The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality
Abstract
:1. Introduction
2. Chemical Composition of Wood Species
Phenolic Compounds | Wood Species | |||||
---|---|---|---|---|---|---|
Oak Species | Fabaceae | Cherry | Reference | |||
Quercus petraea | Quercus alba | Quercus pyrenaica Willd. | Robinia pseudoacacia L. | Prunus avium L. | ||
Total polyphenols (1) | 1269 | -- | -- | 786 | 898 | [76] (2) |
Total polyphenols (3) | 61.39 | 61.51 | 65.03 | 51.23 | 46.82 | [77,78] (7) |
Protocatechuic aldehyde (4) | nd | nd | nd | 1.40 | nd | [68] (7) |
Gallic acid | 1.25 | nd | 1.44 | nd | nd | |
Vanillic acid | 0.14 | 0.33 | 0.128 | nd | nd | |
Syringic acid | 0.44 | 0.83 | 0.22 | nd | nd | |
(+)-Catechin | nd | nd | nd | nd | 18.51 | |
Robinetin | nd | nd | nd | 118.94 | nd | |
Fustin (5) | nd | nd | nd | 0.86 | nd | |
Butin (5) | nd | nd | nd | 3.52 | nd | |
p-Coumaric acid | 153.4 | nd | 84.3 | nd | 172.5 | |
Quercetin | 5.45 | 5.49 | 2.48 | nd | nd | |
Naringenin | nd | nd | nd | nd | 5.54 | |
Vescalagin (6) | 19.21 | 6.21 | 25.74 | nd | nd | |
Castalagin (6) | 24.97 | 5.43 | 32.45 | nd | nd | |
Ellagic acid | 3.49 | 1.17 | 4.91 | 0.049 | 0.72 | |
Vescalagin (8) | 9.87–10.6 | 5.41–8.24 | -- | -- | -- | [58] (9) |
Castalagin (8) | 12.56–19.8 | 2.34–3.54 | -- | -- | -- | |
Ellagic acid | 6.91–12.56 | 2.34–3.42 | -- | -- | -- | |
Vescalagin (8) | 12.6–17.6 | 1.23–5.28 | 11.3–14.6 | -- | -- | [13] (9) |
Castalagin (8) | 20.1–22.7 | 0.37–0.44 | 15.2–19.7 | -- | -- | |
Ellagic acid | 2.60–4.42 | 1.90–3.62 | 3.9–20.5 | -- | -- | |
Total ellagitannins (10) | -- | -- | -- | -- | nd-0.04 | [64,66,69] |
Gallic acid (11) | 70.75 | -- | -- | 9.61 | nd | [79] |
Vanillic acid (11) | 2.34 | -- | -- | nd | 1.86 | |
Syringic acid (11) | 3.78 | -- | -- | 0.82 | 3.05 | |
Ellagic acid (11) | 32.68 | -- | -- | nd | nd | |
Protocatechuic (11) aldehyde | nd | -- | -- | 0.19 | 7.90 |
Volatile Compounds | Wood Species | |||||
---|---|---|---|---|---|---|
Oak Species | Fabaceae | Cherry | Reference | |||
Quercus petraea | Quercus alba | Quercus pyrenaica Willd. | Robinia Pseudoacacia L. | Prunus avium L. | ||
Furanic aldehydes (1) | 397.19 | -- | -- | 8.26 | 70.18 | [84] (1) |
Volatile phenols (1) | 941.58 | -- | -- | 197.84 | 334.63 | |
Phenolic aldehydes (1) | 1563.62 | -- | -- | 170.38 | 1208.42 | |
Phenyl ketones (1) | 55.33 | -- | -- | 57.04 | 72.21 | |
Lactones (1) | 14.77 | -- | -- | nd | 3.95 | |
Guaiacol (2) | 4.46 | 0.91 | -- | 0.10 | 0.16 | [87,88] |
Eugenol (2) | 1.05 | 3.44 | -- | 0.92 | 0.11 | |
Furfural (2) | 12.09 | 5.79 | -- | 0.56 | nd | |
Vanillin (2) | 45.69 | 70.37 | -- | 4.70 | 4.68 | |
Trans-β-methyl-γ-octalactone (2) | 2.14 | 1.64 | -- | nd | nd | |
Cis-β-methyl-γ- octalactone (2) | 6.12 | 39.37 | -- | nd | nd | |
Guaiacol (3) | 2.41 | 4.89 | 3.98 | 5.36 | 1.71 | [86] |
Eugenol (3) | 1.83 | 1.29 | 2.12 | 2.36 | 1.50 | |
Furfural (3) | 430 | 395 | 494 | 804 | 23.3 | |
5-Hydroxymethylfurfural (3) | 22.9 | 21.1 | 28.9 | 113 | 47.6 | |
5-Methylfurfural (3) | 35.1 | 38.3 | 56.3 | 94.2 | 31.3 | |
Vanillin (3) | 117 | 102 | 114 | 77.1 | 68.3 | |
Trans-β-methyl-γ-octalactone (3) | 14.6 | 3.36 | 9.77 | nd | nd | |
Cis-β-methyl-γ- octalactone (3) | 21.1 | 31.8 | 30.0 | nd | nd | |
Benzaldehyde (3) | 0.8 | 0.74 | 0.96 | 0.25 | 0.91 | |
Syringaldehyde (3) | 221 | 226 | 250 | 272 | 455 | |
Coniferaldehyde (3) | 106 | 96.2 | 174 | 227 | 145 | |
Sinapaldehyde (3) | 263 | 239 | 439 | 912 | 804 | |
Guaiacol (4) | 4.20 × 10−3 | 12.52 × 105 | 4.12 × 10−3 | 12.8 × 10−3 | 8.22 × 10−3 | [68] (7) |
Eugenol (4) | 3.39 × 10−3 | 59.39 × 104 | 12.01 × 10−3 | 0.60 × 10−3 | 1.29 × 10−3 | |
Vanillin (4) | 71.77 × 10−3 | 31.5 × 106 | 169.45 × 10−3 | 120.8 × 10−3 | 1.64 × 10−3 | |
Furfural (4) | 134 × 10−3 | 20.69 × 106 | 5.75 × 10−3 | 13.7 × 10−3 | 3.24 × 10−3 | |
β-Methyl-γ-octalactones (4) | 119.6 × 10−3 | 199.8 × 105 | 521.8 × 10−3 | 16.5 × 10−3 | 18.12 × 10−3 | |
Ethyl cinnamate (4) | nd | nd | nd | nd | 1.77 × 10−3 | |
Ethyl hexanoate (4) | nd | nd | nd | nd | 2.21 × 10−3 | |
Benzaldehyde | 11.44 | 12.68 | 7.93 | nd | nd | |
Coniferaldehyde (5) | 1.42 | 1.35 | 0.90 | nd | nd | |
Syringaldehyde (6) | 0.109 | nd | 0.11 | nd | nd |
3. Impact of Wood Species on Wine Chemical Composition
4. Influence of Wood Species on the Wine Sensory Profile
Compounds | ODT (μg/L) | Sensory Descriptors | Reference |
---|---|---|---|
Furfural | 15,000–20,000 | Toasted nuts, burnt almonds, caramel, dried fruit | [122,129,130,131] |
5-Methyl furfural | 16,000–45,000 | Toasted nuts, toasty, sweet, spicy | [123,129,130,131] |
Vanillin phenols | 60–320 | Vanilla | [123,131] |
Syringaldehyde | 50,000 | Vanilla | [123] |
Eugenol | 5–500 | Spice cloves, cinnamon, smoke character | [123,129,130,131]. |
Guaiacol | 15–75 | Spicy, toasty, smoky/burnt | [123,131,132] |
4-Methylguaiacol | 65 | Burnt | [123] |
β-Methyl-γ-octolactones | Coconut | [123] | |
Isomer cis | 35–46-92 | Vanilla, oaky, clove, coconut | [125,130,131,133] |
Isomer trans | 122–460 | Vanilla, oaky, clove, coconut | [127,130,131] |
4-Ethylphenol | 620 | Horse sweat | [125] |
4-Ethylguayacol | 140 | Toasted bread, smoky, clove, burnt | [125,130] |
Acetovanillone | 1000 | Vanilla | [134] |
Maltol | 5000 | Caramel, toasted | [135] |
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parodi, G. A proposito di barriques. Vignevini 2000, 3, 77–83. [Google Scholar]
- Gautier, J.F. Le tonneau à travers Les âges. Rev. Oenol. Tech. Vitivinic. Oenol. 2003, 30, 13–15. [Google Scholar]
