Dispersion Management and Pulse Characterization of Graphene-Based Soliton Mode-Locked Fiber Lasers
Abstract
:1. Introduction
2. Structural Characterization of Graphene Polymer Thin Film (GPTF)
3. Fabrication of Graphene/PMMA-SA
4. Optical Characterization of Graphene/PMMA-SA
5. Experimental Setup
6. Dispersion Management of the Mode-Locked Laser
7. Results and Discussions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malfondet, A.; Parriaux, A.; Krupa, K.; Millot, G.; Dinda, P.T. Optimum design of NOLM-driven mode-locked fiber lasers. Opt. Lett. 2021, 46, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Jing, Z.; Haiying, J.; Mengru, S.; Tianshu, W. Mode-locked fiber laser with multimode fiber as saturable absorber. Opto-Electron. Eng. 2021, 48, 200362. [Google Scholar]
- Ahmad, H.; Ramli, R.; Ismail, N.N.; Aidit, S.N.; Yusoff, N.; Samion, M.Z. Passively mode locked thulium and thulium/holmium doped fiber lasers using MXene Nb2C coated microfiber. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.Y.; Hou, D. Recent research and advances of material-based saturable absorber in mode-locked fiber laser. Opt. Laser Technol. 2021, 137, 106826. [Google Scholar] [CrossRef]
- Guo, B.; Wang, S.-H.; Wu, Z.-X.; Wang, Z.-X.; Wang, D.-H.; Huang, H.; Zhang, F.; Ge, Y.-Q.; Zhang, H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 2018, 26, 22750–22760. [Google Scholar] [CrossRef]
- Debnath, P.; Yeom, D.-I. Ultrafast Fiber Lasers with Low-Dimensional Saturable Absorbers: Status and Prospects. Sensors 2021, 21, 3676. [Google Scholar] [CrossRef]
- Sun, G.; Feng, M.; Zhang, K.; Wang, T.; Li, Y.; Han, D.; Li, Y.; Song, F. Q-Switched and Mode-Locked Er-doped fiber laser based on MAX phase Ti2AlC saturable absorber. Results Phys. 2021, 26, 104451. [Google Scholar] [CrossRef]
- Camarillo-Avilés, A.; López-Estopier, R.; Pottiez, O.; Durán-Sánchez, M.; Ibarra-Escamilla, B.; Jiménez, M.B. Supercon-tinuum source directly from noise-like pulse emission in a Tm-doped all-fiber laser with nonlinear polarization rotation. Results Opt. 2021, 2, 100040. [Google Scholar] [CrossRef]
- Liu, G.; Ou, S.; Zhang, Q.; Zhang, M.; Li, X.; Bao, Q. All-polarization-maintaining linear fiber laser mode-locked by nonlinear polarization evolution with phase bias. Opt. Laser Technol. 2021, 142, 107160. [Google Scholar] [CrossRef]
- Łaszczych, Z.; Soboń, G. Dispersion management of a nonlinear amplifying loop mirror-based erbi-um-doped fiber laser. Opt. Express 2021, 29, 2690–2702. [Google Scholar] [CrossRef]
- Edelmann, M.; Hua, Y.; Şafak, K.; Kärtner, F.X. Intrinsic amplitude-noise suppression in fiber lasers mode-locked with nonlinear amplifying loop mirrors. Opt. Lett. 2021, 46, 1752–1755. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Zhang, H.; Deng, D.; Zu, J. Dissipative Soliton Resonance in an All-Polarization Maintaining Fiber Laser With a Nonlinear Amplifying Loop Mirror. IEEE Photon. J. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Yang, Z.; Lustig, E.; Harari, G.; Plotnik, Y.; Lumer, Y.; Bandres, M.A.; Segev, M. Mode-Locked Topological Insulator Laser Utilizing Synthetic Dimensions. Phys. Rev. 2020, 10, 011059. [Google Scholar] [CrossRef] [Green Version]
- Haris, H.; Arof, H.; Muhammad, A.; Anyi, C.; Tan, S.; Kasim, N.; Harun, S. Passively Q-switched and mode-locked Erbium-doped fiber laser with topological insulator Bismuth Selenide (Bi2Se3) as saturable absorber at C-band region. Opt. Fiber Technol. 2018, 48, 117–122. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.H. Femtosecond Tm–Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator. Chin. Phys. B 2018, 27, 94219. [Google Scholar] [CrossRef]
- Li, L.; Pang, L.; Wang, Y.; Liu, W. WxNb(1−x)Se2 nanosheets for ultrafast photonics. Nanoscale 2021, 13, 2511–2518. [Google Scholar] [CrossRef]
