Sleep-Disordered Breathing Risk with Comorbid Insomnia Is Associated with Mild Cognitive Impairment
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. The ADNI Database and Participants
2.2. Primary Outcome: Normal Cognition vs. MCI
2.3. Insomnia
2.4. Risk for SDB
2.5. Main Confounders
2.6. Analytical Sample
2.7. Statistical Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patterson, C. World Alzheimer Report 2018. The State of The Art of Dementia Research: New Frontiers; Alzheimer’s Disease International: London, UK, 2018. [Google Scholar]
- Shi, L.; Chen, S.J.; Ma, M.Y.; Bao, Y.P.; Han, Y.; Wang, Y.M.; Shi, J.; Vitiello, M.V.; Lu, L. Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med. Rev. 2018, 40, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, A.; Melaku, Y.A.; Lack, L.; Reynolds, A.; Gill, T.K.; Adams, R.; Appleton, S. Prevalence and associations of co-morbid insomnia and sleep apnoea in an Australian population-based sample. Sleep Med. 2021, 82, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, K.; Nettiksimmons, J.; Yesavage, J.; Byers, A. Sleep Quality and Risk of Dementia among Older Male Veterans. Am. J. Geriatr. Psychiatry 2015, 23, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Elwood, P.C.; Bayer, A.J.; Fish, M.; Pickering, J.; Mitchell, C.; Gallacher, J.E. Sleep disturbance and daytime sleepiness predict vascular dementia. J. Epidemiol. Community Health 2011, 65, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Tsapanou, A.; Gu, Y.; Manly, J.; Schupf, N.; Tang, M.X.; Zimmerman, M.; Scarmeas, N.; Stern, Y. Daytime Sleepiness and Sleep Inadequacy as Risk Factors for Dementia. Ementia Geriatr. Cogn. Disord. Extra 2015, 5, 286–295. [Google Scholar] [CrossRef]
- Dopheide, J.A. Insomnia overview: Epidemiology, pathophysiology, diagnosis and monitoring, and nonpharmacologic therapy. Am. J. Manag. Care 2020, 26 (Suppl. 4), S76–S84. [Google Scholar] [CrossRef]
- Roth, T. Insomnia: Definition, prevalence, etiology, and consequences. J. Clin. Sleep Med. 2007, 3 (Suppl. 5), S7–S10. [Google Scholar] [CrossRef] [Green Version]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Luyster, F.S.; Buysse, D.J.; Strollo, P.J., Jr. Comorbid insomnia and obstructive sleep apnea: Challenges for clinical practice and research. J. Clin. Sleep Med. 2010, 6, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Sweetman, A.; Lack, L.; McEvoy, R.D.; Smith, S.; Eckert, D.J.; Osman, A.; Carberry, J.C.; Wallace, D.; Nguyen, P.D.; Catcheside, P. Bi-directional relationships between co-morbid insomnia and sleep apnea (COMISA). Sleep Med. Rev. 2021, 60, 101519. [Google Scholar] [CrossRef]
- Krakow, B.; Romero, E.; Ulibarri, V.A.; Kikta, S. Prospective assessment of nocturnal awakenings in a case series of treatment-seeking chronic insomnia patients: A pilot study of subjective and objective causes. Sleep 2012, 35, 1685–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Mendoza, J.; Vgontzas, A.N.; Bixler, E.O.; Singareddy, R.; Shaffer, M.L.; Calhoun, S.L.; Karataraki, M.; Vela-Bueno, A.; Liao, D. Clinical and polysomnographic predictors of the natural history of poor sleep in the general population. Sleep 2012, 35, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, X.L.; Rakotonanahary, D.; Chaskalovic, J.; Fleury, B. Insomnia related to sleep apnoea: Effect of long-term auto-adjusting positive airway pressure treatment. Eur. Respir. J. 2013, 41, 593–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjornsdottir, E.; Janson, C.; Sigurdsson, J.F.; Gehrman, P.; Perlis, M.; Juliusson, S.; Arnardottir, E.S.; Kuna, S.T.; Pack, A.I.; Gislason, T.; et al. Symptoms of insomnia among patients with obstructive sleep apnea before and after two years of positive airway pressure treatment. Sleep 2013, 36, 1901–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjorvatn, B.; Berge, T.; Lehmann, S.; Pallesen, S.; Saxvig, I.W. No Effect of a Self-Help Book for Insomnia in Patients With Obstructive Sleep Apnea and Comorbid Chronic Insomnia—A Randomized Controlled Trial. Front. Psychol. 2018, 9, 2413. [Google Scholar] [CrossRef] [PubMed]
