fas.usda.gov/data/citrus-world-markets-and-trade (accessed on 21 December 2021).
- Teigiserova, D.A.; Tiruta-Barna, L.; Ahmadi, A.; Hamelin, L.; Thomsen, M. A step closer to circular bioeconomy for citrus peel waste: A review of yields and technologies for sustainable management of essential oils. J. Environ. Manag. 2021, 280, 111832. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, S.M.S.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Quantification of main phenolic compounds in sweet and bitter orange peel using CE–MS/MS. Food Chem. 2009, 116, 567–574. [Google Scholar] [CrossRef]
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Citrus fruits—Morphology, taxonomy, composition and health benefits. In Fruits Grown in Highland Regions of the Himalayas; Springer: Cham, Switzerland, 2021; pp. 229–244. [Google Scholar]
- Creer, S. Citrus australasica—Growing Native Plants. Available online: https://www.anbg.gov.au/gnp/interns-2013/citrus-australasica.html (accessed on 21 December 2021).
- Delort, E.; Yuan, Y.-M. Finger lime/The Australian caviar—Citrus australasica. In Exotic Fruits; Academic Press: Cambridge, MA, USA, 2018; pp. 203–210. [Google Scholar]
- Australian Government Rural Industries. Finger Limes (Citrus australasica); Rural Industries Research and Development Corporation: Kingston, ACT, Australia, 2012. [Google Scholar]
- Ruberto, G.; Rocco, C.; Rapisarda, P. Chemical composition of the peel essential oil of Microcitrus australasica var. sanguinea (F.M. Bail) Swing. J. Essent. Oil Res. 2000, 12, 379–382. [Google Scholar] [CrossRef]
- Gabriele, M.; Frassinetti, S.; Caltavuturo, L.; Montero, L.; Dinelli, G.; Longo, V.; Di Gioia, D.; Pucci, L. Citrus bergamia powder: Antioxidant, antimicrobial and anti-inflammatory properties. J. Funct. Foods 2017, 31, 255–265. [Google Scholar] [CrossRef]
- Safdar, M.N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A.A. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J. Food Drug Anal. 2017, 25, 488–500. [Google Scholar] [CrossRef] [Green Version]
- Testai, L.; Calderone, V. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients 2017, 9, 502. [Google Scholar] [CrossRef] [Green Version]
- Multari, S.; Licciardello, C.; Caruso, M.; Anesi, A.; Martens, S. Flavedo and albedo of five citrus fruits from Southern Italy: Physicochemical characteristics and enzyme-assisted extraction of phenolic compounds. J. Food Meas. Charact. 2021, 15, 1754–1762. [Google Scholar] [CrossRef]
- Rojas-Lema, S.; Torres-Giner, S.; Quiles-Carrillo, L.; Gomez-Caturla, J.; Garcia-Garcia, D.; Balart, R. On the use of phenolic compounds present in citrus fruits and grapes as natural antioxidants for thermo-compressed bio-based high-density polyethylene films. Antioxidants 2020, 10, 14. [Google Scholar] [CrossRef]
- M’hiri, N.; Ioannou, I.; Ghoul, M.; Mihoubi Boudhrioua, N. Phytochemical characteristics of citrus peel and effect of conventional and nonconventional processing on phenolic compounds: A review. Food Rev. Int. 2016, 33, 587–619. [Google Scholar] [CrossRef]
- Delort, E.; Jaquier, A.; Decorzant, E.; Chapuis, C.; Casilli, A.; Frérot, E. Comparative analysis of three Australian finger lime (Citrus australasica) cultivars: Identification of unique citrus chemotypes and new volatile molecules. Phytochemistry 2015, 109, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Delort, E.; Jaquier, A. Novel terpenyl esters from Australian finger lime (Citrus australasica) peel extract. Flavour Fragr. J. 2009, 24, 123–132. [Google Scholar] [CrossRef]