- Li, L.; Pang, L.; Zhao, Q.; Wang, Y.; Liu, W. Niobium disulfide as a new saturable absorber for an ultrafast fiber laser. Nanoscale 2020, 12, 4537–4543. [Google Scholar] [CrossRef]
- Tiu, Z.C.; Ooi, S.I.; Guo, J.; Zhang, H.; Ahmad, H. Application of transition metal dichalcogenide in pulsed fiber laser system. Mater. Res. Express. 2019, 6, 082004. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Kwon, S.; Shin, B.; Lee, H.J. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker. Photon. Res. 2019, 7, 984–993. [Google Scholar] [CrossRef]
- Cheng, P.; Du, Y.; Han, M.; Shu, X. Mode-locked and Q-switched mode-locked fiber laser based on a ferroferric-oxide nano-particles saturable absorber. Opt. Express 2020, 28, 13177–13186. [Google Scholar] [CrossRef]
- Wang, W.; Yue, W.; Liu, Z.; Shi, T.; Du, J.; Leng, Y.; Wei, R.; Ye, Y.; Liu, C.; Liu, X.; et al. Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation. Adv. Opt. Mater. 2018, 6, 1–8. [Google Scholar] [CrossRef]
- Fu, B.; Sun, J.; Wang, C.; Shang, C.; Xu, L.; Li, J.; Zhang, H. MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small 2021, 17, 2006054. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Xiao, Q.; Wang, S.; Zhang, H. 2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser Photon. Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Fu, B.; Sun, J.; Wang, G.; Shang, C.; Ma, Y.; Ma, J.; Xu, L.; Scardaci, V. Solution-processed two-dimensional materials for ultrafast fiber lasers (invited). Nanophotonics 2020, 9, 2169–2189. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Wang, C.; Gao, B.; Adams, J.; Wu, G.; Zhang, H. Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Appl. Phys. Rev. 2019, 6, 041304. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D.M.; Ferrari, A.C. Graphene Mode-Locked Ultrafast Laser. ACS Nano 2010, 4, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Ponarina, M.; Okhrimchuk, A.; Alagashev, G.; Orlova, G.; Dolmatov, T.; Rybin, M.; Obraztsova, E.; Bukin, V.; Obraztsov, P. Wavelength-switchable 9.5 GHz graphene mode-locked waveguide laser. Appl. Phys. Express 2021, 14, 072001. [Google Scholar] [CrossRef]
- Hua, K.; Wang, D.N. Coupling scheme for graphene saturable absorber in a linear cavity mode-locked fiber laser. Opt. Lett. 2021, 46, 4362–4365. [Google Scholar] [CrossRef]
- Peng, X.; Yan, Y. Graphene saturable absorbers applications in fiber lasers. J. Eur. Opt. Soc. Publ. 2021, 17, 1–26. [Google Scholar] [CrossRef]
- Terra, O.; Hussein, H.M.; Kotb, H. Soliton mode-locked fiber laser for distance measurements. Appl. Opt. 2021, 60, 3452–3457. [Google Scholar] [CrossRef] [PubMed]
- de Faria, A.C.A. Optical Sensor for Nonlinear and Quantum Optical Effects. In Nonlinear Optics—From Solitons to Similaritons; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/70829 (accessed on 3 January 2022). [CrossRef]
- Voloshin, A.S.; Kondratiev, N.M.; Lihachev, G.V.; Liu, J.; Lobanov, V.E.; Dmitriev, N.Y.; Weng, W.; Kippenberg, T.J.; Bilenko, I.A. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-S.; Wang, C.-C.; Chen, C.-C.; Hsiao, C.-C.; Chou, Y.-H. A high-performance ibc-Hub transceiver for intra-body communication system. Microw. Opt. Technol. Lett. 2012, 54, 1143–1153. [Google Scholar] [CrossRef]
- Luo, H.; Yang, J.; Li, J.; Liu, Y. Tunable sub-300 fs soliton and switchable dual-wavelength pulse generation from a mode-locked fiber oscillator around 28 µm. Opt. Lett. 2021, 46, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Meng, Y.; Li, Y.; Qin, J.; Zhu, S.; Wang, F. Nanotube mode-locked, wavelength and pulsewidth tunable thulium fiber laser. Opt. Express 2019, 27, 3518–3527. [Google Scholar] [CrossRef]
