The Effect of Blade Angle Deviation on Mixed Inflow Turbine Performances
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Initial Rotor Design
2.2. Grid Discretization and Numerical Method Applied
2.3. Flow Simulations in a Mixed Inflow Turbine
2.4. The Boundary Conditions
2.5. The Mesh Optimization and Grid Generation Solution Dependency
2.6. Numerical Model Validations
2.7. The Flow Examination of Mixed Inflow Turbine
2.8. The New Design Approach
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
body Forces | |
b2 | Blade height at rotor inlet |
D2 | Mean diameter at rotor inlet |
D3 | Exducer hub diameter |
D3S | Exducer tip diameter |
Specific internal energy | |
Friction forces | |
P | pressure |
Heat transfer energy | |
R | Perfect gas constant |
r | Radial polar variable |
The radius at the tip rotor inlet. | |
time | |
T | Temperature |
U | variable between o and 1 |
Absolute velocity | |
The specific external force work | |
X | Axial polar variable |
X1 | Length of the rotor |
The axial distance for the initial point of the hub. | |
Reference axial distance of the blade | |
Ф | The inlet blade angle in the axial and tangent plan |
The flow cone angle | |
η | efficiency |
Density | |
δ2 | Cone angle at rotor inlet |
Mean blade angle at rotor inlet | |
Camber angle | |
Deviation blade angle | |
Reference camber angle | |
Pressure forces |
References
- Rajoo, S.; Martinez-Botas, R. Mixed Flow Turbine Research: A Review. J. Turbomach. 2008, 130, 044001. [Google Scholar] [CrossRef]
- Watson, N.; Janota, M.S. Turbocharging the Internal Combustion Engine, 1st ed.; Palgrave: London, UK, 1982; p. 608. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Nishiyama, T.; Horiai, K.; Kasuya, T. High Performance Komatsu KTR150 Turbocharger. SAE Tech. Pap. 1984, 840019, 39–47. [Google Scholar] [CrossRef]
- Chou, C.; Gibbs, C.A. The Design and Testing of a Mixed-flow Turbine for Turbochargers. SAE Tech. Pap. Ser. 1989, 890644, 113–120. [Google Scholar] [CrossRef]
- Naguib, N. Experience with the modern RR 151 turbocharger for high-speed diesel engines. In I Mech E Conference Publications, Proceedings of the Third International Conference on Turbocharging and Turbochargers, London, UK, 6–8 May 1986; Institution of Mechanical Engineers: London, UK, 1986; pp. 105–112. [Google Scholar]
- Minegishi, H.; Matsushita, H.; Sakakida, M.; Koike, T. Development of a Small Mixed-Flow Turbine for Automotive Turbochargers. In Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery. In Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition, Houston, TX, USA, 5–8 June 1995. [Google Scholar] [CrossRef] [Green Version]
- Udayakumar, R.; Pipada, Y.V. Impact of mixed flow turbines on the efficiency of automotive turbocharger applications. Int. J. Mech. Eng. Robot. Res. 2020, 9, 791–796. [Google Scholar] [CrossRef]
- Wallace, F.J. A systematic approach to the design of radial inflow and mixed flow turbines, 1st ed.; Her Majesty’s Stationery Office: London, UK, 1971. [Google Scholar]
- Zhang, J.; Zangeneh, M. Multidisciplinary and multi-point optimisation of radial and mixed-inflow turbines for turbochargers using 3D inverse design method. In Proceedings of the 14th International Conference on Turbochargers and Turbocharging, London, UK, 13–14 May 2020; pp. 263–277. [Google Scholar]
- Wallace, F.J.; Way, R.J.B.; Baghery, A. Variable Geometry Turbocharging—The Realistic Way Forward. SAE Tech. Pap. Ser. 1981, 810336, 1–23. [Google Scholar] [CrossRef]
- Wallace, F.J.; Pasha, S.G.A. Design construction and testing of a mixed flow gas turbine. In Proceedings of the Second International JSME Symposium on Fluid Machinery and Fluids, Tokyo, Japan, 4–9 September 1972; pp. 213–214. [Google Scholar]
- Baets, J.; Bernard, O.; Gamp, T.; Zehnder, M. Design and performance of ABB turbocharger TPS57 with variable turbine geometry. In Proceedings of the 6th ImechE Conference on Turbocharging and Air Management Systems, London, UK, 3–5 November 1998; pp. 315–325. [Google Scholar]
- Rajoo, S.; Martinez-Botas, R. Experimental study on the performance of a variable geometry mixed flow turbine for automotive turbocharger. In Proceedings of the 8th International Conference on Turbochargers and Turbocharging, London, UK, 17–18 May 2006; pp. 183–192. [Google Scholar] [CrossRef]