- Netzel, M.; Netzel, G.; Tian, Q.; Schwartz, S.; Konczak, I. Native Australian fruits—A novel source of antioxidants for food. Innov. Food Sci. Emerg. Technol. 2007, 8, 339–346. [Google Scholar] [CrossRef]
- Sommano, S.; Caffin, N.; Kerven, G. Screening for antioxidant activity, phenolic content, and flavonoids from Australian native food plants. Int. J. Food Prop. 2013, 16, 1394–1406. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crops Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Przybylska-Balcerek, A.; Szablewski, T.; Szwajkowska-Michałek, L.; Świerk, D.; Cegielska-Radziejewska, R.; Krejpcio, Z.; Suchowilska, E.; Tomczyk, Ł.; Stuper-Szablewska, K. Sambucus nigra extracts—Natural antioxidants and antimicrobial compounds. Molecules 2021, 26, 2910. [Google Scholar] [CrossRef]
- Kenny, O.; Brunton, N.P.; Smyth, T.J. In vitro protocols for measuring the antioxidant capacity of algal extracts. Methods Mol. Biol. 2015, 1308, 375–402. [Google Scholar]
- Adhikari, B.; Dutt, M.; Vashisth, T. Comparative phytochemical analysis of the fruits of four Florida-grown finger lime (Citrus australasica) selections. LWT 2021, 135, 110003. [Google Scholar] [CrossRef]
- Mariem, S.; Hanen, F.; Inès, J.; Mejdi, S.; Riadh, K. Phenolic profile, biological activities and fraction analysis of the medicinal halophyte Retama raetam. S. Afr. J. Bot. 2014, 94, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ji, S.; Zang, W.; Wang, N.; Cao, J.; Li, X.; Sun, C. Identification of phenolic compounds from a unique citrus species, finger lime (Citrus australasica) and their inhibition of LPS-induced NO-releasing in BV-2 cell line. Food Chem. Toxicol. 2019, 129, 54–63. [Google Scholar] [CrossRef]
- Xi, W.; Fang, B.; Zhao, Q.; Jiao, B.; Zhou, Z. Flavonoid composition and antioxidant activities of Chinese local pummelo (Citrus grandis Osbeck.) varieties. Food Chem. 2014, 161, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulou, M.A.; Kefalas, P.; Papageorgiou, V.P.; Assimopoulou, A.N.; Boskou, D. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem. 2006, 94, 19–25. [Google Scholar] [CrossRef]
- Yanmei, Z.; Yifan, F.; Xia, W.; Jiao, G. Rapid identification of coumarins from Fructus citri Sarcodactylis by UPLC/Q-TOF-MS. Nat. Prod. Res. 2014, 29, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.B.; Batley, R.; Manson, D.; White, S.; Naiker, M. Volatile compounds, phenolic acid profiles and phytochemical content of five Australian finger lime (Citrus australasica) cultivars. LWT 2022, 154, 112640. [Google Scholar] [CrossRef]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Ribeiro, I.A.; Ribeiro, M.H.L. Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method. Food Control 2008, 19, 432–438. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT–Food Sci. Technol. 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Lapčík, O.; Klejdus, B.; Davidová, M.; Kokoška, L.; Kubáň, V.; Moravcová, J. Isoflavonoids in the Rutaceae family: 1 Fortunella obovata, Murraya paniculata and four Citrus species. Phytochem. Anal. 2004, 15, 293–299. [Google Scholar]
- Karimi, E.; Oskoueian, E.; Hendra, R.; Oskoueian, A.; Jaafar, H.Z.E. Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules 2012, 17, 1203. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Huang, C.; Lu, T.; Wu, L.; Deng, S.; Yang, R.; Li, J. Tandem mass spectrometric fragmentation behavior of lignans, flavonoids and triterpenoids in Streblus asper. Rapid Commun. Mass Spectrom. 2014, 28, 2363–2370. [Google Scholar] [CrossRef]
