Effects of Grafting Degree on the Physicochemical Properties of Egg White Protein-Sodium Carboxymethylcellulose Conjugates and Their Aerogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of EWP/CMC-Na Conjugates
2.3. Aerogel Preparation
2.4. Grafting Degree (DG) of the Conjugates
2.5. Determination of Absorbance for the Maillard Reaction Products
2.6. Color Difference Analysis
2.7. Determination by Fourier Transform Infrared Spectroscopy (FTIR)
2.8. Microstructure of Aerogels
2.9. Mechanical Strength of Aerogels
2.10. Analysis of Specific Surface Area and Pore Parameters for Aerogels
2.11. Emulsifying Properties of Aerogels
2.12. Oil Absorption/Holding Capacity of the Aerogels
2.13. Statistical Analysis
3. Results and Discussion
3.1. Effects of the Grafting Degrees on the Physicochemical Properties of EWP
3.1.1. Basic Characteristics of the Conjugates
3.1.2. The Grafting Degrees Changed the Structural Properties of EWP
3.2. Effects of Grafting Degrees on the Physicochemical Properties of EWP Aerogels
3.2.1. Effects of Grafting Degrees on the Morphology of EWP Aerogels
3.2.2. The Mechanical Strength of EWP Aerogels Changed with Grafting Degrees
3.2.3. The Porous Properties of EWP Aerogels Changed with Grafting Degrees
3.2.4. The Emulsifying Properties of EWP Aerogels Changed with Grafting Degrees
3.2.5. Effects of Grafting Degrees on the Oil Absorption Capacity (OAC) and Oil Holding Capacity (OHC) of EWP Aerogels
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ulker, Z.; Erkey, C. An Emerging Platform for Drug Delivery: Aerogel Based Systems. J. Control. Release 2014, 177, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gonzalez, C.A.; Jin, M.; Gerth, J.; Alvarez-Lorenzo, C.; Smirnova, I. Polysaccharide-Based Aerogel Microspheres for Oral Drug Delivery. Carbohydr. Polym. 2015, 117, 797–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafari, R.; Jonoobi, M.; Amirabad, L.M.; Oksman, K.; Taheri, A.R. Fabrication and Characterization of Novel Bilayer Scaffold from Nanocellulose Based Aerogel for Skin Tissue Engineering Applications. Int. J. Biol. Macromol. 2019, 136, 796–803. [Google Scholar] [CrossRef]
- Zeinali, K.; Khorasani, M.T.; Rashidi, A.; Joupari, M.D. Preparation and Characterization of Graphene Oxide Aerogel/Gelatin as a Hybrid Scaffold for Application in Nerve Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 674–683. [Google Scholar] [CrossRef]
- Guo, L.C.; Xia, J.; Yu, S.H.; Yan, J.A.; He, F.; Zhang, M.Q.; Fan, Q.L.; Yang, R.J.; Zhao, W. Natural Edible Materials Made of Protein-Functionalized Aerogel Particles for Postprandial Hyperglycemia Management. Int. J. Biol. Macromol. 2021, 167, 279–288. [Google Scholar] [CrossRef]
- Plazzotta, S.; Calligaris, S.; Manzocco, L. Structural Characterization of Oleogels from Whey Protein Aerogel Particles. Food Res. Int. 2020, 132, 109099. [Google Scholar] [CrossRef]