- Vivas, N.; Saint-Cricq de Gaulejac, N. The useful lifespan of new barrels and risk related to the use of old barrels. Aust. N. Z. Wine Ind. J. 1999, 14, 37–45. [Google Scholar]
- Singleton, V.L. Stockage des vins en barriques: Utilisation et variables significatives. J. Sci. Tech. Tonnellerie 2000, 6, 1–25. [Google Scholar]
- Carvalho, A. Identificação anatómica e caracterização física e mecânica das madeiras utilizadas no fabrico de quartolas para produção de aguardentes velhas de qualidade-Denominação Lourinhã. Ciênc. Téc. Vitic. 1998, 13, 71–105. [Google Scholar]
- Vivas, N. Manual de Tonelería: Destinado a Usuarios de Toneles; Mundi-Prensa Libros: Madrid, Spain, 2005; ISBN 84-8476-205-X. [Google Scholar]
- Fernández de Simón, B.; Hernández, T.; Cadahía, E.; Dueñas, M.; Estrella, I. Phenolic compounds in a Spanish red wine aged in barrels made of Spanish, French and American oak wood. Eur. Food Res. Technol. 2003, 216, 150–156. [Google Scholar] [CrossRef]
- Fernández De Simón, B.; Cadahía, E.; Jalocha, J. Volatile compounds in a Spanish red wine aged in barrels made of Spanish, French, and American oak wood. J. Agric. Food Chem. 2003, 51, 7671–7678. [Google Scholar] [CrossRef]
- Jordão, A.M.; Costa, F.; Fontes, L.; Correia, A.C.; Miljić, U.; Puškaš, V.; Nunes, F.M.; Cosme, F. Impact of the contact time of different oak wood chips on red wine phenolic composition evolution after bottling. In Proceedings of the 42th World Congress of Vine and Wine. BIO Web of Conferences, Geneva, Switzerland, 15–19 July 2019; Volume 15, p. 02019. [Google Scholar]
- Costa, M.; Fontes, L.; Correia, A.C.; Miljić, U.; Jordão, A.M. Impact of oak (Q. pyrenaica and (Q. pubescens) and cherry (P. avium) wood chip contact on phenolic composition and sensory profile evolution of red wines during bottle storage. OENO One 2020, 54, 1159–1181. [Google Scholar] [CrossRef]
- Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Comparison of volatile composition of cooperage oak wood of different origins (Quercus pyrenaica vs. Quercus alba and Quercus petraea). Mitt. Klosterneubg. 2005, 55, 31–40. [Google Scholar]
- Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O.; Adams, A.; Demyttenaere, J.; Verhé, R.; De Kimpe, N. Volatile composition analysis by solid-phase microextraction applied to oak wood used in cooperage (Q. pyrenaica and Q. petraea): Effect of botanical species and toasting process. J. Wood Sci. 2006, 52, 514–521. [Google Scholar] [CrossRef]
- Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Ellagitannins from Portuguese oak wood (Quercus pyrenaica Willd.) used in cooperage: Influence of geographical origin, coarseness of the grain and toasting level. Hollforschung 2007, 61, 155–160. [Google Scholar] [CrossRef]
- Gonçalves, F.J.; Jordão, A.M. Changes in antioxidant activity and proanthocyanidin fraction of red wine aged in contact with Portuguese (Quercus pyrenaica Willd.) and American (Quercus alba L.) oak wood chips. Ital. J. Food Sci. 2009, 21, 51–64. [Google Scholar]
- Fernández de Simón, B.; Cadahía, E.; del Álamo, M.; Nevares, I. Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Anal. Chim. Acta 2010, 660, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Fernández de Simón, B.; Cadahía, E.; Muiño, I.; del Álamo, M.; Nevares, I. Volatile composition of toasted oak chips and staves and of red wine aged with them. Am. J. Enol. Vitic. 2010, 61, 157–165. [Google Scholar]
- Gallego, L.; Del Alamo, M.; Nevares, I.; Fernández, J.A.; De Simón, B.F.; Cadahía, E. Phenolic compounds and sensorial characterization of wines aged with alternative to barrel products made of Spanish oak wood (Quercus pyrenaica Willd.). Food Sci. Technol. Int. 2012, 18, 151–165. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Alañón, M.E.; Ricardo-da-Silva, J.M.; Pérez-Coello, M.S.; Laureanoof, O. Evaluation Portuguese and Spanish Quercus pyrenaica and Castanea sativa species used in cooperage as natural source of phenolic compounds. Eur. J. Food Sci. Technol. 2013, 237, 367–375. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Nevares, I.; Martínez-Gil, A.; del Alamo-Sanza, M. Oxygen consumption by red wines under different micro-oxygenation strategies and Q. Pyrenaica chips. Effects on color and phenolic characteristics. Beverages 2018, 4, 69. [Google Scholar] [CrossRef] [Green Version]
- McCallum, M.J.; Lopes-Correia, T.; Ricardo-da-Silva, J.M. Chemical evaluation of Carcavelos fortified wine aged in Portuguese (Quercus pyrenaica) and French (Quercus robur) oak barrels at medium and high toast. OENO One 2019, 53, 561–572. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Cadahía, E.; Fernández De Simón, B.; Gutiérrez-Gamboa, G.; Nevares, I.; Alamo-Sanza, M. Quercus Humboldtii (Colombian Oak): Characterization of oak heartwood phenolic composition with respect to traditional oak woods in oenology. Cienc. Tec. Vitivinic. 2017, 32, 93–101. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; del Álamo-Sanza, M.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y.; Nevares, I. Volatile composition and sensory characteristics of Carménère wines macerating with Colombian (Quercus humboldtii) oak chips compared to wines macerated with American (Q. alba) and European (Q. petraea) oak chips. Food Chem. 2018, 266, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Resolution OENO 4/2005 of Organization of Vine and Wine. Available online: https://www.oiv.int/public/medias/776/oeno-4-2005-en.pdf (accessed on 23 August 2021).