- Nakagawa, H.; Duan, H.; Takaishi, Y. Limonoids from Citrus sudachi. Chem. Pharm. Bull. 2001, 49, 649–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avula, B.; Sagi, S.; Wang, Y.H.; Wang, M.; Gafner, S.; Manthey, J.A.; Khan, I.A. Liquid chromatography-electrospray ionization mass spectrometry analysis of limonoids and flavonoids in seeds of grapefruits, other citrus species, and dietary supplements. Planta Med. 2016, 82, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Penniston, K.L.; Nakada, S.Y.; Holmes, R.P.; Assimos, D.G. Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. J. Endourol. 2008, 22, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Gargouri, B.; Ammar, S.; Verardo, V.; Besbes, S.; Segura-Carretero, A.; Bouaziz, M. RP-HPLC–DAD-ESI-TOF–MS based strategy for new insights into the qualitative and quantitative phenolic profile in Tunisian industrial Citrus limon by-product and their antioxidant activity. Eur. Food Res. Technol. 2017, 243, 2011–2024. [Google Scholar] [CrossRef]
- Kaur, S.; Panesar, P.S.; Chopra, H.K. Citrus processing by-products: An overlooked repository of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2021, 29, 1–20. [Google Scholar] [CrossRef]
- Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P. Antioxidant capacity and hydrophilic phytochemicals in commercially grown native Australian fruits. Food Chem. 2010, 123, 1048–1054. [Google Scholar] [CrossRef]
- Yusof, S.; Ghazali, H.M.; King, G.S. Naringin content in local citrus fruits. Food Chem. 1990, 37, 113–121. [Google Scholar] [CrossRef]
- Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 2014, 5, 404–417. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L.; Cronje, P.J.R.; Landahl, S.; Ortiz, J.O.; Terry, L.A. Rapid methods for extracting and quantifying phenolic compounds in citrus rinds. Food Sci. Nutr. 2016, 4, 4–10. [Google Scholar] [CrossRef]
- Hung, J.Y.; Hsu, Y.L.; Ko, Y.C.; Tsai, Y.M.; Yang, C.J.; Huang, M.S.; Kuo, P.L. Didymin, a dietary flavonoid glycoside from citrus fruits, induces Fas-mediated apoptotic pathway in human non-small-cell lung cancer cells in vitro and in vivo. Lung Cancer 2010, 68, 366–374. [Google Scholar] [CrossRef]
- Lee, D.H.; Park, K.I.; Park, H.S.; Kang, S.R.; Nagappan, A.; Kim, J.A.; Kim, E.H.; Lee, W.S.; Hah, Y.S.; Chung, H.J.; et al. Flavonoids isolated from Korea Citrus aurantium L. induce G2/M phase arrest and apoptosis in human gastric cancer AGS cells. Evid. Based Complementary Alternat. Med. 2012, 2012, 515901. [Google Scholar]
- Ortuno, A.; Benavente-Garcia, O.; Castillo, J.; Alcaraz, M.; Vicente, V.; Del Rio, J. Beneficial action of Citrus flavonoids on multiple cancer-related biological pathways. Curr. Cancer Drug Targets 2007, 7, 795–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manthey, J.A.; Grohmann, K. Phenols in Citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in Citrus peel molasses. J. Agric. Food Chem. 2001, 49, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Genovese, S.; Taddeo, V.A.; Epifano, F.; Fiorito, S. Prenylated coumarins of the genus Citrus: An overview of the 2006–2016 literature data. Curr. Med. Chem. 2018, 25, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Morales-Soto, A.; García-Salas, P.; Rodríguez-Pérez, C.; Jiménez-Sánchez, C.; de la Luz Cádiz-Gurrea, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Antioxidant capacity of 44 cultivars of fruits and vegetables grown in Andalusia (Spain). Food Res. Int. 2014, 58, 35–46. [Google Scholar] [CrossRef]
