An Overview of Terahertz Imaging with Resonant Tunneling Diodes
Abstract
:1. Introduction
2. THz Imaging
3. RTD THz Technology
3.1. RTD Device
3.2. RTD THz Source
3.3. RTD THz Detector
4. Compact RTD THz Imaging and Other NDT Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tabata, H. Application of Terahertz Wave Technology in the Biomedical Field. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 1146–1153. [Google Scholar]
- Fan, S.; He, Y.; Ung, B.S.; Pickwell-MacPherson, E. The growth of biomedical terahertz research. J. Phys. D Appl. Phys. 2014, 47, 374009. [Google Scholar] [CrossRef]
- Sheen, D.; Hall, T.; Severtsen, R.; McMakin, D.; Hatchell, B.; Valdez, P.L. Active Wideband 350 GHz Imaging System for Concealed-Weapon Detection (Spie Defense, Security, and Sensing); SPIE: Orlando, FL, USA, 2009; Volume 7309. [Google Scholar]
- Ahmed, S.S. Advanced fully-electronic personnel security screening technology. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–4. [Google Scholar]
- Wang, Z.; Chang, T.; Cui, H. Review of Active Millimeter Wave Imaging Techniques for Personnel Security Screening. IEEE Access 2019, 7, 148336–148350. [Google Scholar] [CrossRef]
- Karpowicz, N.; Zhong, H.; Zhang, C.; Lin, K.-I.; Hwang, J.-S.; Xu, J.; Zhang, X.-C. Compact continuous-wave subterahertz system for inspection applications. Appl. Phys. Lett. 2005, 86, 054105. [Google Scholar] [CrossRef] [Green Version]
- Anastasi, R.F.; Madaras, E.I. Terahertz NDE for Under Paint Corrosion Detection and Evaluation. AIP Conf. Proc. 2006, 820, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Krimi, S.; Klier, J.; Jonuscheit, J.; Freymann, G.v.; Urbansky, R.; Beigang, R. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology. Appl. Phys. Lett. 2016, 109, 021105. [Google Scholar] [CrossRef]
- Khalid, A.; Dunn, G.M.; Macpherson, R.F.; Thoms, S.; Macintyre, D.; Li, C.; Steer, M.J.; Papageorgiou, V.; Thayne, I.G.; Kuball, M.; et al. Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode. J. Appl. Phys. 2014, 115, 114502. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S. Chapter 1—THz Solid-State Source Based on IMPATT Devices. In Terahertz Biomedical and Healthcare Technologies; Banerjee, A., Chakraborty, B., Inokawa, H., Nath Roy, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–41. [Google Scholar] [CrossRef]
- Maestrini, A.; Thomas, B.; Wang, H.; Jung, C.; Treuttel, J.; Jin, Y.; Chattopadhyay, G.; Mehdi, I.; Beaudin, G. Schottky diode-based terahertz frequency multipliers and mixers. Comptes Rendus Phys. 2010, 11, 480–495. [Google Scholar] [CrossRef]
- Urteaga, M.; Griffith, Z.; Seo, M.; Hacker, J.; Rodwell, M.J.W. InP HBT Technologies for THz Integrated Circuits. Proc. IEEE 2017, 105, 1051–1067. [Google Scholar] [CrossRef]
- Maekawa, T.; Kanaya, H.; Suzuki, S.; Asada, M. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Express 2016, 9, 024101. [Google Scholar] [CrossRef]
- Sasaki, Y.; Yokoyama, H.; Ito, H. Dual-wavelength optical-pulse source based on diode lasers for high-repetition-rate, narrow-bandwidth terahertz-wave generation. Opt. Express 2004, 12, 3066–3071. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Hwang, S.; An, H.; Song, H.-J.; Song, J.-I. Continuous-wave THz vector imaging system utilizing two-tone signal generation and self-mixing detection. Opt. Express 2017, 25, 20718–20726. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.S. Terahertz quantum-cascade lasers. Nat. Photonics 2007, 1, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Cornescu, A.C.; Morariu, R.; Ofiare, A.; Al-Khalidi, A.; Wang, J.; Figueiredo, J.M.L.; Wasige, E. High-Efficiency Bias Stabilization for Resonant Tunneling Diode Oscillators. IEEE Trans. Microw. Theory Tech. 2019, 67, 3449–3454. [Google Scholar] [CrossRef] [Green Version]