- Costa, M.; Miglior, N.; Correia, A.C.; Ricardo-Da-Silva, J.M.; Jordão, A.M. Storage of a Touriga Nacional red wine in contact with Juglans regia L. and Quercus petraea L. wood chip species: Comparative influence on phenolic and sensory characteristics. Eur. Food Res. Technol. 2021, 247, 3037–3052. [Google Scholar] [CrossRef]
- Cerdán, T.G.; Ancín-Azpilicueta, C. Effect of oak barrel type on the volatile composition of wine: Storage time optimization. LWT—Food Sci. Technol. 2006, 39, 199–205. [Google Scholar] [CrossRef]
- Izquierdo-Cañas, P.M.; Mena-Morales, A.; García-Romero, E. Malolactic fermentation before or during wine aging in barrels. LWT—Food Sci. Technol. 2016, 66, 468–474. [Google Scholar] [CrossRef]
- Chatonnet, P.; Ricardo-da-Silva, J.M.; Dubourdieu, D. Influence de l’utilisation de barriques en chêne sessile européen (Quercus petraea) ou en chêne blanc américain (Quercuas alba) sur la composition et la qualité des vins rouges. Rev. Fr. D’oenologie 1997, 165, 44–48. [Google Scholar]
- Del Álamo, S.M.; Fernandez Escudero, J.A.; De Castro Torio, R. Changes in phenolic compounds and colour parameters of red wine aged with oak chips and in oak barrels. Food Sci. Technol. Int. 2004, 10, 233–241. [Google Scholar] [CrossRef]
- Matejícek, D.; Mikes, O.; Klejdus, B.; Sterbova, D.; Kubán, V. Changes in contents of phenolic compounds during maturing of barrique red wines. Food Chem. 2005, 90, 791–800. [Google Scholar] [CrossRef]
- Prida, A.; Chatonnet, P. Impact of oak-derived compounds on the olfactory perception of barrel-aged wines. Am. J. Enol. Vitic. 2010, 61, 408–413. [Google Scholar]
- Laqui-Estaña, J.; López-Solís, R.; Peña-Neira, Á.; Medel-Marabolí, M.; Obreque-Slier, E. Wines in contact with oak wood: The impact of the variety (Carménère and Cabernet Sauvignon), format (barrels, chips and staves), and aging time on the phenolic composition. J. Sci. Food Agric. 2019, 99, 436–448. [Google Scholar] [CrossRef]
- De Coninck, G.; Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Evolution of phenolic composition and sensory properties in red wine aged in contact with Portuguese and French oak wood chips. OENO One 2006, 40, 25–34. [Google Scholar] [CrossRef]
- Oberholster, A.; Elmendorf, B.L.; Lerno, L.A.; King, E.S.; Heymann, H.; Brenneman, C.E.; Boulton, R.B. Barrel maturation, oak alternatives and micro-oxygenation: Influence on red wine aging and quality. Food Chem. 2015, 173, 1250–1258. [Google Scholar] [CrossRef]
- Tavares, M.; Jordão, A.M.; Ricardo-Da-Silva, J.M. Impact of cherry, acacia and oak chips on red wine phenolic parameters and sensory profile. OENO One 2017, 51, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Gil, A.M.; del Álamo-Sanza, M.; Nevares, I.; Sánchez-Gómez, R.; Gallego, L. Effect of size, seasoning and toasting level of Quercus pyrenaica Willd. wood on wine phenolic composition during maturation process with micro-oxygenation. Food Res. Int. 2020, 128, 108703. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.; Correia, A.C.; Ortega-Heras, M.; García-Lomillo, J.; González-SanJosé, M.L.; Jordão, A.M.; Ricardo-da-Silva, J.M. Acacia, cherry and oak wood chips used on a short aging period of rosé wines: Effects on general phenolic parameters, volatile composition and sensory profile. J. Sci. Food Agric. 2019, 99, 3588–3603. [Google Scholar] [CrossRef] [PubMed]
- Nunes, I.; Correia, A.C.; Jordão, A.M.; Ricardo-da-Silva, J.M. Use of oak and cherry wood chips during alcoholic fermentation and the maturation process of rosé wines: Impact on phenolic composition and sensory profile. Molecules 2020, 25, 1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Coello, M.S.; González-Viñas, M.A.; García-Romero, E.; Cabezudo, M.D.; Sanz, J. Chemical and sensory changes in white wines fermented in the presence of oak chips. Int. J. Food Sci. Technol. 2000, 35, 23–32. [Google Scholar] [CrossRef]
- Pérez-Coello, M.S.; Sánchez, M.A.; García, E.; González-Viñas, M.A.; Sanz, J.; Cabezudo, M.D. Fermentation of white wines in the presence of wood chips of American and French oak. J. Agric. Food Chem. 2000, 48, 885–889. [Google Scholar] [CrossRef]
- Vivas, N.; Bourden Nonier, M.F.; Absalon, C.; Abad, V.L.; Jamet, F.; Vivas de Gaulejac, N.; Vitry, C.; Fouquet, É. Formation of fl avanol-aldehyde adducts in barrel-aged white wine—Possible contribution of these products to colour. S. Afr. J. Enol. Vitic. 2008, 29, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Guchu, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; González-Viñas, M.A.; Cabezudo, M.D. Volatile composition and sensory characteristics of Chardonnay wines treated with American and Hungarian oak chips. Food Chem. 2006, 99, 350–359. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Alonso-Villegas, R.; Delgado, J.A.; González-Viñas, M.A. Improvement of Verdejo white wines by contact with oak chips at different winemaking stages. LWT-Food Sci. Technol. 2017, 79, 111–118. [Google Scholar] [CrossRef]
- Nunes, P.; Muxagata, S.; Correia, A.C.; Nunes, F.M.; Cosme, F.; Jordão, A.M. Effect of oak wood barrel capacity and utilization time on phenolic and sensorial profile evolution of an Encruzado white wine. J. Sci. Food Agric. 2017, 97, 4847–4856. [Google Scholar] [CrossRef]
- Délia, L.; Jordão, A.M.; Ricardo-da-Silva, J.M. Influence of different wood chips species (oak, acacia and cherry) used in a short period of aging on the quality of ‘Encruzado’ white wines. Mitt. Klosterneubg. 2017, 67, 84–96. [Google Scholar]
- Del Galdo, V.; Correia, A.C.; Jordão, A.M.; Ricardo-da-Silva, J.M. Blends of wood chips from oak and cherry: Impact on the general phenolic parameters and sensory profile of a white wine during the aging process. Vitis 2019, 58, 159–169. [Google Scholar] [CrossRef]
- Ibern-Gómez, M.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M.; Lao-Luque, C.; Buxaderas, S.; De la Torre-Boronat, M.C. Differences in phenolic profile between oak wood and stainless steel fermentation in white Wines. Am. J. Enol. Vitic. 2001, 5, 159–164. [Google Scholar]
- Canas, S.; Quaresma, H.; Belchior, A.P.; Spranger, M.I.; Bruno-de-Sousa, R. Evaluation of wine brandies authenticity by the relationships between benzoic and cinnamic aldehydes and between furanic aldehydes. Ciênc. Téc. Vitic. 2004, 19, 13–27. Available online: http://hdl.handle.net/10400.5/4879 (accessed on 3 September 2021).
- Bautista-Ortin, A.B.; Martinez-Cutillas, A.; Ros-Garcia, J.M.; Lopez-Roca, J.M.; Gomez-Plaza, E. Improving colour extraction and stability in red wines: The use of maceration enzymes and enological tannins. Int. J. Food Sci. Technol. 2005, 40, 867–878. [Google Scholar] [CrossRef]
- Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O.; Mullen, W.; Crozier, A. Effect of ellagitannins, ellagic acid and some volatile compounds from oak wood on the (+)-catechin, procyanidin B1 and malvidin-3-glucoside content of model wine solutions. Aust. J. Grape Wine Res. 2008, 14, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Fujieda, M.; Tanaka, T.; Suwa, Y.; Koshimizu, S.; Kouno, I. Isolation and structure of whiskey polyphenols produced by oxidation of oak wood ellagitannins. J. Agric. Food Chem. 2008, 56, 7305–7310. [Google Scholar] [CrossRef]
- Escudero-Gilete, M.L.; Hernanz, D.; Galán-Lorente, C.; Heredia, F.J.; Jara-Palacios, M.J. Potential of cooperage byproducts rich in ellagitannins to improve the antioxidant activity and color expression of red wine anthocyanins. Foods 2019, 8, 336. [Google Scholar] [CrossRef] [Green Version]
- Vivas, N.; Glories, Y. Les phénomènes d’oxydoréduction liés à l’élevage en barriques des vins rouges: Aspects technologiques. Rev. Fr. Oenol. 1993, 33, 33–38. [Google Scholar]
- Vivas, N.; Glories, Y. Role of oak wood ellagitannins in the oxidation process of red wines during aging. Am. J. Enol. Vitic. 1996, 47, 103–107. [Google Scholar]
- Masson, G.; Moutounet, M.; Puech, J.-L. Ellagitannins content of oak wood as a function of species and of sampling position in the tree. Am. J. Enol. Vitic. 1995, 46, 262–268. [Google Scholar]
- Puech, J.-L.; Feuillat, F.; Mosedale, J.R. The tannins of oak heartwood: Structure, properties, and their influence on wine flavor. Am. J. Enol. Vitic. 1999, 50, 69–478. [Google Scholar]
- Doussot, F.; De Jéso, B.; Quideau, S.; Pardon, P. Extractives content in cooperage oak wood during natural seasoning and toasting; influence of tree species, geographic location, and single-tree effects. J. Agric. Food Chem. 2002, 50, 5955–5961. [Google Scholar] [CrossRef] [PubMed]
- Canas, S.; Leandro, M.C.; Spranger, M.I.; Belchior, A.P. Influence of botanical species and geographical origin on the content of low molecular weight phenolic compounds of woods used in Portuguese cooperage. Holzforschung 2000, 54, 255–261. [Google Scholar] [CrossRef]
- Jordão, A.M.; Correia, A.C.; DelCampo, R.; González-SanJosé, M.L. Antioxidant capacity, scavenger activity and ellagitannins content from commercial oak pieces used in winemaking. Eur. Food Res. Technol. 2012, 235, 817–825. [Google Scholar] [CrossRef]
- Viriot, C.; Scalbert, A.; Hervé du Penhoat, C.L.M.; Moutounet, M. Ellagitannins in woods of sessile oak and sweet chestnut dimerization and hydrolysis during wood ageing. Phytochemistry 1994, 36, 1253–1260. [Google Scholar] [CrossRef]
- Matricardi, L.; Waterhouse, A.L. Influence of toasting technique on color and ellagitannins of oak wood in barrel making. Am. J. Enol. Vitic. 1999, 50, 519–525. [Google Scholar]
- Cadahía, E.; Varea, S.; Muñoz, L.; Fernández de Simón, B.; García-Vallejo, M.C. Evolution of ellagitannins in Spanish, French, and American oak woods during natural seasoning and toasting. J. Agric. Food Chem. 2001, 49, 3677–3684. [Google Scholar] [CrossRef]
- Feuillat, F.; Moio, L.; Guichard, E.; Marinov, M.; Fournier, N.; Puech, J.-L. Variation in the concentration of ellagitannins and cis- and trans-ß-methyl-γ-octalactone extracted from oak wood (Quercus robur L.; Quercus petraea Liebl.) under model wine cask conditions. Am. J. Enol. Vitic. 1997, 48, 509–515. [Google Scholar]
- Chatonnet, P.; Dubourdieu, D. Compa rative study of the characteristics of American white oak (Quercus alba) and European oak (Quercus petraea and Q. robur) for production of barrels used in barrel ageing of wines. Am. J. Enol. Vitic. 1998, 49, 79–85. [Google Scholar]
- Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, M.; Fernández De Simón, B.; Hernández, T.; Estrella, I. Phenolic compounds in cherry (Prunus avium) heartwood with a view to their use in cooperage. J. Agric. Food Chem. 2010, 58, 4907–4914. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; De Simón, B.F.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M.; Hernández, T.; Estrella, I.; Pinto, E. LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood. effect of toasting intensity at cooperage. J. Mass Spectrom. 2012, 47, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Fernández de Simón, B.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M.; Hernández, T.M.; Estrella, I. Polyphenolic profile as a useful tool to identify the wood used in wine aging. Anal. Chim. Acta 2012, 732, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Fernández de Simón, B.; Esteruelas, E.; Muñoz, A.M.; Cadahía, E. Effect of toasting intensity at cooperage on phenolic compounds in acacia (Robinia pseudoacacia) heartwood. J. Agric. Food Chem. 2011, 59, 3135–3145. [Google Scholar] [CrossRef] [PubMed]
- Jordão, A.M.; Lozano, V.; Correia, A.C.; Ortega-Heras, M.; González-SanJosé, M.L. Comparative analysis of volatile and phenolic composition of alternative wood chips from cherry, acacia and oak for potential use in enology. In Proceedings of the 39th World Congress of Vine and Wine. BIO Web of Conferences, Bento Gonçalves, Brazil, 24–28 October 2016; Volume 7, p. 02012. [Google Scholar]
- Alañón, M.E.; Castro-Vázquez, L.; Díaz-Maroto, M.C.; Hermosín-Gutiérrez, I.; Gordon, M.H.; Pérez-Coello, M.S. Antioxidant capacity and phenolic composition of different woods used in cooperage. Food Chem. 2011, 129, 1584–1590. [Google Scholar] [CrossRef]
- Comandini, P.; Lerma-Garcia, M.J.; Simo-Alfonso, E.F.; Toschi, T.G. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS. Food Chem. 2014, 157, 290–295. [Google Scholar] [CrossRef]
- Canas, S.; Leandro, M.C.; Spranger, M.I.; Belchior, A.P. Low molecular weight organic compounds of chestnut wood (Castanea sativa L.) and corresponding aged brandies. J. Agric. Food Chem. 1999, 47, 5023–5030. [Google Scholar] [CrossRef]
- Springmann, S.; Rogers, R.; Spiecker, H. Impact of artificial pruning on growth and secondary shoot development of wild cherry (Prunus avium L.). For. Ecol. Manag. 2011, 261, 764–769. [Google Scholar] [CrossRef]
- Chatonnet, P. Influence des Procédés de Tonnellerie et des Conditions D’élevage sur la Composition et la Qualité des Vins Élevés en Fûts de Chêne. Ph.D. Thesis, The University of Bordeaux, Bordeaux, France, 1995; 268p. [Google Scholar]
- Fernández de Simón, B.; Sanz, M.; Cadahia, E.; Martinez, J.; Esteruelas, E.; Munoz, A.M. Polyphenolic compounds as chemical markers of wine ageing in contact with cherry, chestnut, false acacia, ash and oak wood. Food Chem. 2014, 143, 66–76. [Google Scholar] [CrossRef]
- Kozlovic, G.; Jeromel, A.; Maslov, L.; Pollnitz, A.; Orlić, S. Use of acacia barrique barrels-Influence on the quality of malvazija from Istria wines. Food Chem. 2010, 120, 698–702. [Google Scholar] [CrossRef]
- De Rosso, M.; Cancian, D.; Panighel, A.; Vedova, A.D.; Flamini, R. Chemical compounds released from five different woods used to make barrels for aging wines and spirits: Volatile compounds and polyphenols. Wood Sci. Technol. 2009, 43, 375–385. [Google Scholar] [CrossRef]
