Influence of Maturity Status on Kinanthropometric and Physical Fitness Variables in Adolescent Female Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Socio-Demographic and Sports Information Questionnaire
2.4. Biological Maturation Assessment
2.5. Kinanthropometric Assessment
2.6. Physical Fitness Assessment
2.7. Statistical Analysis
3. Results
3.1. Physical Fitness Test Differences between Groups
3.2. Correlations and Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peña-González, I.; Fernández-Fernández, J.; Moya-Ramón, M.; Cervelló, E. Relative Age Effect, Biological Maturation, and Coaches’ Efficacy Expectations in Young Male Soccer Players. Res. Q. Exerc. Sport 2018, 89, 373–379. [Google Scholar] [CrossRef]
- Johnston, K.; Wattie, N.; Schorer, J.; Baker, J. Talent Identification in Sport: A Systematic Review. Sports Med. 2018, 48, 97–109. [Google Scholar] [CrossRef]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; González-Gálvez, N.; Esparza-Ros, F. Relationship between Biological Maturation, Physical Fitness, and Kinanthropometric Variables of Young Athletes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 328. [Google Scholar] [CrossRef]
- Sánchez Muñoz, C.; Muros, J.J.; Belmonte, Ó.L.; Zabala, M. Anthropometric Characteristics, Body Composition and Somatotype of Elite Male Young Runners. Int. J. Environ. Res. Public Health 2020, 17, 674. [Google Scholar] [CrossRef] [Green Version]
- Carter, J. Body composition of Montreal Olympic athletes. In Physical Structure of Olympic Athletes Part I: The Montreal Olympic Games Anthropological Project; Carter, J., Ed.; Karger: Basel, Switzerland, 1982. [Google Scholar]
- Booysen, M.J.; Gradidge, P.J.; Constantinou, D. Anthropometric and Motor Characteristics of South African National Level Female Soccer Players. J. Hum. Kinet. 2019, 66, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-Y.; Teng, T.-L.; Liang, C.-C. Lower Extremity Injuries of Volleyball Players during Moving Spike Landing. Am. J. Sport Sci. 2016, 4, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Sarro, K.J.; Brioschi, F.R.; Andre Barbosa de Lira, C.; Andrade, M.D.S.; Vancini, R.L. Frequency and associated factors of poor knee alignment in young Brazilian volleyball players. Physician Sportsmed. 2019, 47, 353–356. [Google Scholar] [CrossRef]
- Zhao, K.; Hohmann, A.; Chang, Y.; Zhang, B.; Pion, J.; Gao, B. Physiological, Anthropometric, and Motor Characteristics of Elite Chinese Youth Athletes from Six Different Sports. Front. Physiol. 2019, 10, 405. [Google Scholar] [CrossRef]
- Rubajczyk, K.; Rokita, A. The Relative Age Effect and Talent Identification Factors in Youth Volleyball in Poland. Front. Psychol. 2020, 11, 1445. [Google Scholar] [CrossRef]
- López-Plaza, D.; Alacid, F.; Muyor, J.M.; López-Miñarro, P. Differences in Anthropometry, Biological Age and Physical Fitness between Young Elite Kayakers and Canoeists. J. Hum. Kinet. 2017, 57, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Malina, R.M.; Bouchard, C. Growth, Maturation, and Physical Activity; Human Kinetics Books: Champaign, IL, USA, 1991. [Google Scholar]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar]
