Development of a New Evaporation Exposure Model: Chemical Product Evaporation Model (CPEM)
Abstract
:1. Introduction
2. Theory
2.1. Derivation of the CPEM
2.2. Model Simplification
2.2.1. Constant Substance Concentration in a Product
2.2.2. Unsaturation and Constant product Mass: The ConsExpo Evaporation Model without Saturation
2.2.3. Saturation and Constant Product Mass: The ConsExpo Evaporation Model or CPEM without Product Mass Change
2.2.4. Unsaturation and Variable Product Mass: The CPEM without Saturation
2.3. Indirect Estimation of the Air Substance Concentration from the Amount of Substance in a Product
3. Material and Methods
3.1. Measurement of the Product Mass Reduction Rate
3.2. Input Data for Simulation
3.3. Simulation Procedure
4. Results
4.1. Product-Specific Mass Reduction Rate
4.2. Comparison between the CPEM and Simplified CPEMs
4.3. Comparison of the Use of Direct versus Indirect Methods to Estimate the Evaporated Amount of the Target Substance
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USEPA. Consumer Exposure Model (CEM) Version 2.0 User’s Guide; EPA Contract EP-W-12-010; United State of America Environmental Protection Agency: Washington, DC, USA, 2017. [Google Scholar]
- Huang, L.; Ernstoff, A.; Fantke, P.; Csiszar, S.A.; Jolliet, O. A review of models for near-field exposure pathways of chemicals in consumer products. Sci. Total Environ. 2017, 574, 1182–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmaar, J.E.; Schuur, A.G. ConsExpo Web: Consumer Exposure Models-Model Documentation; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Utrecht, The Netherlands, 2016. [Google Scholar]
- McCready, D.; Fontaine, D. Refining consExpo evaporation and human exposure calculations for REACH. Hum. Ecol. Risk Assess. 2010, 16, 783–800. [Google Scholar] [CrossRef]
- Van Veen, M.P.; Fortezza, F.; Bloemen, H.J.T.; Kliest, J.J. Indoor air exposure to volatile compounds emitted by paints: Experiment and model. J. Expo. Anal. Environ. Epidemiol. 1999, 9, 569–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.K.; Kwon, J.H. The fate of two isothiazolinone biocides, 5-chloro-2-methylisothiazol-3(2H)-one (CMI) and 2-methylisothiazol-3(2H)-one (MI), in liquid air fresheners and assessment of inhalation exposure. Chemosphere 2016, 144, 2270–2276. [Google Scholar] [CrossRef] [PubMed]
- Jayjock, M.A. Back Pressure Modeling of Indoor Air Concentrations from Volatilizing Sources. Am. Ind. Hyg. Assoc. J. 1994, 55, 230–235. [Google Scholar] [CrossRef]
- Bremmer, H.J.; Van Engelen, J.G.M. Paint products fact sheet. To assess the risks for the consumer. Updated version for ConsExpo 4. 2007. Available online: https://www.rivm.nl/bibliotheek/rapporten/320104008.pdf (accessed on 9 November 2021).
- Park, D.; Lee, J.H. Feasibility evaluation of computational fluid dynamics approach for inhalation exposure assessment: Case study for biocide spray. Appl. Sci. 2021, 11, 634. [Google Scholar] [CrossRef]
- Schendel, T.; Rogasch, E.C. Insights gained from an approximate analytical solution of the evaporation model used by consexpo web. Int. J. Environ. Res. Public Health 2021, 18, 2829. [Google Scholar] [CrossRef] [PubMed]
- Sparks, L.E. Gas-phase mass transfer model for predicting volatile organic compound (VOC) emission rates from indoor pollutant sources. Indoor Air 1996, 6, 31–40. [Google Scholar] [CrossRef]
Model Parameter | Model Notation | Unit | Value | Reference |
---|---|---|---|---|
Emission duration | 720 | Assumption | ||
Molecular weight matrix | 257 (20~257) | Bremmer HJ, 2007 | ||
Product amount | 149.79 (4.73~576.04) | Measured data (Table 2) | ||
Weight fraction substance | - | 0.0358/ (0~1) | Product | |
Room volume | 30 | Assumption | ||
Ventilation rate | 1 | Assumption | ||
Vapor pressure | 1.33 (20℃)/ ) | PubChem | ||
Application temperature | 293.15 | Assumption | ||
Molecular weight | 138.17/ (10~1000) | PubChem | ||
Mass transfer rate | 15.2/ (8.57~30.56) | Delmaar, 2016 | ||
Release area | 0.0025/ (0.0009~0.0049) | Assumption | ||
Product mass reduction rate coefficient | 0.0004 (Product A in Table 2)/ ~0.001) | Measured data (Table 2) |
Product Name | Weight Difference | Formulation | |||
---|---|---|---|---|---|
Product A | 11.54 | 10.87 | 0.67 | liquid | 4.03 |
Product B | 149.79 | 141.33 | 8.46 | liquid | 3.92 |
Product C | 141.55 | 138.81 | 2.74 | liquid | 1.34 |
Product D | 35.00 | 31.51 | 3.49 | liquid | 6.92 |
Product E | 37.80 | 37.67 | 0.13 | liquid | 2.38 |
Product F | 36.12 | 35.96 | 0.16 | liquid | 3.07 |
Product G | 42.09 | 42.07 | 0.02 | liquid | 3.29 |
Product H | 38.84 | 38.82 | 0.02 | liquid | 3.57 |
Product I | 4.73 | 4.43 | 0.30 | liquid | 3.77 |
Product J | 41.55 | 41.53 | 0.02 | liquid | 3.34 |
Product K | 291.95 | 288.75 | 3.20 | gel | 7.61 |
Product L | 83.89 | 75.67 | 8.22 | gel | 6.80 |
Product M | 101.57 | 86.26 | 15.31 | gel | 1.04 |
Product N | 350.89 | 321.97 | 28.92 | gel | 5.72 |
Product O | 93.45 | 92.07 | 1.38 | gel | 1.02 |
Product P | 169.01 | 164.64 | 4.37 | gel | 1.79 |
Product Q | 294.66 | 272.83 | 21.83 | gel | 5.14 |
Product R | 183.50 | 168.78 | 14.72 | gel | 5.57 |
Product S | 576.04 | 537.89 | 38.15 | gel | 4.59 |
Product T | 459.68 | 457.37 | 2.31 | gel | 3.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, G.; Park, J.-H.; Kwak, D.-y.; Lee, J.-H. Development of a New Evaporation Exposure Model: Chemical Product Evaporation Model (CPEM). Appl. Sci. 2022, 12, 3112. https://doi.org/10.3390/app12063112
Yoo G, Park J-H, Kwak D-y, Lee J-H. Development of a New Evaporation Exposure Model: Chemical Product Evaporation Model (CPEM). Applied Sciences. 2022; 12(6):3112. https://doi.org/10.3390/app12063112
Chicago/Turabian StyleYoo, Geonwoo, Jung-Hyun Park, Dong-yoon Kwak, and Jong-Hyeon Lee. 2022. "Development of a New Evaporation Exposure Model: Chemical Product Evaporation Model (CPEM)" Applied Sciences 12, no. 6: 3112. https://doi.org/10.3390/app12063112
APA StyleYoo, G., Park, J.-H., Kwak, D.-y., & Lee, J.-H. (2022). Development of a New Evaporation Exposure Model: Chemical Product Evaporation Model (CPEM). Applied Sciences, 12(6), 3112. https://doi.org/10.3390/app12063112