- De Rosso, M.; Panighel, A.; Vedova, A.D.; Stella, L.; Flamini, R. Changes in Chemical Composition of a Red Wine Aged in Acacia, Cherry, Chestnut, Mulberry, and Oak Wood Barrels. J. Agric. Food Chem. 2009, 57, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Jordão, A.M.; Lozano, V.; González-SanJosé, M.L. Influence of different wood chip extracts species on color changes and anthocyanin content in synthetic wine solutions. Foods 2019, 8, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, B.; Garcia, R.; Freitas, A.M.C.; Cabrita, M.J. Phenolic compounds released from oak, cherry, chestnut and robinia chips into a synthetic wine: Influence of toasting level. Cienc. Tec. Vitivinic. 2012, 27, 17–26. [Google Scholar]
- Schumacher, R.; Alañón, M.E.; Castro-vázquez, L.; Pérez-coello, M.S.; Díaz-Maroto, C. Evaluation of oak chips treatment on volatile composition and sensory characteristics of merlot wine. J. Food Qual. 2013, 36, 1–9. [Google Scholar] [CrossRef]
- Setzer, W. Volatile components of oak and cherry wood chips used in aging of beer, wine, and spirits. Am. J. Essent. Oil Nat. Prod. 2016, 4, 37–40. [Google Scholar]
- Gómez-Plaza, E.; Pérez-Prieto, L.J.; Fernández-Fernández, J.I.; López-Roca, J.M. The effect of successive uses of oak barrels on the extraction of oak-related volatile compounds from wine. Int. J. Food Sci. Technol. 2004, 39, 1069–1078. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Review of quality factors on wine ageing in oak barrels. Trends Food Sci. Technol. 2006, 17, 438–447. [Google Scholar] [CrossRef]
- Martins, N.; Garcia, R.; Gomes da Silva, M.; Cabrita, M.J. Volatile compounds from oak, cherry, chestnut and acacia chips: Influence of toasting level. Cienc. Tec. Vitivinic. 2012, 27, 49–57. [Google Scholar]
- Caldeira, I.; Clímaco, M.C.; Bruno De Sousa, R.; Belchior, A.P. Volatile composition of oak and chestnut woods used in brandy ageing: Modification induced by heat treatment. J. Food Eng. 2006, 76, 202–211. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Estruelas, E.; Muñoz, A.M.; Cadahía, E.; Sanz, M. Volatile compounds in acacia, chestnut, cherry, ash and oak woods, with a view to their use in cooperage. J. Agric. Food Chem. 2009, 57, 3217–3227. [Google Scholar] [CrossRef] [PubMed]
- Alañón, M.E.; Castro-Vázquez, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Aromatic potential of Castanea sativa Mill. compared to Quercus species to be used in cooperage. Food Chem. 2012, 130, 875–881. [Google Scholar] [CrossRef]
- Alarcón, M.E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Alañón, M.E. Isolation of natural flavoring compounds from cooperage woods by pressurized hot water extraction (PHWE). Holzforschung 2018, 73, 295–303. [Google Scholar] [CrossRef]
- Alañón, M.E.; Marchante, L.; Alarcón, M.; Díaz-Maroto, I.J.; Pérez-Coello, S.; Díaz-Maroto, M.C. Fingerprints of acacia aging treatments by barrels or chips based on volatile profile, sensorial properties, and multivariate analysis. J. Sci. Food Agric. 2018, 98, 5795–5806. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Soares, B.; Dias, C.B.; Freitas, A.M.C.; Cabrita, M.J. Phenolic and furanic compounds of Portuguese chestnut and French, American and Portuguese oak wood chips. Eur. Food Res. Technol. 2012, 235, 457–467. [Google Scholar] [CrossRef]
- Jarauta, I.; Cacho, J.; Ferreira, V. Concurrent phenomena contributing to the formation of the aroma of wine during aging in oak wood: An analytical study. J. Agric. Food Chem. 2005, 53, 4166–4177. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, J.; Duan, C.-Q.; Reeves, M.J.; He, F. A Review of Polyphenolics in Oak Woods. Int. J. Mol. Sci. 2015, 16, 6978–7014. [Google Scholar] [CrossRef]
- Cano-López, M.; López-Roca, J.M.; Pardo-Minguez, F.; Gómez Plaza, E. Oak barrel maturation vs. micro-oxygenation: Effect on the formation of anthocyanin-derived pigments and wine colour. Food Chem. 2010, 119, 191–195. [Google Scholar] [CrossRef]
- Chassagne, D.; Guilloux-Benatier, M.; Alexandre, H.; Voilley, A. Sorption of wine volatile phenols by yeast lees. Food Chem. 2005, 91, 39–44. [Google Scholar] [CrossRef]
- Coelho, E.; Teixeira, J.A.; Domingues, L.; Tavares, T.; Oliveira, J.M. Factors affecting extraction of adsorbed wine volatile compounds and wood extractives from used oak wood. Food Chem. 2019, 295, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Chira, K.; Teissedre, P.L. Chemical and sensory evaluation of wine matured in oak barrel: Effect of oak species involved and toasting process. Eur. Food Res. Technol. 2015, 240, 533–547. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Chira, K.; Teissedre, P.L. Ellagitannin content, volatile composition and sensory profile of wines from different countries matured in oak barrels subjected to different toasting methods. Food Chem. 2016, 210, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Dimitrios, K.; Mas, A.; Portillo, M.C. High-Throughput Sequencing Approach to Analyze the Effect of Aging Time and Barrel Usage on the Microbial Community Composition of Red Wines. Front. Microbiol. 2020, 11, 21. [Google Scholar] [CrossRef]
- Ortega-Heras, M.; González-Sanjosé, M.L.; González-Huerta, C. Consideration of the influence of aging process, type of wine and oenological classic parameters on the levels of wood volatile compounds present in red wines. Food Chem. 2007, 103, 1434–1448. [Google Scholar] [CrossRef]
- Maga, J.A. Formation and Extraction of Cis- and Trans-β-methyl-γ-octalactone from Quercus Alba; Piggot, J.R., Patterson, A., Eds.; Distilled beverage flavour: Recent developments; Ellis Horwood Ltd.: Chichester, UK, 1989; pp. 171–176. [Google Scholar]
- Garde-Cerdán, T.; Torrea-Goñi, D.; Ancín-Azpilicueta, C. Accumulation of volatile compounds during ageing of two red wines with different composition. J. Food Eng. 2004, 65, 349–356. [Google Scholar] [CrossRef]
- Towey, J.P.; Waterhouse, A.L. The extraction of volatile compounds from French and American oak barrels in Chardonnay during three successive vintages. Am. J. Enol. Vitic. 1996, 47, 163–172. [Google Scholar]
- Garde Cerdán, T.; Rodríguez Mozaz, S.; Ancín Azpilicueta, C. Volatile composition of aged wine in used barrels of French oak and of American oak. Food Res. Int. 2002, 35, 603–610. [Google Scholar] [CrossRef]
- Pérez-Prieto, L.J.; López-Roca, J.M.; Martínez-Cutillas, A.; Pardo Mínguez, F.; Gómez-Plaza, E. Maturing wines in oak barrels. Effects of origin, volume, and age of the barrel on the wine volatile composition. J. Agric. Food Chem. 2002, 50, 3272–3276. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Torrea-Goñi, D.; Ancín-Azpilicueta, C. Changes in the concentration of volatile oak compounds and esters in red wine stored for 18 months in re-used French oak barrels. Aust. J. Grape Wine Res. 2008, 8, 140–145. [Google Scholar] [CrossRef]
