Comprehensive LCA of Biobased Sustainable Aviation Fuels and JET A-1 Multiblend
Abstract
:1. Introduction
1.1. Background
1.2. Scope of the Study
2. Materials and Methods
2.1. Selected Options of Biobased SAF
2.1.1. ATJ
2.1.2. HEFA
2.1.3. SIP
2.2. SAF to Airport Supply Chains
- Only ASTM-certified, biobased SAF was taken into consideration.
- JET A-1 was taken into account as the fossil component.
- A separate tank farm was used as a place for blending SAF and JET A-1. Due to safety regulations, blending could not be performed directly on the airport premises and was therefore done at an external tank farm. Composition and blending procedures had to comply with existing regulations.
- The place of multiblend use was defined as an airport whose tank farm is supplied exclusively via tank wagons using existing airport infrastructure.
2.3. Environmental Assessment
- Global warming potential (GWP 100) describes the potential to change global temperatures through greenhouse gas emissions. The main greenhouse gases relevant for GHG calculation are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The global warming potential of greenhouse gases is expressed in kg of carbon dioxide equivalents (CO2-eq.). To convert a specific methane mass to kg CO2-eq., the methane weight is multiplied by 25 and the nitrous oxide mass is multiplied by 298 (based on a period of 100 years according to IPCC 2007) [30].
- ALOP (agricultural land occupation potential) refers to the continuous use of the agricultural land.
- Fossil depletion potential (FDP) describes the consumption of fossil resources and indicates the decrease in availability of fossil resources. FDP is measured in kg oil-eq.
- Freshwater eutrophication potential (FEP) includes ammonia, nitrate, nitrogen oxide, and phosphorus emissions, which affect eutrophication. The FEP is expressed in kg P in water and soil.
- Marine ecotoxicity potential (METPinf) describes the effects of toxic substances, such as heavy metals, on the marine ecosystem.
- Terrestrial acidification potential (TAP) describes the acidification potential of water and soil through SO2 and NOx emissions.
- Water depletion potential (WDP) states the water consumption.
3. Results
3.1. LCA of SAF
3.2. GHG Emissions of Multiblend JET A-1
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. Aviation. Available online: https://www.iea.org/reports/aviation (accessed on 25 January 2022).
- IATA. Net-Zero Carbon Emissions by 2050. Press Release No:66. Available online: https://www.iata.org/en/pressroom/2021-releases/2021-10-04-03/ (accessed on 25 January 2022).
- CORSIA. Resolution A40-19: Consolidated Statement of Continuing ICAO Policies and Practices Related to Environmental Protection—Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). 2022. Available online: https://www.icao.int/environmental-protection/Documents/Assembly/Resolution_A40-19_CORSIA.pdf (accessed on 25 January 2022).
- European Commission. DIRECTIVE (EU) 2018/ 2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL—of 11 December 2018—On the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001 (accessed on 25 January 2022).
- European Commission. Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on Ensuring a Level Playing Field for Sustainable Air Transport. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0561 (accessed on 25 January 2022).
- Müller-Langer, F.; Dögnitz, N.; Marquardt, C.; Zschocke, A.; Schripp, T.; Oehmichen, K.; Majer, S.; Bullerdiek, N.; Halling, A.; Posselt, D.; et al. Multiblend JET A-1 in Practice: Results of an R&D Project on Synthetic Paraffinic Kerosenes. Chem. Eng. Technol. 2020, 43, 1514–1521. [Google Scholar] [CrossRef]
- ASTM D7566-19; Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons (D7566-19). ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- ASTM D1655-19; Standard Specification for Aviation Turbine Fuels (D1655-19). ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- IFOK GmbH. Die Mobilitäts- und Kraftstoffstrategie der Bundesregierung (MKS): Energie auf neuen Wegen; BMVI: Berlin, Germany, 2013. [Google Scholar]
- Bullerdiek, N.; Buse, J.; Dögnitz, N.; Feige, A.; Halling, A.-M.; Hauschild, S.; Hawighorst, P.; Kaltschmitt, K.; Kuchling, T.; Kureti, S.; et al. DEMO-SPK Endbericht. Available online: https://elib.dlr.de/130946/1/demo-spk-endbericht.pdf (accessed on 25 January 2022).