- Castanier, C.; Bougault, V.; Teulier, C.; Jaffré, C.; Schiano-Lomoriello, S.; Vibarel-Rebot, N.; Villemain, A.; Rieth, N.; Le-Scanff, C.; Buisson, C.; et al. The Specificities of Elite Female Athletes: A Multidisciplinary Approach. Life 2021, 11, 622. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Hirschberg, A.L.; Bermon, S. Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocr. Rev. 2018, 39, 803–829. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, T.J.; Paes, R.P.; Breder, L.; Foster, C.; Goncalves, C.E.; Carvalho, H.M. Biological maturation, training experience, body size and functional capacity of adolescent female basketball players: A Bayesian analysis. Int. J. Sports Sci. Coach. 2018, 13, 713–722. [Google Scholar] [CrossRef]
- Söğüt, M.; Luz, L.G.O.; Kaya, Ö.B.; Altunsoy, K.; Doğan, A.A.; Kirazci, S.; Clemente, F.M.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Age- and Maturity-Related Variations in Morphology, Body Composition, and Motor Fitness among Young Female Tennis Players. Int. J. Environ. Res. Public Health 2019, 16, 2412. [Google Scholar] [CrossRef] [Green Version]
- Arede, J.; Paulo Ferreira, A.; Gonzalo-Skok, O.; Leite, N. Maturational Development as a Key Aspect in Physiological Performance and National-Team Selection in Elite Male Basketball Players. Int. J. Sports Physiol. Perform. 2019, 14, 902–910. [Google Scholar] [CrossRef]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; Marcos-Pardo, P.J.; Esparza-Ros, F. Effect of an injury prevention program on the lower limb stability in young volleyball players. J. Sports Med. Phys. Fit. 2021, 61, 943–952. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; Initiative, S. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef] [Green Version]
- Towlson, C.; Cobley, S.; Midgley, A.W.; Garrett, A.; Parkin, G.; Lovell, R. Relative Age, Maturation and Physical Biases on Position Allocation in Elite-Youth Soccer. Int. J. Sports Med. 2017, 38, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Wickel, E.E.; Eisenmann, J.C. Maturity-related differences in physical activity among 13- to 14-year-old adolescents. Pediatr. Exerc. Sci. 2007, 19, 384–392. [Google Scholar] [CrossRef]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for Advancement in Kinanthropometry: Murcia, Spain, 2019. [Google Scholar]
- Gallagher, R.; Marquez, J.; Osmotherly, P. Clinimetric Properties and Minimal Clinically Important Differences for a Battery of Gait, Balance, and Cognitive Examinations for the Tap Test in Idiopathic Normal Pressure Hydrocephalus. Neurosurgery 2019, 84, E378–E384. [Google Scholar] [CrossRef]
- Sánchez-Zuriaga, D. Estadística Aplicada a la Fisioterapia, las Ciencias del Deporte Y la Biomecánica, 8th ed.; CEU Ediciones, Ed.; Fundación Universitaria San Pablo CEU: Madrid, Spain, 2010. [Google Scholar]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bembem, D.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar]
- Poortmans, J.R.; Boisseau, N.; Moraine, J.J.; Moreno-Reyes, R.; Goldman, S. Estimation of total-body skeletal muscle mass in children and adolescents. Med. Sci. Sports Exerc. 2005, 37, 316–322. [Google Scholar] [CrossRef]