- Krakow, B.; McIver, N.D.; Ulibarri, V.A.; Krakow, J.; Schrader, R.M. Prospective Randomized Controlled Trial on the Efficacy of Continuous Positive Airway Pressure and Adaptive Servo-Ventilation in the Treatment of Chronic Complex Insomnia. EClinicalMedicine 2019, 13, 57–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweetman, A.; Lack, L.; Catcheside, P.G.; Antic, N.A.; Smith, S.; Chai-Coetzer, C.L.; Douglas, J.; O’Grady, A.; Dunn, N.; Robinson, J.; et al. Cognitive and behavioral therapy for insomnia increases the use of continuous positive airway pressure therapy in obstructive sleep apnea participants with comorbid insomnia: A randomized clinical trial. Sleep 2019, 42, zsz178. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.C.; Crawford, M.R.; Dawson, S.C.; Fogg, L.F.; Turner, A.D.; Wyatt, J.K.; Crisostomo, M.I.; Chhangani, B.S.; Kushida, C.A.; Edinger, J.D.; et al. A randomized controlled trial of CBT-I and PAP for obstructive sleep apnea and comorbid insomnia: Main outcomes from the MATRICS study. Sleep 2020, 43, zsaa041. [Google Scholar] [CrossRef]
- Series, F.; Roy, N.; Marc, I. Effects of sleep deprivation and sleep fragmentation on upper airway collapsibility in normal subjects. Am. J. Respir. Crit. Care Med. 1994, 150, 481–485. [Google Scholar] [CrossRef]
- Guilleminault, C. Sleep apnea syndromes: Impact of sleep and sleep states. Sleep 1980, 3, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Guilleminault, C.; Silvestri, R.; Mondini, S.; Coburn, S. Aging and sleep apnea: Action of benzodiazepine, acetazolamide, alcohol, and sleep deprivation in a healthy elderly group. J. Gerontol. 1984, 39, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Kimoff, R.J. Sleep fragmentation in obstructive sleep apnea. Sleep 1996, 19 (Suppl. 9), S61–S66. [Google Scholar] [CrossRef] [Green Version]
- Persson, H.E.; Svanborg, E. Sleep deprivation worsens obstructive sleep apnea. Comparison between diurnal and nocturnal polysomnography. Chest 1996, 109, 645–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilleminault, C.; Rosekind, M. The arousal threshold: Sleep deprivation, sleep fragmentation, and obstructive sleep apnea syndrome. Bull. Eur. Physiopathol. Respir. 1981, 17, 341–349. [Google Scholar] [PubMed]
- Cooper, K.R.; Phillips, B.A. Effect of short-term sleep loss on breathing. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982, 53, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, A.; Lack, L.; McEvoy, R.D.; Antic, N.A.; Smith, S.; Chai-Coetzer, C.L.; Douglas, J.; O’Grady, A.; Dunn, N.; Robinson, J.; et al. Cognitive behavioural therapy for insomnia reduces sleep apnoea severity: A randomised controlled trial. ERJ Open Res. 2020, 6. [Google Scholar] [CrossRef]
