Image Watermarking Scheme Using LSB and Image Gradient
Abstract
:1. Introduction
Our Contribution
2. Preliminaries
2.1. Image Gradient
2.2. Least Significant Bit (LSB) Embedding
2.3. Piecewise Linear Chaotic Map
2.4. Chaotic Substitution Box
Algorithm 1: S-Box Generation |
1: Input xn, p, I 2: Output S-BOX 3: While (i < 300) Do: 4: iterate PWLCM with xn 5: set xn + 1 = xn |
6: X ← Floor (x × 256) 7: If X ɇ S-Box then 8: Sub-Box ← X 9: i = i + 1; |
10: Else 11: iterate PWLCM with xn 12: End If 13: Optimization 14:End-While 15:Show Sub-Box |
3. Methodology
3.1. Watermarking Scheme
3.2. Watermarking Embedding
4. Experimental Results
4.1. Perceptual Quality Measures
4.2. Robustness of Watermarking Algorithm
4.3. Comparison with Other Paper
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalivaraprasad, B.; Prasad, M.; Babu, K.R.; Shameem, S.; Mohan, S.; Vani, V. Comparative Analysis of Watermarking Methods on CFRP Sample Thermal Images. In Computer Communication, Networking and IoT; Springer: Berlin/Heidelberg, Germany, 2021; pp. 455–462. [Google Scholar]
- Matheswaran, P.; Navaneethan, C.; Meenatchi, S.; Ananthi, S.; Janaki, K.; Manjunathan, A. Image Privacy in Social Network Using Invisible Watermarking Techniques. Ann. Rom. Soc. Cell Biol. 2021, 25, 319–327. [Google Scholar]
- Wang, X.-Y.; Liu, Y.-N.; Xu, H.; Wang, A.-L.; Yang, H.-Y. Blind optimum detector for robust image watermarking in nonsubsampled shearlet Domain. Inf. Sci. 2016, 372, 634–654. [Google Scholar] [CrossRef]
- Rahmani, H.; Mortezaei, R.; Moghaddam, M.E. A new robust watermarking scheme to increase image security. EURASIP J. Adv. Signal Process. 2010, 2010, 105. [Google Scholar] [CrossRef] [Green Version]
- Benoraira, A.; Benmahammed, K.; Boucenna, N. Blind image watermarking technique based on differential embedding in DWT and DCT domains. EURASIP J. Adv. Signal Process. 2015, 2015, 55. [Google Scholar] [CrossRef] [Green Version]
- Lam, P.; Winkelmeyer, O.; Mehdi, S.A.; Kamoosi, N. Watermarking Technologies-Analysis and Design Report. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.630.6293&rep=rep1&type=pdf (accessed on 18 April 2022).
- Hovančák, R.; Levický, D. Comparison of watermarking methods using DCT transformation. Watermark 2003, 1, C3. [Google Scholar]
- Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Kocarev, L. Chaos-based cryptography: A brief overview. IEEE Circuits Syst. Mag. 2001, 1, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Shah, T.; Mahmood, H.; Gondal, M.A.; Hussain, I. A novel technique for the construction of strong S-boxes based on chaotic Lorenz systems. Nonlinear Dyn. 2012, 70, 2303–2311. [Google Scholar] [CrossRef]
- Lang, J.; Zhang, Z.-G. Blind digital watermarking method in the fractional Fourier transform domain. Opt. Lasers Eng. 2014, 53, 112–121. [Google Scholar] [CrossRef]
- Tun, A.; Thein, Y. Digital image watermarking scheme based on LWT and DCT. Int. J. Eng. Technol. 2013, 5, 272. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Chen, B. Robust color image watermarking technique in the spatial domain. Soft Comput. 2018, 22, 91–106. [Google Scholar] [CrossRef]
- Parab, A.V. Improving Confidentiality of Watermark Image through Image Filtering Techniques; National College of Ireland: Dublin, Ireland, 2019. [Google Scholar]
- Soualmi, A.; Alti, A.; Laouamer, L. A New Blind Medical Image Watermarking Based on Weber Descriptors and Arnold Chaotic Map. Arab. J. Sci. Eng. 2018, 43, 7893–7905. [Google Scholar] [CrossRef]