- Matiegka, J. The testing of physical efficiency. Am. J. Phys. Anthr. 1921, 4, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.E.L.; Heath, B.H. Somatotyping: Developement and Aplication; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Vaquero-Cristóbal, R.; Albaladejo-Saura, M.; Luna-Badachi, A.E.; Esparza-Ros, F. Differences in fat mass estimation formulas in physically active adult population and relationship with sums of skinfolds. Int. J. Environ. Res. Public Health 2020, 17, 7777. [Google Scholar] [CrossRef]
- Kasper, A.M.; Langan-Evans, C.; Hudson, J.F.; Brownlee, T.E.; Harper, L.D.; Naughton, R.J.; Morton, J.P.; Close, G.L. Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients 2021, 13, 1075. [Google Scholar] [CrossRef]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; García-Roca, J.A.; Esparza-Ros, F. The Effect of Age, Biological Maturation and Birth Quartile in the Kinanthropometric and Physical Fitness Differences between Male and Female Adolescent Volleyball Players. Children 2022, 9, 58. [Google Scholar] [CrossRef]
- Coburn, J.W.; Malek, M.H. Manual NSCA: Fundamentos del Entrenamiento Personal, 2nd ed.; Paidotribo: Barcelona, Spain, 2014. [Google Scholar]
- López-Plaza, D.; Alacid, F.; Muyor, J.M.; López-Miñarro, P. Sprint kayaking and canoeing performance prediction based on the relationship between maturity status, anthropometry and physical fitness in young elite paddlers. J. Sports Sci. 2017, 35, 1083–1090. [Google Scholar] [CrossRef]
- Katić, R.; Grgantov, Z.; Jurko, D. Motor structures in female volleyball players aged 14–17 according to technique quality and performance. Coll. Antropol. 2006, 30, 103–112. [Google Scholar]
- Díaz-Soler, M.Á.; Vaquero-Cristóbal, R.; Espejo-Antúnez, L.; López-Miñarro, P.A. The effect of a warm-up protocol on the sit-and-reach test score in adolescent students. Nutr. Hosp. 2015, 31, 2618–2623. [Google Scholar]
- Romero-Franco, N.; Jiménez-Reyes, P.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; Rodríguez-Juan, J.J.; González-Hernández, J.; Toscano-Bendala, F.J.; Cuadrado-Peñafiel, V.; Balsalobre-Fernández, C. Sprint performance and mechanical outputs computed with an iPhone app: Comparison with existing reference methods. Eur. J. Sport Sci. 2017, 17, 386–392. [Google Scholar] [CrossRef]
- Castro-Piñeiro, J.; Girela-Rejón, M.J.; González-Montesinos, J.L.; Mora, J.; Conde-Caveda, J.; Sjörström, M.; Ruiz, J.R. Percentile values for flexibility tests in youths aged 6 to 17 years: Influence of weight status. Eur. J. Sport Sci. 2013, 13, 139–148. [Google Scholar] [CrossRef]
- Milic, M.; Grgantov, Z.; Chamari, K.; Ardigò, L.P.; Bianco, A.; Padulo, J. Anthropometric and physical characteristics allow differentiation of young female volleyball players according to playing position and level of expertise. Biol. Sport 2017, 34, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Klaver, M.; de Blok, C.J.M.; Wiepjes, C.M.; Nota, N.M.; Dekker, M.J.H.J.; de Mutsert, R.; Schreiner, T.; Fisher, A.D.; T’Sjoen, G.; den Heijer, M. Changes in regional body fat, lean body mass and body shape in trans persons using cross-sex hormonal therapy: Results from a multicenter prospective study. Eur. J. Endocrinol. 2018, 178, 163–171. [Google Scholar] [CrossRef]
- Saenger, P. Dose effects of growth hormone during puberty. Horm. Res. 2003, 60, 52–57. [Google Scholar] [CrossRef]