- Chinnici, F.; Natali, N.; Sonni, F.; Bellachioma, A.; Riponi, C. Comparative changes in color features and pigment composition of red wines aged in oak and cherry wood casks. J. Agric. Food Chem. 2011, 59, 6575–6582. [Google Scholar] [CrossRef]
- Chinnici, F.; Natali, N.; Bellachioma, A.; Versari, A.; Riponi, C. Changes in phenolic composition of red wines aged in cherry wood. LWT-Food Sci. Technol. 2015, 60, 977–984. [Google Scholar] [CrossRef]
- Cerezo, A.B.; Tesfaye, W.; Torija, M.J.; Mateo, E.; García-Parrilla, C.; Troncoso, A.M. The phenolic composition of red wine vinegar produced in barrels made from different woods. Food Chem. 2008, 109, 606–615. [Google Scholar] [CrossRef]
- Alañón, M.E.; Castro-Vázquez, L.; Díaz-Maroto, M.C.; Gordon, M.H.; Pérez-Coello, M.S. A study of the antioxidant capacity of oak wood used in wine ageing and the correlation with polyphenol composition. Food Chem. 2011, 128, 997–1002. [Google Scholar] [CrossRef] [Green Version]
- Madrera, R.R.; Valles, B.S.; García, Y.D.; del Valle Argüelles, P.; Lobo, A.P. Alternative woods for aging distillates-an insight into their phenolic profiles and antioxidant activities. Food Sci. Biotechnol. 2010, 19, 1129–1134. [Google Scholar] [CrossRef]
- Del Alamo Sanza, M.; Nevares Domınguez, I.; Cárcel Cárcel, L.M.; Navas Gracia, L. Analysis for low molecular weight phenolic compounds in a red wine aged in oak chips. Anal. Chim. Acta 2004, 513, 229–237. [Google Scholar] [CrossRef]
- Setzer, W.N. Lignin-derived oak phenolics: A theoretical examination of additional potential health benefits of red wine. J. Mol. Model. 2011, 17, 1841–1845. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; García, J.F.; Sun, D.W. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Martínez, J.; Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M. Volatile compounds and sensorial characterisation of red wine aged in cherry, chestnut, false acacia, ash and oak wood barrels. Food Chem. 2014, 147, 346–356. [Google Scholar] [CrossRef]
- Liberatore, M.T.; Pati, S.; Del Nobile, M.A.; La Notte, E. Aroma quality improvement of Chardonnay white wine by fermentation and ageing in barrique on lees. Int. Food Res. 2010, 43, 996–1002. [Google Scholar] [CrossRef]
- Aleixandre, J.L.; Padilla, A.I.; Navarro, L.L.; Suria, A.; García, M.; Álvarez, I. Optimisation of making barrel-fermented dry Muscatel wines. J. Agric. Food Chem. 2003, 51, 1889–1893. [Google Scholar] [CrossRef]
- Herjavec, S.; Jeromel, A.; Da Silva, A.; Orlic, S.; Redzepovic, S. The quality of white wines fermented in Croatian oak barrels. Food Chem. 2007, 100, 124–128. [Google Scholar] [CrossRef]
- Lukic, I.; Jedrejcic, N.; KovacevicGanic, K.; Staver, M.; Persuric, D. Phenolic and aroma composition of white wines produced by prolonged maceration and maturation in wooden barrels. Food Technol. Biotechnol. 2015, 53, 407–418. [Google Scholar] [CrossRef]
- Herrero, P.; Sáenz-Navajas, M.P.; Avizcuri, J.M.; Culleré, L.; Balda, P.; Antón, E.C.; Ferreira, V.; Escudero, A. Study of chardonnay and Sauvignon blanc wines form D.O.Ca Rioja (Spain) aged in different French oak wood barrels: Chemical and aroma quality aspects. Food Res. Int. 2016, 89, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Valdés, M.E.; Ramírez, R.; Martínez-Cañas, M.A.; Frutos-Puerto, S.; Moreno, D. Accelerating Aging of White and Red Wines by the Application of Hydrostatic High Pressure and Maceration with Holm Oak (Quercus ilex) Chips. Influence on Physicochemical and Sensory Characteristics. Foods 2021, 10, 899. [Google Scholar] [CrossRef] [PubMed]
- Chatonnet, P. Les compose’s aromatiques du bois de cheêne cédeés aux vins. Influence des ope´rations de chauffe en tonnellerie. In Le bois et la qualite des vins et des eaux-de-vie. J. Inter. Sci. Vigne Vin. 1992, 81, 91. [Google Scholar]
- Spillman, P.J.; Sefton, M.A.; Gawel, R. The effect of oak Wood source, location of seasoning and coopering on the composition of volatile compounds in oak-matured wines. Aust. J. Grape Wine Res. 2004, 10, 216–226. [Google Scholar] [CrossRef]
- Boidron, J.N.; Chatonnet, P.; Pons, M. The influence of wood on certain odorous substances in wines. Connaiss. Vigne Vin. 1988, 22, 275–294. [Google Scholar] [CrossRef]
- Swan, J.S.; Burtles, S.M. V The development of flavour in potable spirits. Chem. Soc. Rev. 1978, 7, 201–211. [Google Scholar] [CrossRef]
- Chatonnet, P.; Dubourdieu, D.; Boidron, J.N.; Pons, M. The origin of ethylphenols in wines. J. Sci. Food Agric. 1992, 60, 165–178. [Google Scholar] [CrossRef]
- Masson, G.; Guichard, E.; Fournier, N.; Puech, J.L. Teneurs en stéréo-isomeres de la β-metil γ-octolactone des bois de chêne européens et amé ricains. Application aux vins et aux eaux-de-vie. J. Sci. Tech. Tonn. 1997, 3, 1–8. [Google Scholar]
- Chatonnet, P.; Boidron, J.N.; Pons, M. Maturation of red wines in oak barrels: Evolution of some volatile compounds and their aromatic impact. Sci. Aliment. 1990, 10, 565–587. [Google Scholar]
- Glabasnia, A.; Hofmann, T. Sensory-Directed Identification of Taste-Active Ellagitannins in American (Quercus alba L.) and European Oak Wood (Quercus robur L.) and Quantitative Analysis in Bourbon Whiskey and Oak-Matured Red Wines. J. Agric. Food Chem. 2006, 54, 3380–3390. [Google Scholar] [CrossRef] [PubMed]
- Hale, M.D.; McCafferty, K.; Larmie, E.; Newton, J.; Swan, J.S. The influence of oak seasoning and toasting parameters on the composition and quality of wine. Am. J. Enol. Vitic. 1999, 50, 495–502. [Google Scholar]
- Zea, L.; Moyano, L.; Moreno, J.A.; Medina, M. Aroma series as fingerprints for biological ageing in fino sherry-type wines. J. Sci. Food Agric. 2007, 87, 2319–2326. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Guchu, E.; Castro-Vázquez, L.; de Torres, C.; Pérez-Coello, M.S. Aroma-active compounds of American, French, Hungarian and Russian oak Woods, studied by GC-MS and GC-O. Flavour Fragr. J. 2008, 23, 93–98. [Google Scholar] [CrossRef]
- Suna, M.; Ito, T.; Hiroshima, K.; Sato, M.; Uehara, T.; Ohno, T.; Watanabe, S.; Takahashi, H.; Hashizume, K. Analysis of volatile phenolic compounds responsible for 4-vinylguaiacol-like odor characteristics of sake. Food Sci. Technol. Res. 2016, 22, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, K.L.; Elsey, G.M.; Prager, R.H.; Tanaka, T.; Sefton, M.A. Precursors to oak lactone. Part 2: Synthesis, separation and cleavage of several ß-D-glucopyranosides of 3-methyl-4-hydroxyoctanoic acid. Tetrahedron 2004, 60, 6091–6100. [Google Scholar] [CrossRef]
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef]
- Cutzach, I.; Chatonnet, P.; Dubourdieu, D. Study of the formation mechanisms of some volatile compounds during aging of sweet fortified wines. J. Agric. Food Chem. 1999, 47, 2837–2846. [Google Scholar] [CrossRef]