- Mittal, M.; Kaushik, R.; Verma, A.; Kaur, I.; Goyal, L.M.; Roy, S.; Kim, T.-H. Image Watermarking in Curvelet Domain Using Edge Surface Blocks. Symmetry 2020, 12, 822. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, H.; Wang, C. A Robust Image Watermarking Technique Based on DWT, APDCBT, and SVD. Symmetry 2018, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Zhang, Y. A robust image watermarking scheme in hybrid transform domains resisting to rotation attacks. Multimed. Tools Appl. 2020, 79, 18343–18365. [Google Scholar] [CrossRef]
- Das, A.; Zhong, X. A Deep Learning-based Audio-in-Image Watermarking Scheme. In Proceedings of the 2021 International Conference on Visual Communications and Image Processing (VCIP), Munich, Germany, 5–8 December 2021; pp. 1–5. [Google Scholar]
- Furon, T. Are Classification Deep Neural Networks Good for Blind Image Watermarking? Entropy 2020, 22, 198. [Google Scholar]
- Sedik, A.; Hammad, M.; El-Samie, F.E.A.; Gupta, B.B.; El-Latif, A.A.A. Efficient deep learning approach for augmented detection of Coronavirus disease. Neural Comput. Appl. 2021, 1–18. [Google Scholar] [CrossRef]
- Ge, S.; Xia, Z.; Fei, J.; Sun, X.; Weng, J. A Robust Document Image Watermarking Scheme using Deep Neural Network. arXiv 2022, arXiv:2202.13067. [Google Scholar]
- Ali, M.; Ahn, C.W.; Pant, M.; Kumar, S.; Singh, M.K.; Saini, D. An optimized digital watermarking scheme based on invariant DC coefficients in spatial domain. Electronics 2020, 9, 1428. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, F.; Nasim, Z.; Bano, Z.; Zafar, S. Designing chaos based strong substitution box. In Proceedings of the 2015 Eighth International Conference on Contemporary Computing (IC3), Washington, DC, USA, 20–22 August 2015; pp. 97–100. [Google Scholar]
- Meier, W.; Staffelbach, O. Nonlinearity criteria for cryptographic functions. In Workshop on the Theory and Application of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1989; pp. 549–562. [Google Scholar]
- Webster, A.; Tavares, S.E. On the design of S-boxes. In Conference on the Theory and Application of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1985; pp. 523–534. [Google Scholar]
- Faheem, Z.B.; Ali, A.; Khan, M.A.; Ul-Haq, M.E.; Ahmad, W. Highly dispersive substitution box (S-box) design using chaos. ETRI J. 2020, 42, 619–632. [Google Scholar] [CrossRef] [Green Version]
- Mokhnache, S.; Bekkouche, T.; Chikouche, D. A Robust Watermarking Scheme Based on DWT and DCT Using Image Gradient. Int. J. Appl. Eng. Res. 2018, 13, 1900–1907. [Google Scholar]
- Bhalerao, S.; Ansari, I.A.; Kumar, A. Security Analysis of SVD-Based Watermarking Schemes and Possible Solutions. In Soft Computing: Theories and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 529–537. [Google Scholar]
Method | Blind | Robustness | Extraction Type |
---|---|---|---|
[19] | Yes | Robust to common (R2C) image processing attacks | Multi-bit |
[20] | Yes | R2C, JPEG, and cropping | Single-bit |
[21] | No | R2C attacks | Multi-bit |
[22] | Yes | R2C attacks | Multi-bit |
[23] | Yes | Robust to Rotation and Flipping attacks | Multi-bit |
- | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 179 | 182 | 224 | 91 | 159 | 102 | 75 | 150 | 151 | 215 | 234 | 211 | 145 | 212 | 85 | 17 |
2 | 105 | 95 | 197 | 147 | 183 | 181 | 117 | 188 | 187 | 255 | 137 | 9 | 26 | 41 | 32 | 83 |