- Zhu, J.; Ge, S.; Wang, J.; Zhang, W.; Ren, H.; Yan, B. Systematic exploration and characterization on the influence of dispersion to pulse characteristics in Tm-doped NPE mode-locked fiber oscillator. Infrared Phys. Technol. 2021, 115, 103722. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Martynkien, T.; Przewłoka, A.; Sotor, J. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Opt. Lett. 2019, 7, 36–41. [Google Scholar] [CrossRef]
- Fu, B.; Hua, Y.; Xiao, X.; Zhu, H.; Sun, Z.; Yang, C. Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 411–415. [Google Scholar] [CrossRef]
- Garmire, E. Resonant optical nonlinearities in semiconductors. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1094–1110. [Google Scholar] [CrossRef]
- Sun, Z.; Hasan, T.; Wang, F.; Rozhin, A.G.; White, I.H.; Ferrari, A.C. Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes. Nano Res. 2010, 3, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.W.; Yao, H.; Marciante, J.R. Resonant pumping of Er-doped fiber amplifiers for improved laser efficiency in free-space optical communications. NASA IPN Prog. Rep. 2012, 11, 42–189. [Google Scholar]
- Sotor, J.; Pasternak, I.; Krajewska, A.; Strupinski, W.; Sobon, G. Sub-90 fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber. Opt. Express 2015, 23, 27503–27508. [Google Scholar] [CrossRef] [PubMed]
- Tarka, J.; Boguslawski, J.; Sobon, G.; Pasternak, I.; Sotor, J.; Przewloka, A.; Strupinski, W.; Abramski, K.M. Power Scaling of an All-PM Fiber Er-Doped Mode-Locked Laser Based on Graphene Saturable Absorber. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 60–65. [Google Scholar] [CrossRef]
- Chen, H.R.; Tsai, C.-Y.; Chang, C.-Y.; Lin, K.-H.; Chang, C.-S.; Hsieh, W.-F. Investigation of Graphene Dispersion from Kelly Sideband in Stable Mode-Locked Erbium-Doped Fiber Laser by Few-Layer Graphene Saturable Absorbers. J. Light. Technol. 2015, 33, 4406–4412. [Google Scholar] [CrossRef]
Fiber Length (m) | Fiber GVD (ps2) | Net GVD (ps2) | ||||
---|---|---|---|---|---|---|
SMF-28 | EDF | Hi-1060 | SMF-28 | EDF | Hi-1060 | |
10.4 | 5 | 1 | −0.23 | 0.115 | −0.007 | −0.121 |
9.9 | −0.22 | −0.110 | ||||
9.4 | −0.21 | −0.099 | ||||
8.9 | −0.2 | −0.088 | ||||
8.4 | −0.19 | −0.077 | ||||
7.9 | −0.17 | −0.066 | ||||
7.4 | −0.16 | −0.055 | ||||
6.9 | −0.15 | −0.044 | ||||
6.4 | −0.14 | −0.033 |
Additional SMF Length (m) | Maximum Average Output Power (mW) | Maximum Pulse Energy (pJ) | Average Output Power Slope Efficiencies (%) |
---|---|---|---|
0.0 | 4.93 | 391.47 | 5.70 |
0.5 | 5.12 | 419.25 | 5.75 |
1.0 | 5.01 | 428.33 | 5.67 |
1.5 | 5.13 | 456.82 | 5.80 |
2.0 | 5.40 | 484.93 | 6.12 |
2.5 | 5.26 | 526.15 | 5.93 |
3.0 | 5.82 | 539.49 | 6.41 |
3.5 | 5.68 | 567.28 | 6.56 |
4.0 | 5.99 | 599.52 | 6.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abas, A.F.; Lau, K.Y.; Abdulkawi, W.M.; Alresheedi, M.T.; Muhammad, F.D.; Mahdi, M.A. Dispersion Management and Pulse Characterization of Graphene-Based Soliton Mode-Locked Fiber Lasers. Appl. Sci. 2022, 12, 3288. https://doi.org/10.3390/app12073288
Abas AF, Lau KY, Abdulkawi WM, Alresheedi MT, Muhammad FD, Mahdi MA. Dispersion Management and Pulse Characterization of Graphene-Based Soliton Mode-Locked Fiber Lasers. Applied Sciences. 2022; 12(7):3288. https://doi.org/10.3390/app12073288
Chicago/Turabian StyleAbas, Ahmad Fauzi, Kuen Y. Lau, Wazie M. Abdulkawi, Mohammed T. Alresheedi, Farah D. Muhammad, and Mohd Adzir Mahdi. 2022. "Dispersion Management and Pulse Characterization of Graphene-Based Soliton Mode-Locked Fiber Lasers" Applied Sciences 12, no. 7: 3288. https://doi.org/10.3390/app12073288
APA StyleAbas, A. F., Lau, K. Y., Abdulkawi, W. M., Alresheedi, M. T., Muhammad, F. D., & Mahdi, M. A. (2022). Dispersion Management and Pulse Characterization of Graphene-Based Soliton Mode-Locked Fiber Lasers. Applied Sciences, 12(7), 3288. https://doi.org/10.3390/app12073288