- Petersen, R.C.; Aisen, P.S.; Beckett, L.A.; Donohue, M.C.; Gamst, A.C.; Harvey, D.J.; Jack, C.R., Jr.; Jagust, W.J.; Shaw, L.M.; Toga, A.W.; et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization. Neurology 2010, 74, 201–209. [Google Scholar] [CrossRef] [Green Version]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, F.; Elsaid, H. Screening for obstructive sleep apnea before surgery: Why is it important? Curr. Opin. Anaesthesiol. 2009, 22, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Nagappa, M.; Liao, P.; Wong, J.; Auckley, D.; Ramachandran, S.K.; Memtsoudis, S.; Mokhlesi, B.; Chung, F. Validation of the STOP-Bang Questionnaire as a Screening Tool for Obstructive Sleep Apnea among Different Populations: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0143697. [Google Scholar] [CrossRef]
- Yaffe, K.; Laffan, A.M.; Harrison, S.L.; Redline, S.; Spira, A.P.; Ensrud, K.E.; Ancoli-Israel, S.; Stone, K.L. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 2011, 306, 613–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, C.M.; Li, Y.C.; Chen, H.J.; Lu, K.; Liang, C.L.; Liliang, P.C.; Tsai, Y.D.; Wang, K.W. Risk of dementia in patients with primary insomnia: A nationwide population-based case-control study. BMC Psychiatry 2018, 18, 38. [Google Scholar] [CrossRef] [Green Version]
- de Almondes, K.M.; Costa, M.V.; Malloy-Diniz, L.F.; Diniz, B.S. Insomnia and risk of dementia in older adults: Systematic review and meta-analysis. J. Psychiatr. Res. 2016, 77, 109–115. [Google Scholar] [CrossRef]
- Cricco, M.; Simonsick, E.M.; Foley, D.J. The impact of insomnia on cognitive functioning in older adults. J. Am. Geriatr. Soc. 2001, 49, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Seda, G.; Matwiyoff, G.; Parrish, J.S. Effects of Obstructive Sleep Apnea and CPAP on Cognitive Function. Curr. Neurol. Neurosci. Rep. 2021, 21, 32. [Google Scholar] [CrossRef] [PubMed]
- Alomri, R.M.; Kennedy, G.A.; Wali, S.O.; Ahejaili, F.; Robinson, S.R. Differential associations of hypoxia, sleep fragmentation, and depressive symptoms with cognitive dysfunction in obstructive sleep apnea. Sleep 2021, 44, zsaa213. [Google Scholar] [CrossRef] [PubMed]
- Dzierzewski, J.M.; Dautovich, N.; Ravyts, S. Sleep and Cognition in Older Adults. Sleep Med. Clin. 2018, 13, 93–106. [Google Scholar] [CrossRef]
- Altena, E.; Van Der Werf, Y.D.; Strijers, R.L.; Van Someren, E.J. Sleep loss affects vigilance: Effects of chronic insomnia and sleep therapy. J. Sleep Res. 2008, 17, 335–343. [Google Scholar] [CrossRef]
- Agudelo, C.; Tarraf, W.; Wu, B.; Wallace, D.M.; Patel, S.R.; Redline, S.; Kaur, S.; Daviglus, M.; Zee, P.C.; Simonelli, G.; et al. Actigraphic sleep patterns and cognitive decline in the Hispanic Community Health Study/Study of Latinos. Alzheimers Dement 2021, 17, 959–968. [Google Scholar] [CrossRef]
- Turner, A.D.; Bubu, O.M.; Rapoport, D.M.; Varga, A.W.; Ayappa, I.; de Leon, M.; Rusinek, H.; Glodzik, L.; Jean-Louis, G.; Osorio, R. 0011 The Influence of Obstructive Sleep Apnea Severity and Sex on Cerebral Perfusion. Sleep 2020, 43 (Suppl. 1), A4–A5. [Google Scholar] [CrossRef]
- Meira, E.C.M.; Kryger, M.H.; Morin, C.M.; Palombini, L.; Salles, C.; Gozal, D. Comorbid Insomnia and Sleep Apnea: Mechanisms and implications of an underrecognized and misinterpreted sleep disorder. Sleep Med. 2021, 84, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Terzano, M.G.; Parrino, L.; Spaggiari, M.C. Modifications of cyclic alternating pattern in sleep apnea syndrome. Eur. Neurol. 1990, 30, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, S.; Bilecenoglu, N.T.; Aksu, M.; Yoldas, T.K. Cyclic Alternating Pattern in Obstructive Sleep Apnea Patients with versus without Excessive Sleepiness. Sleep Disord. 2018, 2018, 8713409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chouvarda, I.; Grassi, A.; Mendez, M.O.; Bianchi, A.M.; Parrino, L.; Milioli, G.; Terzano, M.; Maglaveras, N.; Cerutti, S. Insomnia types and sleep microstructure dynamics. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6167–6170. [Google Scholar] [CrossRef]