- Richmond, E.; Rogol, A.D. Treatment of growth hormone deficiency in children, adolescents and at the transitional age. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 749–755. [Google Scholar] [CrossRef]
- Sandhu, J.; Ben-Shlomo, Y.; Cole, T.J.; Holly, J.; Davey Smith, G. The impact of childhood body mass index on timing of puberty, adult stature and obesity: A follow-up study based on adolescent anthropometry recorded at Christ’s Hospital (1936–1964). Int. J. Obes. 2005, 30, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Biro, F.M.; Pinney, S.M.; Huang, B.; Baker, E.R.; Walt Chandler, D.; Dorn, L.D. Hormone changes in peripubertal girls. J. Clin. Endocrinol. Metab. 2014, 99, 3829–3835. [Google Scholar] [CrossRef] [Green Version]
- Garnett, S.P.; Högler, W.; Blades, B.; Baur, L.A.; Peat, J.; Lee, J.; Cowell, C.T. Relation between hormones and body composition, including bone, in prepubertal children. Am. J. Clin. Nutr. 2004, 80, 966–972. [Google Scholar] [CrossRef] [Green Version]
- Farr, J.N.; Laddu, D.R.; Going, S.B. Exercise, hormones and skeletal adaptations during childhood and adolescence. Pediatr. Exerc. Sci. 2014, 26, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Veldhuis, J.D.; Roemmich, J.N.; Richmond, E.J.; Rogol, A.D.; Lovejoy, J.C.; Sheffield-Moore, M.; Mauras, N.; Bowers, C.Y. Endocrine control of body composition in infancy, childhood, and puberty. Endocr. Rev. 2005, 26, 114–146. [Google Scholar] [CrossRef]
- Fitts, R.H.; McDonald, K.S.; Schluter, J.M. The determinants of skeletal muscle force and power: Their adaptability with changes in activity pattern. J. Biomech. 1991, 24 (Suppl. 1), 111–122. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Newton, R.U. Training for muscular power. Phys. Med. Rehabil. Clin. N. Am. 2000, 11, 341–368. [Google Scholar] [CrossRef]
- Ferretti, G.; Narici, M.V.; Binzoni, T.; Gariod, L.; Le Bas, J.F.; Reutenauer, H.; Cerretelli, P. Determinants of peak muscle power: Effects of age and physical conditioning. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 68, 111–115. [Google Scholar] [CrossRef]
- Valente-Dos-Santos, J.; Coelho-E-Silva, M.J.; Vaz, V.; Figueiredo, A.J.; Capranica, L.; Sherar, L.B.; Elferink-Gemser, M.T.; Malina, R.M. Maturity-associated variation in change of direction and dribbling speed in early pubertal years and 5-year developmental changes in young soccer players. J. Sports Med. Phys. Fit. 2014, 54, 307–316. [Google Scholar]
- Gouvea, M.; Cyrino, E.S.; Ribeiro, A.S.; da Silva, D.R.P.; Ohara, D.; Valente-dos-Santos, J.; Coelho-e-Silva, M.J.; Ronque, E. Influence of Skeletal Maturity on Size, Function and Sport-specific Technical Skills in Youth Soccer Players. Int. J. Sports Med. 2016, 37, 464–469. [Google Scholar] [CrossRef]
- Vaquero-Cristóbal, R.; López-Miñarro, P.A.; Alacid, F.; Esparza-Ros, F. The effects of the pilates method on hamstring extensibility, pelvic tilt and trunk flexion. Nutr. Hosp. 2015, 32, 1967–1986. [Google Scholar]
- Avrillon, S.; Lacourpaille, L.; Hug, F.; Le Sant, G.; Frey, A.; Nordez, A.; Guilhem, G. Hamstring muscle elasticity differs in specialized high-performance athletes. Scand. J. Med. Sci. Sports 2020, 30, 83–91. [Google Scholar] [CrossRef]