- Rajoo, S. Steady and Pulsating Performance of a Variable Geometry Mixed Flow Turbocharger Turbine. Ph.D. Thesis, Universiti Teknologi MARA, Shah Alam, Malaysia, 2006. [Google Scholar] [CrossRef]
- Gao, Y.; Fridh, J.; Morrison, R.; Ren, P.; Spence, S. Numerical investigation of the performance impact of stator tilting endwall designs on a mixed flow turbine. Int. J. Turbomach. Propuls. Power 2021, 6, 14. [Google Scholar] [CrossRef]
- Lee, S.P.; Jupp, M.L.; Nickson, A.K.; Allport, J.M. Analysis of a tilted turbine housing volute design under pulsating inlet conditions. In Proceedings of the ASME Turbo Expo 2017, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar] [CrossRef]
- Ketata, A.; Driss, Z. Numerical Study of a Vanned Mixed Flow Turbine Operating in Various Steady Flow Conditions. Int. J. Mech. Appl. 2017, 7, 24–30. [Google Scholar] [CrossRef]
- Meghnine, M.A.; Hamidou, M.K.; Hamel, M. Influence of the volute cross-sectional shape on mixed inflow turbine performances. Adv. Mech. Eng. 2017, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.P.; Barrans, S.M.; Nickson, A.K. The impact of volute aspect ratio and tilt on the performance of a mixed flow turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2021, 235, 1435–1450. [Google Scholar] [CrossRef]
- Hamel, M.; Bencherif, M.M.; Hamidou, M.K. Investigation of a twin entry mixed flow turbine volute, benefits with regard to the eco-system. Mater. Phys. Mech. 2017, 32, 31–42. [Google Scholar]
- Leonard, T.M.; Spence, S.; Early, J.; Filsinger, D. A numerical study of inlet geometry for a low inertia mixed flow turbocharger turbine. In Proceedings of the ASME Turbo Expo 2014, Dusseldorf, Germany, 16–20 June 2014. [Google Scholar] [CrossRef]
- Ketata, A.; Driss, Z. New FORTRAN meanline code for investigating the volute to rotor interspace effect on mixed flow turbine performance. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 1511–1521. [Google Scholar] [CrossRef]
- Pesiridis, A. Turbocharger Turbine Unsteady Aerodynamics with Active Control. Ph.D. Thesis, Imperial College, London, UK, 2007. [Google Scholar]
- Pesiridis, A.; Martinez-Botas, R.F. Experimental Evaluation of Active Flow Control Mixed-Flow Turbine for Automotive Turbocharger Application. In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, NV, USA, 6–9 June 2005; Volume 6, pp. 881–895. [Google Scholar] [CrossRef]
- Pesiridis, A.; Martinez-Botas, R. Active control turbocharger for auto-motive application an experimental evaluation. In Proceedings of the IMechE International Conference on Turbochargers and Turbocharging, London, UK, 17–18 May 2006; pp. 223–232. [Google Scholar]
- Pesiridis, A.; Martinez-Botas, R.F. Experimental evaluation of active flow control mixed-flow turbine for automotive turbocharger application. J. Turbomach. 2007, 129, 44–52. [Google Scholar] [CrossRef]
- Wallace, F.J.; Blair, G.P. The pulsating-flow performance of inward radial-flow turbines. In Proceedings of the ASME Turbo Expo, Washington, DC, USA, 28 February–4 March 1965. [Google Scholar] [CrossRef] [Green Version]
- Morrison, R.; Spence, S.; Kim, S.; Filsinger, D.; Leonard, T. Investigation of the effects of flow conditions at rotor inlet on mixed flow turbine performance for automotive applications. In Proceedings of the International Turbocharging Seminar 2016, Tianjin, China, 22–23 September 2016. [Google Scholar]
- Yang, B.; Martinez-Botas, R.; Yang, M. Rotor flow-field timescale and unsteady effects on pulsed-flow turbocharger turbine. Aerosp. Sci. Technol. 2022, 120, 107231. [Google Scholar] [CrossRef]
- Yang, J.-G.; Xu, L.; Liu, Y.; Zhang, M. Shock Wave Control in Highly-Loaded Turbine Rotor Blade Using an Inverse Method. Tuijin Jishu/J. Propuls. Technol. 2018, 39, 1240–1249. [Google Scholar] [CrossRef]
- Chen, H.; Baines, N.C. Analytical Optimization Design of Radial and Mixed Flow Turbines. Proc. Inst. Mech. Eng. Part A J. Power Energy 1992, 206, 177–187. [Google Scholar] [CrossRef]
- Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F. Experimental and numerical investigation on flow angle characteristics of an automotive mixed flow turbocharger turbine. J. Teknol. 2015, 77, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Karamanis, N.; Martinez-Botas, R.F. Mixed-flow turbines for automotive turbochargers: Steady and unsteady performance. Int. J. Engine Res. 2002, 3, 127–138. [Google Scholar] [CrossRef]