- Selvasekaran, P.; Chidambaram, R. Food-Grade Aerogels Obtained from Polysaccharides, Proteins, and Seed Mucilages: Role as a Carrier Matrix of Functional Food Ingredients. Trends Food Sci. Technol. 2021, 112, 455–470. [Google Scholar] [CrossRef]
- Jung, S.B.; Park, S.W.; Yang, J.K.; Park, H.H.; Kim, H. Application of Sio2 Aerogel Film for Interlayer Dielectric on Gaas with a Barrier of Si3n4. Thin Solid Film. 2004, 447, 580–585. [Google Scholar] [CrossRef]
- Rao, A.V.; Bhagat, S.D.; Hirashima, H.; Pajonk, G.M. Synthesis of Flexible Silica Aerogels Using Methyltrimethoxysilane (Mtms) Precursor. J. Colloid Interface Sci. 2006, 300, 279–285. [Google Scholar] [CrossRef]
- Baumann, T.F.; Gash, A.E.; Chinn, S.C.; Sawvel, A.M.; Maxwell, R.S.; Satcher, J.H. Synthesis of High-Surface-Area Alumina Aerogels without the Use of Alkoxide Precursors. Chem. Mater. 2005, 17, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Demydov, D.; Klabunde, K.J. Characterization of Mixed Metal Oxides (Srtio3 and Batio3) Synthesized by a Modified Aerogel Procedure. J. Non-Cryst. Solids 2004, 350, 165–172. [Google Scholar] [CrossRef]
- Lorjai, P.; Chaisuwan, T.; Wongkasemjit, S. Porous Structure of Polybenzoxazine-Based Organic Aerogel Prepared by Sol–Gel Process and Their Carbon Aerogels. J. Sol-Gel Sci. Technol. 2009, 52, 56–64. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Y.; Wang, W.; Fang, Y.; Riffat, S.B.; Jiang, F. The Advances of Polysaccharide-Based Aerogels: Preparation and Potential Application. Carbohydr. Polym. 2019, 226, 115242. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, H. Alginate/Pectin Aerogel Microspheres for Controlled Release of Proanthocyanidins. Int. J. Biol. Macromol. 2019, 136, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Oshima, T.; Sakamoto, T.; Ohe, K.; Baba, Y. Cellulose Aerogel Regenerated from Ionic Liquid Solution for Immobilized Metal Affinity Adsorption. Carbohydr. Polym. 2014, 103, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, S.; Zhao, S.; Malfait, W.J.; Koebel, M.M. Chemistry of Chitosan Aerogels: Three-Dimensional Pore Control for Tailored Applications. Angew. Chem. Int. Ed. Engl. 2020, 60, 9828–9851. [Google Scholar] [CrossRef]
- De Marco, I.; Reverchon, R. Starch Aerogel Loaded with Poorly Water-Soluble Vitamins through Supercritical Co 2 Adsorption. Chem. Eng. Res. Des. 2017, 119, 221–230. [Google Scholar] [CrossRef]
- Marin, M.A.; Mallepally, R.R.; McHugh, M.A. Silk Fibroin Aerogels for Drug Delivery Applications. J. Supercrit. Fluids 2014, 91, 84–89. [Google Scholar] [CrossRef]
- Betz, M.; García-González, C.A.; Subrahmanyam, R.P.; Smirnova, I.; Kulozik, U. Preparation of Novel Whey Protein-Based Aerogels as Drug Carriers for Life Science Applications. J. Supercrit. Fluids 2012, 72, 111–119. [Google Scholar] [CrossRef]
- Mine, Y. Recent Advances in the Understanding of Egg White Protein Functionality. Trends Food Sci. Technol. 1995, 6, 225–232. [Google Scholar] [CrossRef]