- Petkie, D.T.; Casto, C.; De Lucia, F.C.; Murrill, S.R.; Redman, B.; Espinola, R.L.; Franck, C.C.; Jacobs, E.L.; Griffin, S.T.; Halford, C.E.; et al. Active and passive imaging in the THz spectral region: Phenomenology, dynamic range, modes, and illumination. J. Opt. Soc. Am. B 2008, 25, 1523–1531. [Google Scholar] [CrossRef] [Green Version]
- Krotkus, A. Semiconductors for terahertz photonics applications. J. Phys. D Appl. Phys. 2010, 43, 273001. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Banerjee, A.; Acharyya, A.; Inokawa, H.; Roy, J.N. Emerging Trends in Terahertz Solid-State Physics and Devices: Sources, Detectors, Advanced materials, and Light-Matter Interactions; Springer: Singapore, 2020. [Google Scholar]
- Lee, I.-M.; Kim, N.; Lee, E.S.; Han, S.-P.; Moon, K.; Park, K.H. Frequency modulation based continuous-wave terahertz homodyne system. Opt. Express 2015, 23, 846–858. [Google Scholar] [CrossRef]
- Karpowicz, N.; Zhong, H.; Xu, J.; Lin, K.-I.; Hwang, J.-S.; Zhang, X.C. Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging. Semicond. Sci. Technol. 2005, 20, S293–S299. [Google Scholar] [CrossRef]
- Wang, J.; Al-Khalidi, A.; Wang, L.; Morariu, R.; Ofiare, A.; Wasige, E. 15-Gb/s 50-cm Wireless Link Using a High-Power Compact III–V 84-GHz Transmitter. IEEE Trans. Microw. Theory Tech. 2018, 66, 4698–4705. [Google Scholar] [CrossRef] [Green Version]
- Oshima, N.; Hashimoto, K.; Suzuki, S.; Asada, M. Wireless data transmission of 34 Gbit/s at a 500-GHz range using resonant-tunnelling-diode terahertz oscillator. Electron. Lett. 2016, 52, 1897–1898. [Google Scholar] [CrossRef]
- Oshiro, A.; Nishigami, N.; Yamamoto, T.; Nishida, Y.; Webber, J.; Fujita, M.; Nagatsuma, T. PAM4 48-Gbit/s Wireless Communication Using a Resonant Tunneling Diode in the 300-GHz Band. IEICE Electron. Express 2021, 19, 20210494. [Google Scholar] [CrossRef]
- Dobroiu, A.; Suzuki, S.; Asada, M. Terahertz-Wave Radars Based on Resonant-Tunneling-Diode Oscillators (Spie Optical Engineering + Applications); SPIE: San Diego, CA, USA, 2019; Volume 11124. [Google Scholar]
- Cimbri, D.; Wang, J.; Al-Khalidi, A.; Wasige, E. Resonant Tunnelling Diodes High-Speed Terahertz Wireless Communications—A Review. IEEE Trans. Terahertz Sci. Technol. 2022, 1. [Google Scholar] [CrossRef]
- Davies, J.H. The Physics of Low-Dimensional Semiconductors: An Introduction; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- Kim, C.; Brandli, A. High-Frequency High-Power Operation of Tunnel Diodes. IRE Trans. Circuit Theory 1961, 8, 416–425. [Google Scholar] [CrossRef]
- Wang, L. Output Power Analysis and Simulations of Resonant Tunneling Diode Based Oscillators. In Proceedings of the System Simulation and Scientific Computing, Berlin/Heidelberg, Germany, 27–30 October 2012; pp. 47–55. [Google Scholar]
- Al-Khalidi, A.; Alharbi, K.H.; Wang, J.; Morariu, R.; Wang, L.; Khalid, A.; Figueiredo, J.M.L.; Wasige, E. Resonant Tunneling Diode Terahertz Sources With up to 1 mW Output Power in the J-Band. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Shiraishi, M.; Shibayama, H.; Asada, M. High-Power Operation of Terahertz Oscillators With Resonant Tunneling Diodes Using Impedance-Matched Antennas and Array Configuration. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 8500108. [Google Scholar] [CrossRef]
- Konishi, Y.; Allen, S.T.; Reddy, M.; Rodwell, M.J.W.; Smith, R.P.; Liu, J. AlAs/GaAs Schottky-collector resonant-tunnel-diodes. Solid-State Electron. 1993, 36, 1673–1676. [Google Scholar] [CrossRef]
- Sollner, T.C.L.G.; Goodhue, W.D.; Tannenwald, P.E.; Parker, C.D.; Peck, D.D. Resonant tunneling through quantum wells at frequencies up to 2.5 THz. Appl. Phys. Lett. 1983, 43, 588–590. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.S.; Kaminski, J.P.; Wanke, M.; Allen, S.J.; Chow, D.H.; Lui, M.; Liu, T.Y. Terahertz frequency response of an In0.53Ga0.47As/AlAs resonant-tunneling diode. Appl. Phys. Lett. 1994, 64, 1995–1997. [Google Scholar] [CrossRef]
- Asada, M.; Suzuki, S.; Kishimoto, N. Resonant Tunneling Diodes for Sub-Terahertz and Terahertz Oscillators. Jpn. J. Appl. Phys. 2008, 47, 4375–4384. [Google Scholar] [CrossRef]