- de Leon-Lomeli, R.; Murguia, J.S.; Chouvarda, I.; Mendez, M.O.; Gonzalez-Galvan, E.; Alba, A.; Milioli, G.; Grassi, A.; Terzano, M.G.; Parrino, L. Relation between heart beat fluctuations and cyclic alternating pattern during sleep in insomnia patients. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 2249–2252. [Google Scholar] [CrossRef]
- Krakow, B.; Ulibarri, V.A.; Romero, E.A.; McIver, N.D. A two-year prospective study on the frequency and co-occurrence of insomnia and sleep-disordered breathing symptoms in a primary care population. Sleep Med. 2013, 14, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.S.; Kowgier, M.; Yu, L.; Buchman, A.S.; Bennett, D.A. Sleep Fragmentation and the Risk of Incident Alzheimer’s Disease and Cognitive Decline in Older Persons. Sleep 2013, 36, 1027–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, V.; Nair, D.; Zhang, S.X.; Hakim, F.; Kaushal, N.; Kayali, F.; Wang, Y.; Li, R.C.; Carreras, A.; Gozal, D. Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-alpha pathway. J. Neuroinflammation 2012, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, D.; Zhang, S.X.; Ramesh, V.; Hakim, F.; Kaushal, N.; Wang, Y.; Gozal, D. Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways in mouse. Am. J. Respir. Crit. Care Med. 2011, 184, 1305–1312. [Google Scholar] [CrossRef]
- Prinz, P.N.; Peskind, E.R.; Vitaliano, P.P.; Raskind, M.A.; Eisdorfer, C.; Zemcuznikov, N.; Gerber, C.J. Changes in the sleep and waking EEGs of nondemented and demented elderly subjects. J. Am. Geriatr. Soc. 1982, 30, 86–93. [Google Scholar] [CrossRef]
- Vitiello, M.V.; Prinz, P.N. Alzheimer’s disease. Sleep and sleep/wake patterns. Clin. Geriatr. Med. 1989, 5, 289–299. [Google Scholar] [CrossRef]
- Mander, B.A.; Marks, S.M.; Vogel, J.W.; Rao, V.; Lu, B.; Saletin, J.M.; Ancoli-Israel, S.; Jagust, W.J.; Walker, M.P. beta-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat. Neurosci. 2015, 18, 1051–1057. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.E.; Finn, M.B.; Sutphen, C.L.; Herries, E.M.; Jerome, G.M.; Ladenson, J.H.; Crimmins, D.L.; Fagan, A.M.; Holtzman, D.M. Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid. Ann. Neurol. 2016, 80, 154–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, A.W.; Wohlleber, M.E.; Gimenez, S.; Romero, S.; Alonso, J.F.; Ducca, E.L.; Kam, K.; Lewis, C.; Tanzi, E.B.; Tweardy, S.; et al. Reduced Slow-Wave Sleep Is Associated with High Cerebrospinal Fluid Abeta42 Levels in Cognitively Normal Elderly. Sleep 2016, 39, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.S.; Ooms, S.J.; Sutphen, C.; Macauley, S.L.; Zangrilli, M.A.; Jerome, G.; Fagan, A.M.; Mignot, E.; Zempel, J.M.; Claassen, J.; et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-beta levels. Brain 2017, 140, 2104–2111. [Google Scholar] [CrossRef] [PubMed]
- Winer, J.R.; Mander, B.A.; Helfrich, R.F.; Maass, A.; Harrison, T.M.; Baker, S.L.; Knight, R.T.; Jagust, W.J.; Walker, M.P. Sleep as a Potential Biomarker of Tau and beta-Amyloid Burden in the Human Brain. J. Neurosci. 2019, 39, 6315–6324. [Google Scholar] [CrossRef] [Green Version]
Sleep Disorder Groups | Study Sample | |||||
---|---|---|---|---|---|---|
Low Risk for SDB Alone A | Low Risk for SDB with Insomnia B | High Risk for SDB Alone C | High Risk for SDB with Insomnia D | |||
Size, n (% study sample) | 1002 (72.0) | 191 (13.7) | 141 (10.1) | 57 (4.1) | 1391 (100) | |
Age, mean years (SD) | 73.5 (6.9) | 72.8 (7.5) | 74.0 (6.9) | 74.1 (7.4) | 73.5 (7.0) | |
Sex, female % | 47.7CD | 62.3ACD | 7.1 | 28.1C | 44.8 | |