- Somaratne, G.; Nau, F.; Ferrua, M.J.; Singh, J.; Ye, A.; Dupont, D.; Singh, R.P.; Floury, J. Characterization of Egg White Gel Microstructure and Its Relationship with Pepsin Diffusivity. Food Hydrocoll. 2020, 98, 105258. [Google Scholar] [CrossRef]
- Chang, C.; Meikle, T.G.; Su, Y.; Wang, X.; Dekiwadia, C.; Drummond, C.J.; Conn, C.E.; Yang, Y. Encapsulation in Egg White Protein Nanoparticles Protects Anti-Oxidant Activity of Curcumin. Food Chem. 2019, 280, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Selmer, I.; Kleemann, C.; Kulozik, U.; Heinrich, S.; Smirnova, I. Development of Egg White Protein Aerogels as New Matrix Material for Microencapsulation in Food. J. Supercrit. Fluids 2015, 106, 42–49. [Google Scholar] [CrossRef]
- Liu, L.; Ramirez, I.S.A.; Yang, J.; Ciftci, O.N. Evaluation of Oil-Gelling Properties and Crystallization Behavior of Sorghum Wax in Fish Oil. Food Chem. 2020, 309, 125567. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, W.; Wang, X.; Cheng, S.; Zhou, J.; Wu, Z.; Li, Y. Fabrication and Physicochemical and Antibacterial Properties of Ethyl Cellulose-Structured Cinnamon Oil Oleogel: Relation between Ethyl Cellulose Viscosity and Oleogel Performance. J. Sci. Food Agric. 2019, 99, 4063–4071. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Rajarethinem, P.S.; Cludts, N.; Lewille, B.; De Vos, W.H.; Lesaffer, A.; Dewettinck, K. Biopolymer-Based Structuring of Liquid Oil into Soft Solids and Oleogels Using Water-Continuous Emulsions as Templates. Langmuir 2015, 31, 2065–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, A.; Hendriks, J.; Van Der Linden, E.; Scholten, E. Protein Oleogels from Protein Hydrogels Via a Stepwise Solvent Exchange Route. Langmuir 2015, 31, 13850–13859. [Google Scholar] [CrossRef]
- Selmer, I.; Karnetzke, J.; Kleemann, C.; Lehtonen, M.; Mikkonen, K.S.; Kulozik, U.; Smirnova, I. Encapsulation of Fish Oil in Protein Aerogel Micro-Particles. J. Food Eng. 2019, 260, 1–11. [Google Scholar] [CrossRef]
- Mallepally, R.R.; Marin, M.A.; Surampudi, V.; Subia, B.; Rao, R.R.; Kundu, S.C.; McHugh, M.A. Silk Fibroin Aerogels: Potential Scaffolds for Tissue Engineering Applications. Biomed. Mater. 2015, 10, 035002. [Google Scholar] [CrossRef]
- Kleemann, C.; Selmer, I.; Smirnova, I.; Kulozik, U. Tailor Made Protein Based Aerogel Particles from Egg White Protein, Whey Protein Isolate and Sodium Caseinate: Influence of the Preceding Hydrogel Characteristics. Food Hydrocoll. 2018, 83, 365–374. [Google Scholar] [CrossRef]
- Andlinger, D.J.; Bornkeßel, A.C.; Jung, I.; Schroeter, B.; Smirnova, I.; Kulozik, U. Microstructures of Potato Protein Hydrogels and Aerogels Produced by Thermal Crosslinking and Supercritical Drying. Food Hydrocoll. 2021, 112, 106305. [Google Scholar] [CrossRef]
- Pekala, R.W.; Kong, F.M. A Synthetic Route to Organic Aerogels—Mechanism, Structure, and Properties. J. Phys. Colloq. 1989, 24, C4-33–C4-40. [Google Scholar] [CrossRef]