- Saccol, M.F.; Almeida, G.P.; de Souza, V.L. Anatomical glenohumeral internal rotation deficit and symmetric rotational strength in male and female young beach volleyball players. J. Electromyogr. Kinesiol. 2016, 29, 121–125. [Google Scholar] [CrossRef]
- Matton, L.; Duvigneaud, N.; Wijndaele, K.; Philippaerts, R.; Duquet, W.; Beunen, G.; Claessens, A.L.; Thomis, M.; Lefevre, J. Secular trends in anthropometric characteristics, physical fitness, physical activity, and biological maturation in Flemish adolescents between 1969 and 2005. Am. J. Hum. Biol. 2007, 19, 345–357. [Google Scholar] [CrossRef]
- Beunen, G.P.; Malina, R.M.; Lefevre, J.; Claessens, A.L.; Renson, R.; Eynde, B.K.; Vanreusel, B.; Simons, J. Skeletal maturation, somatic growth and physical fitness in girls 6–16 years of age. Int. J. Sports Med. 1997, 18, 413–419. [Google Scholar] [CrossRef]
- Genton, L.; Mareschal, J.; Karsegard, V.L.; Achamrah, N.; Delsoglio, M.; Pichard, C.; Graf, C.; Herrmann, F.R. An Increase in Fat Mass Index Predicts a Deterioration of Running Speed. Nutrients 2019, 11, 701. [Google Scholar] [CrossRef] [Green Version]
- Cabañas, M.D.; Esparza, F. Compendio de Cineantropometría; CTO Editorial: Madrid, Spain, 2009. [Google Scholar]
- Folgado, H.; Bravo, J.; Quintas, A.; Raimundo, A.; Gonçalves, B. Relative Age Effect in Physical Fitness of South Portugal Students between 10 and 18 Years Old. Int. J. Environ. Res. Public Health 2021, 18, 6092. [Google Scholar] [CrossRef]
- Hulthén, L.; Bengtsson, B.A.; Sunnerhagen, K.S.; Hallberg, L.; Grimby, G.; Johannsson, G. GH is needed for the maturation of muscle mass and strength in adolescents. J. Clin. Endocrinol. Metab. 2001, 86, 4765–4770. [Google Scholar] [CrossRef] [Green Version]
- Keogh, J.W.; Hume, P.A.; Pearson, S.N.; Mellow, P.J. Can absolute and proportional anthropometric characteristics distinguish stronger and weaker powerlifters? J. Strength Cond. Res. 2009, 23, 2256–2265. [Google Scholar] [CrossRef]
- Sammoud, S.; Nevill, A.M.; Negra, Y.; Bouguezzi, R.; Chaabene, H.; Hachana, Y. 100-m Breaststroke Swimming Performance in Youth Swimmers: The Predictive Value of Anthropometrics. Pediatr. Exerc. Sci. 2018, 30, 393–401. [Google Scholar] [CrossRef]
- Holway, F.E.; Garavaglia, R. Kinanthropometry of Group I rugby players in Buenos Aires, Argentina. J. Sports Sci. 2009, 27, 1211–1220. [Google Scholar] [CrossRef]
- Toselli, S.; Campa, F. Anthropometry and Functional Movement Patterns in Elite Male Volleyball Players of Different Competitive Levels. J. Strength Cond. Res. 2018, 32, 2601–2611. [Google Scholar] [CrossRef]
- Moritani, T.; deVries, H.A. Neural factors versus hypertrophy in the time course of muscle strength gain. Am. J. Phys. Med. 1979, 58, 115–130. [Google Scholar]
- Petré, H.; Wernstål, F.; Mattsson, C.M. Effects of Flywheel Training on Strength-Related Variables: A Meta-analysis. Sports Med. Open 2018, 4, 55. [Google Scholar] [CrossRef]
- Towlson, C.; Salter, J.; Ade, J.D.; Enright, K.; Harper, L.D.; Page, R.M.; Malone, J.J. Maturity-associated considerations for training load, injury risk, and physical performance in youth soccer: One size does not fit all. J. Sport Health Sci. 2021, 10, 403–412. [Google Scholar] [CrossRef]