- Spillman, P.J.; Pollnitz, A.P.; Liacopoulos, D.; Skouroumounis, G.K.; Sefton, M.A. Accumulation of Vanillin during Barrel-Aging of White, Red, and Model Wines. J. Agric. Food Chem. 1997, 45, 2584–2589. [Google Scholar] [CrossRef]
- Ortega-Heras, M.; Perez-Magarino, S.; Cano-Mozo, E.; Gonzalez-San Jose, M.L. Differences in the phenolic composition and sensory profile between red wines aged in oak barrels and wines aged with oak chips. LWT-Food Sci. Technol. 2010, 43, 1533–1541. [Google Scholar] [CrossRef]
- Gutiérrez Afonso, V.L. Sensory Descriptive Analysis Between White Wines Fermented With Oak Chips and In Barrels. J. Food Sci. 2006, 67, 2415–2419. [Google Scholar] [CrossRef]
- Young, O.A.; Kaushal, M.; Robertson, J.D.; Burns, H.; Nunns, S.J. Use of species other than oak to flavor wine: An exploratory survey. J. Food Sci. 2010, 75, S490–S498. [Google Scholar] [CrossRef]
- Loupassaki, S.; Abouzer, M.; Basalekou, M.; Fyssarakis, I.; Makris, D.P. Evolution pattern of wood-related volatiles during traditional and artificial ageing of commercial red and white wines: Association with sensory analysis. Int. Food Res. 2016, 23, 1459–1465. [Google Scholar]
- Jordão, A.M.; Pina, A.; Montalbano, I.; Correia, A.C.; Ricardo-da-Silva, J.M. Sensory profile of varietal white wines submitted to a short period of aging in contact with oak and cherry wood chips. In Book of Abstracts of Forty-First World Congress of Vine and Wine; OIV: Punta Del Este, Uruguay, 2018; p. 979. [Google Scholar]
Toasting Level | ||||||
---|---|---|---|---|---|---|
Volatile Compounds | Without Toasting | Light Toasting | Medium Toasting | Strong Toasting | Oak Species | References |
Vanillin | 1.6–2.5 | nd | 10.5–23.4 | 22.0–33.6 | Q. pyrenaica | [11] (1) |
6.8–7.5 | nd | 24.1–34.5 | 7.5–8.8 | Q. alba | ||
2.0–3.4 | nd | 48.5–60.0 | 3.0–6.3 | Q. petraea | ||
nd | 27.4 | 120.0 | 244.0 | Q. alba | [16] (2) | |
nd | 120.0 | 172.0 | 262.0 | Q. petraea | ||
nd | nd | 14.59 | nd | Q. alba | [90] (3) | |
n.d. | 12.86 | 16.77 | 24.76 | Q. petraea | ||
Syringaldehyde | 14.9–16.5 | nd | 82.0–88.4 | 69.0–88.8 | Q. pyrenaica | [11] (1) |
16.3–20.2 | nd | 24.1–34.5 | 20.5–31.5 | Q. alba | ||
12.5–14.8 | nd | 48.5–60.0 | 85.0–118.0 | Q. petraea | ||
nd | 57.4 | 343.0 | 768.0 | Q. alba | [16] (2) | |
nd | 196.0 | 443.0 | 721.0 | Q. petraea | ||
nd | nd | 40.0 | nd | Q. alba | [90] (3) | |
50.5 | 72.2 | 63.4 | 75.2 | Q. petraea | ||
Furfural | 3.9–4.5 | nd | 2176–2670 | 1635–2155 | Q. pyrenaica | [11] (1) |
1.2–1.8 | nd | 357.5–960.0 | 353.5–787.5 | Q. alba | ||
3.4–7.0 | nd | 723.0–772.5 | 118.0–613.0 | Q. petraea | ||
nd | 41.0 | 681.0 | 61.0 | Q. alba | [16] (2) | |
nd | 78.0 | 357.0 | 170.0 | Q. petraea | ||
nd | nd | 2.61 | nd | Q. alba | [90] (3) | |
7.1 | 14.3 | 4.1 | 28.6 | Q. petraea | ||
5-Hydroxymethyl-furfural | 0.0–1.3 | nd | 3344–5078 | 2306–2976 | Q. pyrenaica | [11] (1) |
0.4–0.7 | nd | 1678–3221 | 781.9–922.3 | Q. alba | ||
0.3–0.5 | nd | 1203–1722 | 654.2–980.6 | Q. petraea | ||
nd | 14.6 | 74.5 | 30.2 | Q. alba | [16] (2) | |
nd | 37.2 | 58.3 | 44.2 | Q. petraea | ||
nd | nd | 10.7 | nd | Q. alba | [90] (3) | |
5.73 | 7.9 | 6.13 | 12.66 | Q. petraea | ||
Trans-β-methyl-γ-octalactone | nd-8.3 | nd | 4.8–7.0 | 5.0–7.2 | Q. pyrenaica | [11](1) |
4.0–5.0 | nd | 6.4–7.4 | 4.2–7.4 | Q. alba | ||
5.0–6.7 | nd | 5.4–11.3 | 5.3–11.5 | Q. petraea | ||
nd | 3.35 | 6.63 | 2.78 | Q. alba | [16] (2) | |
nd | 11.5 | 9.65 | 4.43 | Q. petraea | ||
Cis-β-methyl-γ- octalactone | 5.3–10.0 | nd | 3.6–13.7 | 2.9–9.6 | Q. pyrenaica | [11] (1) |
22.3–23.1 | nd | 26.5–45.5 | 16.1–23.6 | Q. alba | ||
14.0–21.3 | nd | 14.1–18.5 | 7.4–18.2 | Q. petraea | ||
nd | 24.9 | 31.1 | 14.6 | Q. alba | [16] (2) | |
nd | 11.4 | 12.1 | 7.59 | Q. petraea |
Volatile Compounds | Wine Characteristics | French Oak | American Oak | Reference |
---|---|---|---|---|
New oak barrels | Monastrell wine aged for 6 months | [104] | ||
Alcohols × 10−3 | ~325 | ~325 | ||
Acids × 10−1 | ~200 | ~200 | ||
Esters × 10−2 | ~40 | ~40 | ||
Furfuryl × 10−1 | ~140 | ~120 | ||
Guaiacol | ~10 | ~10 | ||
4-Methyl guaiacol | ~10 | ~25 | ||
4-Ethyl phenol | ~300 | ~320 | ||
4-Ethyl guaiacol | ~25 | ~10 | ||
Trans-oak lactone | ~40 | ~25 | ||
Cis-oak lactone | ~125 | ~400 | ||
Vanillin | ~200 | ~175 | ||
Oak barrels used twice | Blend wine of Tempranillo (60%), Cabernet Sauvignon (20%), and Garnacha (20%) aged for 12 months | [105] | ||
Furfural | 771 | |||
5-Methyl furfural | 135 | |||
5-Hydroxymethyl furfural | 0.02 | |||
Furfuryl alcohol | 3714 | |||
Cis-oak lactone | 79 | |||
Trans-oak lactone | 73 | |||
γ-Nonalactone | 2.6 | |||
γ-Butyrolactone | 49,930 | |||
Syringaldehyde | 312 | |||
Coniferaldehyde | 40 | |||
Vanillin | 89 | |||
Acetovanillone | 114 | |||
β-Ionone | 0.16 | |||
Eugenol | 20 | |||
Guaiacol | 8.8 | |||
4-Methyl guaiacol | 0.06 | |||
Phenol | 15.52 | |||
m-Cresol | 0.8 | |||
p-Cresol | 0.19 | |||
4-Ethyl phenol | 656 | |||
4-Ethyl guaiacol | 87 | |||
2-Phenyl ethanol | 2051 | |||
Ethyl butyrate | 517 | |||
Ethyl hexanoate | 206 | |||
Ethyl octanoate | 246 | |||
Ethyl decanoate | 9 | |||
Ethyl lactate | 31,198 | |||
Oak barrels used 3 times | Monastrell wine aged for 6 months | [106] | ||
Alcohols × 10−3 | ~350 | ~325 | ||
Acids × 10−1 | ~240 | ~225 | ||
Esters × 10−2~ | ~40 | ~40 | ||
Furfuryl × 10−1 | ~125 | ~120 | ||
Guaiacol | ~10 | ~10 | ||
4-Methyl guaiacol | ~10 | ~10 | ||
4-Ethyl phenol | ~60 | ~175 | ||
4-Ethyl guaiacol | nd | ~5 | ||
Trans-oak lactone | ~20 | ~5 | ||
Cis-oak lactone | ~75 | ~100 | ||
Vanillin | ~60 | ~75 | ||
Oak barrels used 5 times | Blend wine (Tempranillo 41% and Cabernet Sauvignon 59%) aged for 12 months | [103] | ||
Furfural | 89–206 | 70–110 | ||
5-Methyl furfural | 4.0–5.0 | 5–13 | ||
Furfuryl alcohol | 516–620 | 115–447 | ||
Cis-oak lactone | 44–89 | 100–151 | ||
Trans-oak lactone | 28–51 | 20–37 | ||
γ-Butyrolactone | 18,200–19,300 | 17,900–18,100 | ||
γ-Nonalactone | 1.6–2.6 | 1.8–2.6 | ||
Ethyl butyrate | 225–270 | 246–272 | ||
Ethyl hexanoate | 264–294 | 292–313 | ||
Ethyl octanoate | 349–353 | 345–355 | ||
Ethyl decanoate | 85–89 | 91–106 | ||
Isoamyl acetate | 276–296 | 245–338 | ||
Ethyl lactate | 26,200–34,500 | 14,700–17,500 | ||
Vanillin | 25–35 | 9–25 | ||
Syringaldehyde | 5–7 | 1–4 | ||
Coniferaldehyde | 17–20 | 15–18 | ||
Acetovanillone | 145–177 | 113–116 | ||
β-Ionone | 0.20–0.30 | 0.20–0.30 | ||
Guaiacol | 5–6 | 5–7 | ||
4-Methyl guaiacol | 0.030–0.030 | 0.04–0.05 | ||
Eugenol | 13–22 | 17–25 | ||
4-Ethyl guaiacol | 271–306 | 209–274 | ||
4-Ethyl phenol | 1540–1850 | 1160–1590 | ||
Phenol | 5–7 | 5–8 | ||
p-Cresol | 0.05–0.06 | 0.05–0.06 | ||
m-Cresol | 1–2 | 0.1–1.0 | ||
2-Phenyl ethanol | 3170–3470 | 2780–3320 |
Compound | 2 Months | 4 Months | 6 Months | ||||||