- Amaral-Labat, G.; Grishechko, L.; Szczurek, A.; Fierro, V.; Pizzi, A.; Kuznetsov, B.; Celzard, A. Highly Mesoporous Organic Aerogels Derived from Soy and Tannin. Green Chem. 2012, 14, 3099–3106. [Google Scholar] [CrossRef]
- Lu, T.; Li, Q.; Chen, W.; Yu, H. Composite Aerogels Based on Dialdehyde Nanocellulose and Collagen for Potential Applications as Wound Dressing and Tissue Engineering Scaffold. Compos. Sci. Technol. 2014, 94, 132–138. [Google Scholar] [CrossRef]
- Mathew, A.P.; Oksman, K.; Pierron, D.; Harmad, M.F. Crosslinked Fibrous Composites Based on Cellulose Nanofibers and Collagen with in Situ Ph Induced Fibrillation. Cellulose 2011, 19, 139–150. [Google Scholar] [CrossRef]
- Chen, H.B.; Wang, Y.Z.; Schiraldi, D.A. Foam-Like Materials Based on Whey Protein Isolate. Eur. Polym. J. 2013, 49, 3387–3391. [Google Scholar] [CrossRef]
- Ahmadi, M.; Madadlou, A.; Saboury, A.A. Whey Protein Aerogel as Blended with Cellulose Crystalline Particles or Loaded with Fish Oil. Food Chem. 2016, 196, 1016–1022. [Google Scholar] [CrossRef]
- Arboleda, J.C.; Hughes, M.; Lucia, L.A.; Laine, J.; Ekman, K.; Rojas, O.J. Soy Protein–Nanocellulose Composite Aerogels. Cellulose 2013, 20, 2417–2426. [Google Scholar] [CrossRef]
- Chen, K.L.; Zhang, H. Fabrication of Oleogels Via a Facile Method by Oil Absorption in the Aerogel Templates of Protein-Polysaccharide Conjugates. ACS Appl. Mater. Interfaces 2020, 12, 7795–7804. [Google Scholar] [CrossRef]
- Yu, M.; Han, Y.; Li, J.; Wang, L. Magnetic N-Doped Carbon Aerogel from Sodium Carboxymethyl Cellulose/Collagen Composite Aerogel for Dye Adsorption and Electrochemical Supercapacitor. Int. J. Biol. Macromol. 2018, 115, 185–193. [Google Scholar] [CrossRef]
- An, Y.; Cui, B.; Wang, Y.; Jin, W.; Geng, X.; Yan, X.; Li, B. Functional Properties of Ovalbumin Glycosylated with Carboxymethyl Cellulose of Different Substitution Degree. Food Hydrocoll. 2014, 40, 1–8. [Google Scholar] [CrossRef]
- Xiong, W.; Li, Y.; Li, B.; Geng, F. Relationship between Gel Properties and Water Holding of Ovalbumin-Carboxymethylcellulose Electrostatic Complex Hydrogels. Int. J. Biol. Macromol. 2021, 167, 1230–1240. [Google Scholar] [CrossRef]
- Rao, Q.; Rocca-Smith, J.R.; Schoenfuss, T.C.; Labuza, T.P. Accelerated Shelf-Life Testing of Quality Loss for a Commercial Hydrolysed Hen Egg White Powder. Food Chem. 2012, 135, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.E.; Liu, T.; Yao, Y.; Wu, N.; Du, H.; Xu, M.; Liao, M.; Zhao, Y.; Tu, Y. Changes in Physicochemical and Antioxidant Properties of Egg White During the Maillard Reaction Induced by Alkali. LWT 2021, 143, 111151. [Google Scholar] [CrossRef]
- Cai, L.; Li, D.; Dong, Z.; Cao, A.; Lin, H.; Li, J. Change Regularity of the Characteristics of Maillard Reaction Products Derived from Xylose and Chinese Shrimp Waste Hydrolysates. LWT Food Sci. Technol. 2016, 65, 908–916. [Google Scholar] [CrossRef]