- Brown, E.R.; Sollner, T.C.L.G.; Parker, C.D.; Goodhue, W.D.; Chen, C.L. Oscillations up to 420 GHz in GaAs/AlAs resonant tunneling diodes. Appl. Phys. Lett. 1989, 55, 1777–1779. [Google Scholar] [CrossRef]
- Brown, E.R.; Söderström, J.R.; Parker, C.D.; Mahoney, L.J.; Molvar, K.M.; McGill, T.C. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Lett. 1991, 58, 2291–2293. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Asada, M.; Teranishi, A.; Sugiyama, H.; Yokoyama, H. Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl. Phys. Lett. 2010, 97, 242102. [Google Scholar] [CrossRef]
- Asada, M.; Suzuki, S. Terahertz Emitter Using Resonant-Tunneling Diode and Applications. Sensors 2021, 21, 1384. [Google Scholar] [CrossRef] [PubMed]
- Izumi, R.; Suzuki, S.; Asada, M. 1.98 THz resonant-tunneling-diode oscillator with reduced conduction loss by thick antenna electrode. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; pp. 1–2. [Google Scholar]
- Kasagi, K.; Suzuki, S.; Asada, M. Large-scale array of resonant-tunneling-diode terahertz oscillators for high output power at 1 THz. J. Appl. Phys. 2019, 125, 151601. [Google Scholar] [CrossRef]
- Sizov, F. Terahertz radiation detectors: The state-of-the-art. Semicond. Sci. Technol. 2018, 33, 123001. [Google Scholar] [CrossRef]
- Schlecht, E.; Siles, J.V.; Lee, C.; Lin, R.; Thomas, B.; Chattopadhyay, G.; Mehdi, I. Schottky Diode Based 1.2 THz Receivers Operating at Room-Temperature and Below for Planetary Atmospheric Sounding. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 661–669. [Google Scholar] [CrossRef]
- Han, S.-P.; Ko, H.; Park, J.-W.; Kim, N.; Yoon, Y.-J.; Shin, J.-H.; Kim, D.Y.; Lee, D.H.; Park, K.H. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner. Opt. Express 2013, 21, 25874–25882. [Google Scholar] [CrossRef]
- Dyakonov, M.I.; Shur, M.S. Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron Devices 1996, 43, 1640–1645. [Google Scholar] [CrossRef]
- Warren, A.C.; Katzenellenbogen, N.; Grischkowsky, D.; Woodall, J.M.; Melloch, M.R.; Otsuka, N. Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers. Appl. Phys. Lett. 1991, 58, 1512–1514. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Kadlec, E.A.; Strikwerda, A.C.; Fan, K.; Padilla, W.J.; Averitt, R.D.; Shaner, E.A.; Zhang, X. Microwave and terahertz wave sensing with metamaterials. Opt. Express 2011, 19, 21620–21626. [Google Scholar] [CrossRef]
- Carranza, I.E.; Grant, J.P.; Gough, J.; Cumming, D. Terahertz Metamaterial Absorbers Implemented in CMOS Technology for Imaging Applications: Scaling to Large Format Focal Plane Arrays. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kurita, Y.; Ducournau, G.; Coquillat, D.; Satou, A.; Kobayashi, K.; Tombet, S.B.; Meziani, Y.M.; Popov, V.V.; Knap, W.; Suemitsu, T.; et al. Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics. Appl. Phys. Lett. 2014, 104, 251114. [Google Scholar] [CrossRef] [Green Version]
- Otsuji, T. Trends in the Research of Modern Terahertz Detectors: Plasmon Detectors. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 1110–1120. [Google Scholar]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yu, X.; Kim, J.-Y.; Fujita, M.; Nagatsuma, T. Efficient mode converter to deep-subwavelength region with photonic-crystal waveguide platform for terahertz applications. Opt. Express 2019, 27, 28707–28721. [Google Scholar] [CrossRef] [PubMed]
- Takida, Y.; Suzuki, S.; Asada, M.; Minamide, H. Sensitivity Measurement of Resonant-Tunneling-Diode Terahertz Detectors. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar]
- Shiode, T.; Mukai, T.; Kawamura, M.; Nagatsuma, T. Giga-bit wireless communication at 300 GHz using resonant tunneling diode detector. In Proceedings of the Asia-Pacific Microwave Conference 2011, Melbourne, VIC, Australia, 5–8 December 2011; pp. 1122–1125. [Google Scholar]