---|---|---|---|---|---|---|---|---|---|
Oak | Cherry | Oak | Cherry | Cherry | Chestnut | False Acacia | Ash | Oak | |
Protocatechuic acid | 4.20 | 4.27 | 3.74 | 2.72 | 1.02 | 0.24 | 0.9 | 0.82 | 0.73 |
Vanillic acid | 1.63 | 1.37 | 1.81 | 1.14 | 3.59 | 3.25 | nq | 4.88 | 3.62 |
Syringic acid | 5.16 | 3.95 | 3.32 | 4.09 | 3.56 | ||||
Caffeic acid | 6.72 | 6.46 | 6.16 | 5.82 | 22.66 | 15.62 | 20.21 | 21.28 | 24.82 |
p-Cumaric acid | 1.46 | 1.34 | 0.89 | 1.08 | 0.82 | 0.32 | 0.33 | 0.38 | 0.41 |
Caftaric acid | 38.8 | 36.9 | 36.6 | 36.3 | 0.07 | 0.54 | 0.71 | 0.41 | 0.07 |
GRP | 7.08 | 6.92 | 6.17 | 5.96 | |||||
Cis p-Coumaric acid | 4.01 | 1.27 | 4.31 | 4.2 | 4.25 | ||||
Trans p-Coumaric acid | 46.68 | 9.45 | 40.14 | 41.89 | 47.13 | ||||
Ferulic acid | 0.56 | 1.02 | 1.41 | 1.29 | 1.07 | ||||
Cis-Coutaric acid | 2.51 | 2.57 | 2.39 | 2.44 | 0.03 | 0.11 | 0.06 | 0.03 | nd |
Trans-Coutaric acid | 7.90 | 7.82 | 7.97 | 7.63 | 0.04 | 0.36 | 0.17 | 0.13 | nd |
Fertaric acid | 13.1 | 12.6 | 13.2 | 12.2 | 0.16 | 0.19 | 0.91 | 0.05 | nd |
Ethyl cumarate | 0.10 | 0.12 | tr | tr | |||||
(Epi)catechin gallate | 4.52 | 4.36 | nq | 4.06 | 5.12 | ||||
(+)-Catechin | 56.1 | 53.0 | 42.7 | 21.4 | 47.7 | 38.88 | 35.34 | 37.5 | 40.13 |
(−)-Epicatechin | 52.0 | 45.2 | 38.6 | 20.5 | 10.81 | 9.81 | 9.32 | 9.17 | 10.35 |
Procyanidin B1 | 82.8 | 75.6 | 66.5 | 26.7 | |||||
Procyanidin B2 | 86.9 | 73.9 | 68.4 | 27.7 | 11.14 | 5.78 | 4.92 | 7.54 | 9.11 |
Isorhamnetin-3-glucoside | 2.07 | 1.83 | 2.06 | 1.74 | 7.82 | 6.11 | 6.28 | 7.73 | 6.59 |
Syringetin-3-galactoside | nd | 0.54 | 2.49 | 0.82 | 2.37 | ||||
Isorhamnetin | 1.20 | 1.16 | 1.40 | 1.21 | |||||
Kaempferol | 1.33 | 1.43 | 1.60 | 1.28 | 1.05 | 1.02 | 0.67 | 0.56 | 0.56 |
Myricetin-3-glucoside | 4.91 | 2.88 | 4.93 | 3.43 | 5.11 | 4.28 | 4.66 | 4.62 | 4.69 |
Myricetin | 5.37 | 5.77 | 4.47 | 3.14 | 1.91 | 1.53 | 1.81 | 2.55 | 1.37 |
Quercetin | 14.6 | 16.7 | 14.6 | 8.55 | 27.82 | 23.99 | 23.72 | 23.41 | 26.24 |
Quercetin-3-glucoside | 1.39 | 1.23 | 0.79 | 0.64 | 3.48 | 4.38 | 3.14 | 2.97 | 2.93 |
Quercetin-3-glucuronide | 7.28 | 6.57 | 6.75 | 4.44 | 0.84 | 1.39 | 0.74 | 0.72 | 0.57 |
Laricitrin-3-glucoside | 13.70 | 11.96 | 12.62 | 13.07 | 13.42 | ||||
Tyrosol | 57.1 | 49.4 | 55.5 | 52.6 | 0.82 | 0.73 | 0.84 | 1.01 | 0.84 |
Trans-Resveratrol | 1.01 | 0.94 | 1.04 | 0.69 | 1.35 | 1.18 | 1.77 | 1.38 | 1.57 |
Trans-Resveratrol glucoside | 4.10 | 5.01 | 5.49 | 5.33 | 1.72 | 1.45 | 2.35 | 1.61 | 2.01 |
cherry wood wines aged phenolic markers | |||||||||
Eriodictyol | nd | nd | nd | 0.09 | 0.63 | ||||
Flavanone derivative | nd | 0.31 | nd | 0.51 | |||||
Sakuranetin | nd | 0.86 | nd | 2.21 | |||||
Pinocembrin | nd | 1.44 | nd | 1.72 | |||||
Chrysin | nd | 0.11 | nd | 0.71 | |||||
Taxifolin | 3.64 | ||||||||
Prunin | 0.76 | ||||||||
Aromadendrin | 5.56 | ||||||||
Naringenin | 5.57 | ||||||||
Isosakuranetin | 3.98 | ||||||||
chestnut wood wines aged phenolic markers | |||||||||
Gallic acid | 66.7 | 64.1 | 68.0 | 64.7 | 21.38 | 43.91 | 33.09 | 27.77 | 30.46 |
Ellagic acid | 4.53 | 1.39 | 7.66 | 3.44 | 5.94 | 20.41 | 4.54 | 5.54 | 11.61 |
Ethyl gallate | 47.0 | 33.1 | 25.9 | 14.1 | 8.99 | 11.73 | 7.95 | 8.11 | 9.16 |
Valoneic acid dilactone | 1.69 | ||||||||
false acacia wood wines aged phenolic markers | |||||||||
2,4-Dihydroxybenzoic acid | 2.19 | ||||||||
2,4-Dihydroxybenzaldehyde | 16.48 | ||||||||
Dihydrorobinetin | 79.24 | ||||||||
Pentahydroxydihydroflavonol | 1.75 | ||||||||
Tetrahydroxydihydroflavonol | 5.69 | ||||||||
Fustin | 4.33 | ||||||||
Trihidroxymethoxy dihydroflavonol | 2.78 | ||||||||
Robtin | 1.49 | ||||||||
Butin | 3.41 | ||||||||
Robinetin | 30.01 | ||||||||
Tetrahydroxyaurone | 3.28 | ||||||||
Butein | 2.63 |
Compound | Red wine (12 Months) | White Wine | ||||||
---|---|---|---|---|---|---|---|---|
Cherry | Chestnut | False Acacia | Ash | Oak | False Acacia (12 Months) | Oak (12 Months) | False Acacia (1 to 4 Months) | |
Furfural | 101 | 509 | 238 | 66.2 | 39.8 | 82.8–1236.3 | 740.2–1795.8 | 24–9.2 |
5-Methyl furfural | 31.8 | 241 | 450 | 57.8 | 842 | 4.3–250.6 | 93–173.3 | 5.2–0.1 |
5-Hydroxymethylfurfural | 145 | 689 | 248 | 339 | 703 | 1.4–0.8 | ||
5-Acetoxymethyl-2-furfural | 1.81 | 5.51 | 4.85 | 2.58 | 2.09 | |||
2-Furanmethanol | 1550 | 14,120 | 3415 | 878 | 6248 | |||
Methyl-2-furoate | 13.7 | 10.4 | 43.0 | 28.8 | 31.9 | |||
Ethyl-2-furoate | 28.3 | 53.4 | 54.9 | 48.1 | 57.0 | |||
1-(2-Furanyl)-ethanone | 62.1 | 299 | 161c | 76.8 | 420 | |||
1-Methoxy-2-ethoxyethyl-1-furan | 38.7 | 169 | 39.3 | 24.8 | 20.5 | |||
3-Ethylcyclotene | nd | 1.22 | 6.73 | 26.3 | 8.28 | |||
4,5-Dimethyl-2-cyclohexen-1-one | 0.45 | nd | 10.5 | 14.7 | 10.0 | |||
γ-Butyrolactone | 4240 | 4419 | 4307 | 4007 | 4334 | 0.1 | ||
Whiskylactone trans | nd | 21.3 | nd | nd | 99.4 | 0.2–0.3 | 0.5–38.7 | |
Whiskylactone cis | nd | 31.2 | nd | nd | 577 | 0.4–0.5 | 1.2–42.7 | |
Phenol | 0.9 | 8.47 | 9.06 | 10.8 | 9.07 | 1.8–3.1 | 1.6–2.1 | |
o-Cresol | 2.20 | 2.04 | 2.56 | 5.75 | 2.28 | 0.3–1.3 | ||
p-Cresol | 13.2 | 2.84 | 3.27 | 4.50 | 2.53 | 0.3 | ||
m-Cresol | 1.79 | 1.36 | 0.59 | 2.24 | 1.04 | 0.5–0.9 | ||
4-Ethylphenol | 431 | 415 | 48.1c | 479 | 274 | 0.4–0.7 | 6.2–3.3 | |
Catechol | 4.70 | 4.65 | nd | nd | nd | |||
4-Methylcatechol | 10.4 | 11.4 | 3.81 | 14.2 | nd | |||
Guaiacol | 42.8 | 59.3 | 59.8 | 75.1 | 43.8 | 2.7–31.4 | 4.9–9.2 | 3.1–0.8 |
4-Methylguaiacol | 24.6 | 51.5 | 14.1 | 34.8 | 31.5 | 0.9–0.3 | ||
4-Ethylguaiacol | 73.3 | 49.1 | 19.9 | 91.5 | 24.2 | 0.7–2.6 | 0.6–1.3 | 1.4–0.7 |
Eugenol | 10.5 | 118 | 19.3 | 12.8 | 101 | 2.5–8 | 4.4–6.6 | 0.9–0.6 |
Cis-isoeugenol | 0.5–1.6 | 0.6 | ||||||
Trans-isoeugenol | 8.6–33.1 | 3.6–7.9 | ||||||
2,4-Dihydroxybenzaldehyde | nd | nd | 1248 | nd | nd | |||
p-Anisaldehyde | 4.42 | nd | 0.29 | nd | nd | |||
Vanillin | 304 | 456 | 233 | 696 | 408 | 0.02–0.03 | 0.02–0.05 | 38.1–1.2 |
Syringaldehyde | 1877 | 1189 | 768 | 1090 | 1305 | 0.25–0.29 | 0.12–0.13 | 43.1–1.0 |
Acetovanillone | 75.1 | 92.4 | 61.3 | 111 | 62.4 | 59.5–30 | ||
Methyl benzoate | 94 | nd | nd | 0.43 | nd | |||
Ethyl benzoate | 29.16 | nd | nd | nd | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jordão, A.M.; Cosme, F. The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality. Appl. Sci. 2022, 12, 3179. https://doi.org/10.3390/app12063179
Jordão AM, Cosme F. The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality. Applied Sciences. 2022; 12(6):3179. https://doi.org/10.3390/app12063179
Chicago/Turabian StyleJordão, António M., and Fernanda Cosme. 2022. "The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality" Applied Sciences 12, no. 6: 3179. https://doi.org/10.3390/app12063179
APA StyleJordão, A. M., & Cosme, F. (2022). The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality. Applied Sciences, 12(6), 3179. https://doi.org/10.3390/app12063179