- Kleemann, C.; Schuster, R.; Rosenecker, E.; Selmer, I.; Smirnova, I.; Kulozik, U. In-Vitro-Digestion and Swelling Kinetics of Whey Protein, Egg White Protein and Sodium Caseinate Aerogels. Food Hydrocoll. 2020, 101, 105534. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, D.; Shang, K.; Wang, Y.T.; Ye, D.D.; Kang, A.H.; Liao, W.; Wang, Y.Z. Ultrasoft Gelatin Aerogels for Oil Contaminant Removal. J. Mater. Chem. A 2016, 4, 9381–9389. [Google Scholar] [CrossRef]
- Manzocco, L.; Valoppi, F.; Calligaris, S.; Andreatta, F.; Spilimbergo, S.; Nicoli, M.C. Exploitation of Kappa-Carrageenan Aerogels as Template for Edible Oleogel Preparation. Food Hydrocoll. 2017, 71, 68–75. [Google Scholar] [CrossRef]
- Spotti, M.J.; Perduca, M.J.; Piagentini, A.; Santiago, L.G.; Rubiolo, A.C.; Carrara, C.R. Gel Mechanical Properties of Milk Whey Protein–Dextran Conjugates Obtained by Maillard Reaction. Food Hydrocoll. 2013, 31, 26–32. [Google Scholar] [CrossRef]
- Deygen, I.M.; Kudryashova, E.V. New Versatile Approach for Analysis of Peg Content in Conjugates and Complexes with Biomacromolecules Based on Ftir Spectroscopy. Colloids Surf. B Biointerfaces 2016, 141, 36–43. [Google Scholar] [CrossRef]
- Umemura, K.; Kawai, S. Preparation and Characterization of Maillard Reacted Chitosan Films with Hemicellulose Model Compounds. J. Appl. Polym. Sci. 2008, 108, 2481–2487. [Google Scholar] [CrossRef]
- Affes, S.; Nasri, R.; Li, S.; Thami, T.; Van Der Lee, A.; Nasri, M.; Maalej, H. Effect of Glucose-Induced Maillard Reaction on Physical, Structural and Antioxidant Properties of Chitosan Derivatives-Based Films. Carbohydr. Polym. 2021, 255, 117341. [Google Scholar] [CrossRef] [PubMed]
- Kosaraju, S.L.; Weerakkody, R.; Augustin, M.A. Chitosan—Glucose Conjugates: Influence of Extent of Maillard Reaction on Antioxidant Properties. J. Agric. Food Chem. 2010, 58, 12449–12455. [Google Scholar] [CrossRef] [PubMed]
- Nešić, A.; Gordić, M.; Davidović, S.; Radovanović, Ž.; Nedeljković, J.; Smirnova, I.; Gurikov, P. Pectin-Based Nanocomposite Aerogels for Potential Insulated Food Packaging Application. Carbohydr. Polym. 2018, 195, 128–135. [Google Scholar] [CrossRef]
- Chengbin, Z.; Jiannan, Y.; Jingsheng, L.; Xiuying, X.; Yuzhu, W.; Hao, Z.; Yong, C.; Baokun, Q. Effect of Glycation Reaction on Rheological Property and Microstructure of Acid-Induced Gels Formed by Soybean Protein Isolate/Maltodextrin Systems. J. Chin. Inst. Food Sci. Technol. 2019, 19, 35–41. [Google Scholar] [CrossRef]
- Maleki, H.; Durães, L.; García-González, C.A.; Del Gaudio, P.; Portugal, A.; Mahmoudi, M. Synthesis and Biomedical Applications of Aerogels: Possibilities and Challenges. Adv. Colloid Interface Sci. 2016, 236, 1–27. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Geng, X.; Cui, B.; Li, Y.; Jin, W.; An, Y.; Zhou, B.; Ye, T.; He, L.; Liang, H.; Wang, L.; et al. Preparation and Characterization of Ovalbumin and Carboxymethyl Cellulose Conjugates Via Glycosylation. Food Hydrocoll. 2014, 37, 86–92. [Google Scholar] [CrossRef]