- Palfreyman, D.; Martinez-Botas, R.F. Numerical Study of the Internal Flow Field Characteristics in Mixed Flow Turbines. In Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam, The Netherlands, 3–6 June 2002; Volume 5, pp. 455–472. [Google Scholar] [CrossRef]
- Whitfield, A.; Baines, N.C. Design of Radial Turbomachines, 1st ed.; Longman Scientific & Technical: London, UK, 1990; p. 397. [Google Scholar]
- Ali, L.S.; Mohammed, H.; Kamel, H.M. The number of blade effects on the performance of a mixed turbine rotor. Eng. Rev. 2017, 37, 349–360. [Google Scholar]
- Leonard, T.; Spence, S.; Filsinger, D.; Starke, A. Design and performance analysis of mixed flow turbine rotors with extended blade chord. J. Turbomach. 2020, 142, 121003. [Google Scholar] [CrossRef]
- Ketata, A.; Driss, Z.; Abid, M.S. Impact of blade number on performance, loss and flow characteristics of one mixed flow turbine. Energy 2020, 203, 117914. [Google Scholar] [CrossRef]
- Wallace, F.J.; Baines, N.C.; Whitfield, A. A Unified Approach to the One-Dimensional Analysis and Design of Radial and Mixed Flow Turbines. In Proceedings of the ASME 1976 International Gas Turbine and Fluids Engineering Conference, New Orleans, LA, USA, 21–25 March 1976; Volume 1B. [Google Scholar] [CrossRef] [Green Version]
- Ke, C.; Xiong, L.; Peng, N.; Dong, B.; Li, K.; Li, J.; Liu, L. Performance analysis of high-speed cryogenic turbo-expander at cooling process based on numerical and experimental study. Int. J. Refrig. 2021, 122, 81–96. [Google Scholar] [CrossRef]
- Khairuddin, U.; Costall, A.W.; Martinez-Botas, R.F. Influence of geometrical parameters on aerodynamic optimization of a mixed-flow turbocharger turbine. In Proceedings of the ASME Turbo Expo 2015, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar] [CrossRef]
- Chelabi, M.A.; Hamidou, M.K.; Hamel, M. Effects of cone angle and inlet blade angle on mixed inflow turbine performances. Period. Polytech. Mech. Eng. 2017, 61, 225–233. [Google Scholar] [CrossRef]
- Chelabi, M.A.; Basova, Y.; Hamidou, M.K.; Dobrotvorskiy, S. Analysis of the three-dimensional accelerating flow in a mixed turbine rotor. J. Eng. Sci. 2021, 8, D1–D7. [Google Scholar] [CrossRef]
- Kononenko, S.; Dobrotvorskiy, S.; Basova, Y.; Gasanov, M.; Dobrovolska, L. Deflections and frequency analysis in the milling of thin-walled parts with variable low stiffness. Acta Polytech. 2019, 59, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Dobrotvorskiy, S.; Kononenko, S.; Basova, Y.; Dobrovolska, L.; Edl, M. Development of Optimum Thin-Walled Parts Milling Parameters Calculation Technique. In Proceedings of the 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE 2021, Lviv, Ukraine, 8–11 June 2021; Volume 2021, pp. 343–352. [Google Scholar] [CrossRef]
b2 | D2 | R0h | X1 | D3H | D3 | D3s | ||
---|---|---|---|---|---|---|---|---|
17.99 | 83.58 | 36 | 40 | 27.07 | 59.7 | 78.65 | 40 | −25 |
θ3 | −10 | −15 | −20 | −25 | −30 | −35 |
---|---|---|---|---|---|---|
A (mm2) | 940 | 970 | 987 | 1006 | 1027 | 1050 |
Gain A (%) | −6.56 | −3.58 | −1.89 | A-ref | 2.09 | 4.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chelabi, M.A.; Saga, M.; Kuric, I.; Basova, Y.; Dobrotvorskiy, S.; Ivanov, V.; Pavlenko, I. The Effect of Blade Angle Deviation on Mixed Inflow Turbine Performances. Appl. Sci. 2022, 12, 3781. https://doi.org/10.3390/app12083781
Chelabi MA, Saga M, Kuric I, Basova Y, Dobrotvorskiy S, Ivanov V, Pavlenko I. The Effect of Blade Angle Deviation on Mixed Inflow Turbine Performances. Applied Sciences. 2022; 12(8):3781. https://doi.org/10.3390/app12083781
Chicago/Turabian StyleChelabi, Mohammed Amine, Milan Saga, Ivan Kuric, Yevheniia Basova, Sergey Dobrotvorskiy, Vitalii Ivanov, and Ivan Pavlenko. 2022. "The Effect of Blade Angle Deviation on Mixed Inflow Turbine Performances" Applied Sciences 12, no. 8: 3781. https://doi.org/10.3390/app12083781
APA StyleChelabi, M. A., Saga, M., Kuric, I., Basova, Y., Dobrotvorskiy, S., Ivanov, V., & Pavlenko, I. (2022). The Effect of Blade Angle Deviation on Mixed Inflow Turbine Performances. Applied Sciences, 12(8), 3781. https://doi.org/10.3390/app12083781