- Sekher Pannala, A.; Chan, T.S.; O’Brien, P.J.; Rice-Evans, C.A. Flavonoid B-ring chemistry and antioxidant activity: Fast reaction kinetics. Biochem. Biophys. Res. Commun. 2001, 282, 1161–1168. [Google Scholar] [CrossRef]
Peak | RT (min) | [M − H]−m/z Experimental | [M − H]−m/z Calculated | Molecular Formula | Error (ppm) | MS/MS Fragment ions (m/z) | Proposed Compound |
---|---|---|---|---|---|---|---|
1 | 1.3 | 191.0176 | 191.0192 | C6H8O7 | −1.6 | 160, 111, 87 | Citric acid * |
2 | 3.8 | 145.0274 | 145.0290 | C9H6O2 | −1.6 | 117 | Coumarin * |
3 | 6.1 | 179.0341 | 179.0344 | C9H8O4 | −0.3 | 135 | Caffeic acid * |
4 | 7.0 | 119.0496 | 119.0497 | C8H8O | −0.1 | 101 | 4-Vinylphenol |
5 | 7.3 | 609.1471 | 609.1456 | C27H30O16 | 1.5 | 301 | Rutin * |
6 | 7.6 | 463.0877 | 463.0877 | C21H20O12 | 0 | 301 | Hyperoside* |
7 | 8.0 | 579.1732 | 579.1714 | C27H32O14 | 3.1 | 271, 151 | Naringin * |
8 | 8.4 | 315.0498 | 315.0505 | C16H12O7 | −2.2 | 301, 273, 151 | Isorhamnetin * |
9 | 8.6 | 163.0407 | 163.0395 | C9H8O3 | 1.2 | 119 | 2-Coumaric acid* |
10 | 9.1 | 471.1268 | 471.1291 | C24H24O10 | −4.9 | 267, 205, 163, 59 | Ononin-O-acetate |
11 | 9.4 | 593.187 | 593.1870 | C28H34O14 | 0 | 431, 285, 163, | Didymin * |
12 | 9.8 | 503.1871 | 503.1858 | C33H28O5 | 3.6 | 355, 297 | Unknown |
13 | 9.9 | 491.2245 | 491.2222 | C33H32O4 | 4.7 | 373, 329, 285, 165 | Unknown |
14 | 10.2 | 271.0612 | 271.0606 | C15H12O5 | 2.2 | 171, 151 | Naringenin * |
15 | 10.4 | 125.0229 | 125.0239 | C6H603 | −1 | 81 | Pyrogallol* |
16 | 10.8 | 489.2107 | 489.2125 | C26H34O9 | −3.7 | 471, 333, 111 | Deacetylnomilinic acid |
17 | 11.3 | 517.2073 | 517.2074 | C27H34O10 | −0.2 | 399, 274, 175, 111 | Unknown |
18 | 11.7 | 469.1872 | 469.1862 | C26H30O8 | 2.1 | 381, 229 | Limonin |
19 | 12.0 | 333.1355 | 333.1338 | C18H22O6 | 4.1 | 191, 149 | Unknown |
20 | 12.5 | 445.2934 | 445.2954 | C27H42O5 | −4.5 | 367, 287, 227 | Unknown |
21 | 12.8 | 425.2345 | 425.2328 | C26H34O5 | 4 | 410, 381, 335, 311, 283 | Unknown |
22 | 13.5 | 467.2452 | 467.2434 | C28H36O6 | 3.9 | 381, 325, 283, 179, 97 | Unknown |
Compound | Average ± SD |
---|---|
Citric acid | 8106.7 ± 180.8 |
Pyrogallol | 22.5 ± 2.2 |
Caffeic acid | 11.2 ± 7.4 |
Coumarin | 5.4 ± 2.8 |
Hyperoside | n.q. |
Rutin | 8.7 ± 1 |
Naringin | 916.3 ± 75.4 |
2-Coumaric acid | 97.4 ± 10.1 |
Didymin | 111.8 ± 19.1 |
Naringenin | 2.7 ± 0.2 |
Isorhamnetin | 41.9 ± 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aznar, R.; Rodríguez-Pérez, C.; Rai, D.K. Comprehensive Characterization and Quantification of Antioxidant Compounds in Finger Lime (Citrus australasica L.) by HPLC-QTof-MS and UPLC-MS/MS. Appl. Sci. 2022, 12, 1712. https://doi.org/10.3390/app12031712
Aznar R, Rodríguez-Pérez C, Rai DK. Comprehensive Characterization and Quantification of Antioxidant Compounds in Finger Lime (Citrus australasica L.) by HPLC-QTof-MS and UPLC-MS/MS. Applied Sciences. 2022; 12(3):1712. https://doi.org/10.3390/app12031712
Chicago/Turabian StyleAznar, Ramón, Celia Rodríguez-Pérez, and Dilip K. Rai. 2022. "Comprehensive Characterization and Quantification of Antioxidant Compounds in Finger Lime (Citrus australasica L.) by HPLC-QTof-MS and UPLC-MS/MS" Applied Sciences 12, no. 3: 1712. https://doi.org/10.3390/app12031712
APA StyleAznar, R., Rodríguez-Pérez, C., & Rai, D. K. (2022). Comprehensive Characterization and Quantification of Antioxidant Compounds in Finger Lime (Citrus australasica L.) by HPLC-QTof-MS and UPLC-MS/MS. Applied Sciences, 12(3), 1712. https://doi.org/10.3390/app12031712