BMI, mean mg/kg2 (SD) | 26.2(4.5) | 26.8 (5.2) | 31.0 (4.8)AB | 31.8 (5.9)AB | 27.0(5.0) | |
APOE4 alleles | ||||||
0, % | 56.5 | 62.8 | 61.0 | 56.1 | 57.8 | |
1, % | 35.3 | 31.4 | 30.5 | 42.1 | 34.6 | |
2, % | 8.2 | 5.8 | 8.5 | 1.8 | 7.6 | |
Race | ||||||
White, % | 92.9 | 92.7 | 91.5 | 86.0 | 92.5 | |
Black or African American, % | 4.3 | 4.2 | 3.5 | 10.5 | 4.5 | |
Asian, % | 1.6 | 2.1 | 0.7 | 1.8 | 1.6 | |
American Indian or Alaska Native, % | 0.2 | 0.0 | 0.7 | 0.0 | 0.2 | |
Native Hawaiian or Other Pacific Islander, % | 0.2 | 0.0 | 0.0 | 0.0 | 0.1 | |
More than one, % | 0.6 | 0.5 | 3.5A | 1.8 | 0.9 | |
Unknown, % | 0.2 | 0.5 | 0.0 | 0.0 | 0.2 | |
Ethnicity | ||||||
Non-Hispanic or Latino, % | 96.0 | 95.8 | 96.5 | 100.0 | 96.2 | |
Hispanic or Latino, % | 3.3 | 4.2 | 2.8 | 0.0 | 3.2 | |
Unknown, % | 0.7 | 0.0 | 0.7 | 0.0 | 0.6 | |
Education, mean years (SD) | 16.0 (2.8) | 16.3 (2.6) | 16.3 (3.0) | 15.9 (2.7) | 16.1 (2.8) | |
Marital status | ||||||
Married, % | 73.2 | 68.6 | 85.8ABD | 64.9 | 73.5 | |
Never married, % | 3.7 | 7.9C | 0.7 | 5.3 | 4.0 | |
Divorced, % | 10.8 | 7.9 | 5.0 | 8.8 | 9.7 | |
Widowed, % | 12.1 | 14.7 | 7.8 | 19.3 | 12.3 | |
Unknown, % | 0.3 | 1.0 | 0.7 | 1.8 | 0.5 | |
Hypertension, % | 40.4 | 44.0 | 95.7A B | 86.0A B | 48.4 | |
Stroke, % | 1.0 | 0.5 | 3.5A | 0.0 | 1.2 | |
Cardiovascular disease, % | 61.7 | 69.6 | 95.7A B | 93.0A B | 67.5 | |
Alcohol abuse, % | 4.1 | 1.0 | 5.0 | 8.8B | 4.0 | |
Smoking, % | 39.0 | 35.6 | 44.0 | 54.4 | 39.7 |
Mild Cognitive Impairment | |||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Low risk for SDB with insomnia | 0.95 (0.69–1.32) | 0.99 (0.71–1.38) | 0.98 (0.70–1.38) |
High risk for SDB alone | 1.43 (0.94–2.18) | 1.42 (0.92–2.18) | 1.40 (0.89–2.21) |
High risk for SDB with insomnia | 2.88 ** (1.43–5.8) | 3.14 ** (1.55–6.36) | 3.22 *** (1.57–6.60) |
Mild Cognitive Impairment | |||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Low risk for SDB alone | 0.35 ** (0.17–0.70) | 0.32 ** (0.16–0.65) | 0.31 ** (0.15–0.64) |
Low risk for SDB with insomnia | 0.33 ** (0.16–0.7) | 0.32 ** (0.15–0.67) | 0.31 ** (0.14–0.66) |
High risk for SDB alone | 0.5 (0.23–1.07) | 0.45 * (0.21–0.98) | 0.43 * (0.20–0.95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agudelo, C.; Ramos, A.R.; Sun, X.; Kaur, S.; Del Papa, D.F.; Kather, J.M.; Wallace, D.M.; on behalf of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Sleep-Disordered Breathing Risk with Comorbid Insomnia Is Associated with Mild Cognitive Impairment. Appl. Sci. 2022, 12, 2414. https://doi.org/10.3390/app12052414
Agudelo C, Ramos AR, Sun X, Kaur S, Del Papa DF, Kather JM, Wallace DM, on behalf of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Sleep-Disordered Breathing Risk with Comorbid Insomnia Is Associated with Mild Cognitive Impairment. Applied Sciences. 2022; 12(5):2414. https://doi.org/10.3390/app12052414
Chicago/Turabian StyleAgudelo, Christian, Alberto R. Ramos, Xiaoyan Sun, Sonya Kaur, Dylan F. Del Papa, Josefina M. Kather, Douglas M. Wallace, and on behalf of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 2022. "Sleep-Disordered Breathing Risk with Comorbid Insomnia Is Associated with Mild Cognitive Impairment" Applied Sciences 12, no. 5: 2414. https://doi.org/10.3390/app12052414
APA StyleAgudelo, C., Ramos, A. R., Sun, X., Kaur, S., Del Papa, D. F., Kather, J. M., Wallace, D. M., & on behalf of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). (2022). Sleep-Disordered Breathing Risk with Comorbid Insomnia Is Associated with Mild Cognitive Impairment. Applied Sciences, 12(5), 2414. https://doi.org/10.3390/app12052414