3 | 189 | 161 | 52 | 171 | 93 | 22 | 223 | 193 | 236 | 2 | 228 | 62 | 227 | 1 | 172 | 162 |
4 | 74 | 166 | 33 | 126 | 155 | 140 | 201 | 63 | 119 | 149 | 133 | 191 | 10 | 25 | 254 | 167 |
5 | 99 | 142 | 207 | 252 | 176 | 218 | 40 | 97 | 232 | 64 | 199 | 86 | 131 | 160 | 190 | 158 |
6 | 173 | 23 | 20 | 19 | 113 | 129 | 251 | 165 | 198 | 70 | 15 | 237 | 244 | 128 | 139 | 61 |
7 | 122 | 5 | 130 | 121 | 214 | 21 | 30 | 144 | 48 | 87 | 170 | 60 | 68 | 36 | 163 | 123 |
8 | 239 | 37 | 247 | 235 | 3 | 110 | 73 | 206 | 136 | 81 | 65 | 107 | 80 | 219 | 92 | 229 |
9 | 100 | 231 | 50 | 125 | 24 | 205 | 96 | 23 | 230 | 154 | 72 | 4 | 57 | 98 | 146 | 8 |
10 | 175 | 152 | 27 | 249 | 156 | 28 | 164 | 55 | 127 | 177 | 196 | 116 | 47 | 216 | 58 | 124 |
11 | 115 | 94 | 169 | 38 | 108 | 178 | 148 | 7 | 253 | 204 | 54 | 222 | 203 | 246 | 217 | 245 |
12 | 220 | 157 | 134 | 242 | 51 | 106 | 194 | 45 | 153 | 78 | 111 | 18 | 35 | 118 | 202 | 114 |
13 | 0 | 168 | 238 | 82 | 31 | 192 | 59 | 12 | 180 | 109 | 208 | 44 | 221 | 34 | 49 | 241 |
14 | 209 | 135 | 112 | 104 | 195 | 67 | 43 | 76 | 174 | 225 | 250 | 11 | 243 | 69 | 185 | 29 |
15 | 16 | 233 | 210 | 186 | 56 | 77 | 6 | 184 | 120 | 101 | 84 | 71 | 79 | 39 | 248 | 226 |
16 | 103 | 138 | 14 | 240 | 46 | 66 | 42 | 88 | 141 | 200 | 143 | 90 | 89 | 13 | 53 | 132 |
Image Quality Assessment (IQA) | Suggested Method (Lena-Image) | Suggested Method (Baboon-Image) |
---|---|---|
PSNR | 57.58 | 53.19 |
SSIM | 1 | 1 |
Attacks | Strengths | NC |
---|---|---|
Salt and Pepper (S&P) | 0.1 | 0.9918 |
S&P | 0.2 | 0.9850 |
S&P | 0.5 | 0.9853 |
S&P | 1.0 | 0.9918 |
Speckle | 0.04 | 0.9937 |
Gaussian | 0.05 | 0.9918 |
JPEG | 75% | 0.9976 |
JPEG | 20% | 0.9966 |
JPEG | 10% | 0.9937 |
Median Filter | [3 3] | 0.9962 |
Median Filter | [5 5] | 0.9966 |
Rotation | −50 | 0.9966 |
Translation | [50 50] | 0.9955 |
Cropping | 25% | 0.9993 |
Cropping | 50% | 0.9988 |
Attacks | Strengths | Normalized | Correlation |
---|---|---|---|
Suggested Technique | [28] | ||
S&P | 0.01 | 0.9970 | 0.6833 |
S&P | 0.03 | 0.9948 | 0.4013 |
Gaussian Noise | 0.001 | 0.9910 | 0.9036 |
Gaussian Noise | 0.003 | 0.9904 | 0.6974 |
JPEG | 60% | 0.9916 | 0.9713 |
Attacks | Strengths | Normalized | Correlation |
---|---|---|---|
Suggested Technique | [13] | ||
S&P | 0.01 | 0.9970 | 0.9032 |
S&P | 0.02 | 0.9957 | 0.9055 |
Gaussian Noise | 0.05 | 0.9875 | 0.9977 |
Gaussian Noise | 0.10 | 0.9872 | 0.9816 |
JPEG | 60% | 0.9916 | 0.7512 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faheem, Z.B.; Ali, M.; Raza, M.A.; Arslan, F.; Ali, J.; Masud, M.; Shorfuzzaman, M. Image Watermarking Scheme Using LSB and Image Gradient. Appl. Sci. 2022, 12, 4202. https://doi.org/10.3390/app12094202
Faheem ZB, Ali M, Raza MA, Arslan F, Ali J, Masud M, Shorfuzzaman M. Image Watermarking Scheme Using LSB and Image Gradient. Applied Sciences. 2022; 12(9):4202. https://doi.org/10.3390/app12094202
Chicago/Turabian StyleFaheem, Zaid Bin, Mubashir Ali, Muhammad Ahsan Raza, Farrukh Arslan, Jehad Ali, Mehedi Masud, and Mohammad Shorfuzzaman. 2022. "Image Watermarking Scheme Using LSB and Image Gradient" Applied Sciences 12, no. 9: 4202. https://doi.org/10.3390/app12094202
APA StyleFaheem, Z. B., Ali, M., Raza, M. A., Arslan, F., Ali, J., Masud, M., & Shorfuzzaman, M. (2022). Image Watermarking Scheme Using LSB and Image Gradient. Applied Sciences, 12(9), 4202. https://doi.org/10.3390/app12094202