- Arzi, K.; Clochiatti, S.; Suzuki, S.; Rennings, A.; Erni, D.; Weimann, N.; Asada, M.; Prost, W. Triple-Barrier Resonant-Tunnelling Diode THz Detectors with on-chip antenna. In Proceedings of the 2019 12th German Microwave Conference (GeMiC), Stuttgart, Germany, 25–27 March 2019; pp. 17–19. [Google Scholar]
- Nishigami, N.; Nishida, Y.; Diebold, S.; Kim, J.; Fujita, M.; Nagatsuma, T. Resonant Tunneling Diode Receiver for Coherent Terahertz Wireless Communication. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 726–728. [Google Scholar]
- Nishida, Y.; Nishigami, N.; Diebold, S.; Kim, J.; Fujita, M.; Nagatsuma, T. Terahertz coherent receiver using a single resonant tunnelling diode. Sci. Rep. 2019, 9, 18125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshima, N.; Hashimoto, K.; Suzuki, S.; Asada, M. Terahertz Wireless Data Transmission With Frequency and Polarization Division Multiplexing Using Resonant-Tunneling-Diode Oscillators. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 593–598. [Google Scholar] [CrossRef]
- Miyamoto, T.; Yamaguchi, A.; Mukai, T. Terahertz imaging system with resonant tunneling diodes. Jpn. J. Appl. Phys. 2016, 55, 032201. [Google Scholar] [CrossRef]
- Yi, L.; Kaname, R.; Nishida, Y.; Yu, X.; Fujita, M.; Nagatsuma, T. Imaging Applications with a Single Resonant Tunneling Diode Transceiver in 300-GHz Band. In Proceedings of the 2020 International Topical Meeting on Microwave Photonics (MWP), Matsue, Japan, 24–26 November 2020; pp. 120–123. [Google Scholar]
- Fujimoto, J.G.; Pitris, C.; Boppart, S.A.; Brezinski, M.E. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000, 2, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Dobroiu, A.; Wakasugi, R.; Suzuki, S.; Asada, M. Toward a solid-state, compact, terahertz-wave radar. AIP Conf. Proc. 2019, 2067, 020004. [Google Scholar] [CrossRef]
- Dobroiu, A.; Wakasugi, R.; Shirakawa, Y.; Suzuki, S.; Asada, M. Amplitude-modulated continuous-wave radar in the terahertz band using a resonant-tunneling-diode oscillator. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar]
- Dobroiu, A.; Wakasugi, R.; Shirakawa, Y.; Suzuki, S.; Asada, M. Absolute and Precise Terahertz-Wave Radar Based on an Amplitude-Modulated Resonant-Tunneling-Diode Oscillator. Photonics 2018, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Dobroiu, A.; Wakasugi, R.; Shirakawa, Y.; Suzuki, S.; Asada, M. Amplitude-modulated continuous-wave radar in the terahertz range using lock-in phase measurement. Meas. Sci. Technol. 2020, 31, 105001. [Google Scholar] [CrossRef]
- Shirakawa, Y.; Dobroiu, A.; Suzuki, S.; Asada, M.; Ito, H. Principle of a Subcarrier Frequency-modulated Continuous-wave Radar in the Terahertz Band Using a Resonant-tunneling-diode Oscillator. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar]
- Jaeschke, T.; Bredendiek, C.; Pohl, N. A 240 GHz ultra-wideband FMCW radar system with on-chip antennas for high resolution radar imaging. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–4. [Google Scholar]
- Kitagawa, S.; Mizuno, M.; Saito, S.; Ogino, K.; Suzuki, S.; Asada, M. Frequency-tunable resonant-tunneling-diode terahertz oscillators applied to absorbance measurement. Jpn. J. Appl. Phys. 2017, 56, 058002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Naftaly, M.; Wasige, E. An Overview of Terahertz Imaging with Resonant Tunneling Diodes. Appl. Sci. 2022, 12, 3822. https://doi.org/10.3390/app12083822
Wang J, Naftaly M, Wasige E. An Overview of Terahertz Imaging with Resonant Tunneling Diodes. Applied Sciences. 2022; 12(8):3822. https://doi.org/10.3390/app12083822
Chicago/Turabian StyleWang, Jue, Mira Naftaly, and Edward Wasige. 2022. "An Overview of Terahertz Imaging with Resonant Tunneling Diodes" Applied Sciences 12, no. 8: 3822. https://doi.org/10.3390/app12083822
APA StyleWang, J., Naftaly, M., & Wasige, E. (2022). An Overview of Terahertz Imaging with Resonant Tunneling Diodes. Applied Sciences, 12(8), 3822. https://doi.org/10.3390/app12083822