- Castaldo, R.; Gentile, G.; Avella, M.; Carfagna, C.; Ambrogi, V. Microporous Hyper-Crosslinked Polystyrenes and Nanocomposites with High Adsorption Properties: A Review. Polymers 2017, 9, 651. [Google Scholar] [CrossRef] [Green Version]
- Spotti, M.J.; Loyeau, P.A.; Marangón, A.; Noir, H.; Rubiolo, A.C.; Carrara, C.R. Influence of Maillard Reaction Extent on Acid Induced Gels of Whey Proteins and Dextrans. Food Hydrocoll. 2019, 91, 224–231. [Google Scholar] [CrossRef]
Samples | DG (%) | Color Differences | A420 (10−2) | ||
---|---|---|---|---|---|
L* | a* | b* | |||
EWP | 0 e | 90.35 ± 0.22 a | −0.08 ± 0.02 e | 14.04 ± 0.37 e | 0.30 ± 0.03 f |
EC0 | 0.83 ± 0.06 e | 88.77 ± 0.19 b | 0.16 ± 0.03 d | 15.59 ± 0.44 d | 0.55 ± 0.04 e |
EC12 | 8.0 ± 0.4 d | 87.65 ± 0.30 c | 0.26 ± 0.05 c | 16.34 ± 0.48 d | 1.94 ± 0.05 d |
EC24 | 12 ± 2 c | 86.57 ± 0.47 d | 1.29 ± 0.02 b | 17.53 ± 0.29 c | 3.44 ± 0.23 c |
EC36 | 16 ± 3 b | 85.51 ± 0.51 e | 2.15 ± 0.07 a | 19.42 ± 0.46 b | 4.53 ± 0.17 b |
EC48 | 22 ± 1 a | 84.12 ± 0.41 f | 2.68 ± 0.04 f | 21.31 ± 0.87 a | 5.17 ± 0.07 a |
Samples | SBET (m2/g) | VP (10−3 cm3/g) | DA (nm) |
---|---|---|---|
EWP | 0.54 ± 0.02 f | 5.29 ± 0.13 e | 36 ± 1 a |
EC0 | 1.87 ± 0.02 d | 9.13 ± 0.05 b | 19.0 ± 0.3 c |
EC12 | 2.59 ± 0.04 a | 8.42 ± 0.08 c | 13.0 ± 0.4 f |
EC24 | 1.96 ± 0.04 c | 8.11 ± 0.10 d | 16.0 ± 0.3 d |
EC36 | 1.75 ± 0.04 e | 11.43 ± 0.07 a | 25.0 ± 0.9 b |
EC48 | 2.43 ± 0.05 b | 9.18 ± 0.07 b | 15.0 ± 0.7 e |
Samples | Emulsifying Activity (m2/g) | Emulsion Stability (min) |
---|---|---|
EWP | 109 ± 1 f | 34 ± 1 d |
EC0 | 118 ± 3 e | 36 ± 1 cd |
EC12 | 166 ± 3 a | 42 ± 2 bc |
EC24 | 145 ± 3 b | 40 ± 2 b |
EC36 | 130 ± 4 c | 51 ± 5 a |
EC48 | 124 ± 3 d | 54 ± 3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Jiang, Y.; Tang, T.; Du, H.; Tu, Y.; Xu, M. Effects of Grafting Degree on the Physicochemical Properties of Egg White Protein-Sodium Carboxymethylcellulose Conjugates and Their Aerogels. Appl. Sci. 2022, 12, 2017. https://doi.org/10.3390/app12042017
Tang S, Jiang Y, Tang T, Du H, Tu Y, Xu M. Effects of Grafting Degree on the Physicochemical Properties of Egg White Protein-Sodium Carboxymethylcellulose Conjugates and Their Aerogels. Applied Sciences. 2022; 12(4):2017. https://doi.org/10.3390/app12042017
Chicago/Turabian StyleTang, Shuaishuai, Yan Jiang, Tingting Tang, Huaying Du, Yonggang Tu, and Mingsheng Xu. 2022. "Effects of Grafting Degree on the Physicochemical Properties of Egg White Protein-Sodium Carboxymethylcellulose Conjugates and Their Aerogels" Applied Sciences 12, no. 4: 2017. https://doi.org/10.3390/app12042017
APA StyleTang, S., Jiang, Y., Tang, T., Du, H., Tu, Y., & Xu, M. (2022). Effects of Grafting Degree on the Physicochemical Properties of Egg White Protein-Sodium Carboxymethylcellulose Conjugates and Their Aerogels. Applied Sciences, 12(4), 2017. https://doi.org/10.3390/app12042017