- Schripp, T.; Grein, T.; Zinsmeister, J.; Oßwald, P.; Köhler, M.; Müller-Langer, F.; Hauschild, S.; Marquardt, C.; Scheuermann, S.; Zschocke, A.; et al. Technical application of a ternary alternative jet fuel blend—Chemical characterization and impact on jet engine particle emission. Fuel 2021, 288, 119606. [Google Scholar] [CrossRef]
- Prussi, M.; Lee, U.; Wang, M.; Malina, R.; Valin, H.; Taheripour, F.; Velarde, C.; Staples, M.D.; Lonza, L.; Hileman, J.I. CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renew. Sustain. Energy Rev. 2021, 150, 111398. [Google Scholar] [CrossRef]
- Siddiqui, O.; Dincer, I. A comparative life cycle assessment of clean aviation fuels. Energy 2021, 234, 121126. [Google Scholar] [CrossRef]
- Klein, B.C.; Chagas, M.F.; Junqueira, T.L.; Rezende, M.C.A.F.; Cardoso, T.D.F.; Cavalett, O.; Bonomi, A. Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Appl. Energy 2018, 209, 290–305. [Google Scholar] [CrossRef]
- Abrantes, I.; Ferreira, A.F.; Silva, A.; Costa, M. Sustainable aviation fuels and imminent technologies—CO2 emissions evolution towards 2050. J. Clean. Prod. 2021, 313, 127937. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, C.; Tian, H.; Li, L.; Wang, X.; Qiu, T. Environmental and techno-economic analyses of bio-jet fuel produced from jatropha and castor oilseeds in China. Int. J. Life Cycle Assess. 2021, 26, 1071–1084. [Google Scholar] [CrossRef]
- Pavlenko, N.; Searle, S. Assessing the Sustainability Implications of Alternative Aviation Fuels; Working paper 2021-11. Available online: https://theicct.org/publication/assessing-the-sustainability-implications-of-alternative-aviation-fuels/ (accessed on 25 January 2022).
- O’Connell, A.; Kousoulidou, M.; Lonza, L.; Weindorf, W. Considerations on GHG emissions and energy balances of promising aviation biofuel pathways. Renew. Sustain. Energy Rev. 2019, 101, 504–515. [Google Scholar] [CrossRef]
- Prussi, M.; O’Connell, A.; Lonza, L. Analysis of current aviation biofuel technical production potential in EU28. Biomass Bioenergy 2019, 130, 105371. [Google Scholar] [CrossRef]
- van Dyk, S.; Saddler, J. Progress in Commercialization of Biojet/Sustainable Aviation Fuels (SAF): Technologies, Potential and Challenges; IEA: Paris, France, 2021. [Google Scholar]
- Bauen, A.; Bitossi, N.; German, L.; Harris, A.; Leow, K. Sustainable Aviation Fuels. Johns. Matthey Technol. Rev. 2020, 64, 263–278. [Google Scholar] [CrossRef]
- Gevo Inc. Making Technology Real. Available online: https://gevo.com/technology/ (accessed on 25 January 2022).
- World Energy LLC. World Energy Acquires AltAir Biojet, Renewable Diesel Assets | Biomassmagazine.com. Available online: http://biomassmagazine.com/articles/15165/world-energy-acquires-altair-biojet-renewable-diesel-assets (accessed on 25 February 2019).
- Klein-Marcuschamer, D.; Blanch, H.W. Survival of the fittest: An economic perspective on the production of novel biofuels. AIChE J. 2013, 59, 4454–4460. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. Deutsche und Englische Fassung EN ISO 14040:2006, 10/2006 (ISO 14040). International Standards Organization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. German and English Version EN ISO 14044:2006, 10/2006 (ISO 14044). International Standards Organization: Geneva, Switzerland, 2006.
- ifu Hamburg GmbH. Umberto LCA+; ifu Hamburg GmbH: Hamburg, Germany, 2018. [Google Scholar]
- Swiss Centre for Life Cycle Inventories. Ecoinvent v3.3 for Umberto; Swiss Centre for Life Cycle Inventories: Duebendorf, Switzerland, 2016. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W.T.; Laprise, R.; et al. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Alvarez-Gaitan, J.P.; Peters, G.M.; Short, M.D.; Schulz, M.; Moore, S. Understanding the impacts of allocation approaches during process-based life cycle assessment of water treatment chemicals. Integr. Environ. Assess. Manag. 2014, 10, 87–94. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oehmichen, K.; Majer, S.; Müller-Langer, F.; Thrän, D. Comprehensive LCA of Biobased Sustainable Aviation Fuels and JET A-1 Multiblend. Appl. Sci. 2022, 12, 3372. https://doi.org/10.3390/app12073372
Oehmichen K, Majer S, Müller-Langer F, Thrän D. Comprehensive LCA of Biobased Sustainable Aviation Fuels and JET A-1 Multiblend. Applied Sciences. 2022; 12(7):3372. https://doi.org/10.3390/app12073372
Chicago/Turabian StyleOehmichen, Katja, Stefan Majer, Franziska Müller-Langer, and Daniela Thrän. 2022. "Comprehensive LCA of Biobased Sustainable Aviation Fuels and JET A-1 Multiblend" Applied Sciences 12, no. 7: 3372. https://doi.org/10.3390/app12073372
APA StyleOehmichen, K., Majer, S., Müller-Langer, F., & Thrän, D. (2022). Comprehensive LCA of Biobased Sustainable Aviation Fuels and JET A-1 Multiblend. Applied Sciences, 12(7), 3372. https://doi.org/10.3390/app12073372