- Malina, R.M.; Coelho-E-Silva, M.J.; Martinho, D.V.; Sousa-E-Siva, P.; Figueiredo, A.J.; Cumming, S.P.; Králík, M.; Kozieł, S.M. Observed and predicted ages at peak height velocity in soccer players. PLoS ONE 2021, 16, e0254659. [Google Scholar] [CrossRef]
Variable | Group (Mean ± SD) | Individual Models | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Early (n = 29) | Average (n = 93) | Late (n = 30) | Maturity Status Group | Age | Maturity Status Group × Age | |||||||
F | p-Value | ŋ2p | F | p-Value | ŋ2p | F | p-Value | ŋ2p | ||||
Maturity offset (years) * | 2.28 ± 0.64 | 1.83 ± 0.93 | 1.30 ± 0.62 | 108.99 | <0.001 | 0.63 | 1444.24 | <0.001 | 0.92 | 648.84 | <0.001 | 0.93 |
APHV (years) * | 11.52 ± 0.24 | 12.34 ± 0.29 | 13.13 ± 0.27 | 108.99 | <0.001 | 0.63 | 44.07 | <0.001 | 0.25 | 234.25 | <0.001 | 0.83 |
Body mass (Kg) * | 61.73 ± 10.28 | 56.12 ± 9.70 | 53.30 ± 7.27 | 47.55 | <0.001 | 0.42 | 87.45 | <0.001 | 0.40 | 37.54 | <0.001 | 0.43 |
Height (cm) * | 163.90 ± 4.85 | 161.89 ± 6.34 | 159.42 ± 6.24 | 84.68 | <0.001 | 0.57 | 180.25 | <0.001 | 0.58 | 75.83 | <0.001 | 0.61 |
Arm span (cm) * | 164.16 ± 5.97 | 162.73 ± 7.69 | 160.47 ± 7.52 | 39.46 | <0.001 | 0.38 | 98.18 | <0.001 | 0.43 | 40.14 | <0.001 | 0.45 |
Sitting height (cm) * | 85.73 ± 2.99 | 84.82 ± 3.65 | 83.26 ± 3.68 | 55.52 | <0.001 | 0.46 | 122.22 | <0.001 | 0.49 | 57.31 | <0.001 | 0.54 |
Cormic index | 52.31 ± 1.12 | 52.40 ± 1.40 | 52.24 ± 1.84 | 0.23 | 0.799 | 0.00 | 0.30 | 0.586 | 0.00 | 0.24 | 0.867 | 0.00 |
Relative arm span (%) | 100.16 ± 2.27 | 100.51 ± 2.41 | 100.67 ± 3.16 | 0.21 | 0.813 | 0.00 | 0.18 | 0.673 | 0.00 | 0.37 | 0.777 | 0.01 |
Upper limb length (cm) * | 73.42 ± 2.63 | 72.62 ± 3.36 | 71.88 ± 3.60 | 39.30 | <0.001 | 0.38 | 89.18 | <0.001 | 0.41 | 33.72 | <0.001 | 0.41 |
Iliospinale height (cm) * | 92.98 ± 2.85 | 92.27 ± 4.57 | 90.63 ± 4.47 | 23.11 | <0.001 | 0.26 | 47.93 | <0.001 | 0.27 | 19.83 | <0.001 | 0.29 |
Biacromial breadth (cm) * | 35.81 ± 1.68 | 34.95 ± 1.87 | 34.86 ± 2.06 | 38.61 | <0.001 | 0.37 | 91.62 | <0.001 | 0.42 | 32.79 | <0.001 | 0.40 |
Biiliocristal breadth (cm) * | 26.94 ± 2.09 | 26.25 ± 1.88 | 25.93 ± 1.56 | 31.65 | <0.001 | 0.33 | 75.27 | <0.001 | 0.37 | 27.48 | <0.001 | 0.36 |
Femur breadth (cm) * | 9.35 ± 0.53 | 9.05 ± 0.49 | 8.83 ± 0.39 | 25.97 | <0.001 | 0.29 | 30.67 | <0.001 | 0.19 | 18.97 | <0.001 | 0.28 |
Humerus breadth (cm) * | 6.48 ± 0.38 | 6.25 ± 0.34 | 6.12 ± 0.33 | 17.44 | <0.001 | 0.21 | 17.23 | <0.001 | 0.12 | 14.75 | <0.001 | 0.23 |
Bi-styloid breadth (cm) * | 5.05 ± 0.23 | 4.91 ± 0.26 | 4.84 ± 0.27 | 10.26 | <0.001 | 0.14 | 7.00 | 0.009 | 0.05 | 7.73 | <0.001 | 0.14 |
Corrected arm girth (cm) * | 21.68 ± 2.12 | 20.43 ± 1.97 | 20.52 ± 1.80 | 20.76 | <0.001 | 0.24 | 37.60 | <0.001 | 0.23 | 19.80 | <0.001 | 0.29 |
Corrected thigh girth (cm) * | 43.21 ± 4.19 | 41.49 ± 4.23 | 40.17 ± 3.19 | 20.76 | <0.001 | 0.24 | 37.19 | <0.001 | 0.22 | 18.47 | <0.001 | 0.27 |
Corrected leg girth (cm) * | 29.51 ± 3.13 | 29.08 ± 2.67 | 29.24 ± 2.03 | 14.21 | <0.001 | 0.18 | 63.58 | <0.001 | 0.33 | 24.14 | <0.001 | 0.33 |
Endomorphy * | 4.42 ± 1.42 | 3.91 ± 1.30 | 3.51 ± 0.99 | 4.74 | 0.010 | 0.07 | 3.29 | 0.072 | 0.02 | 3.06 | 0.030 | 0.06 |
Mesomorphy | 4.33 ± 1.13 | 3.89 ± 1.19 | 3.89 ± 0.87 | 1.88 | 0.157 | 0.03 | 1.10 | 0.297 | 0.01 | 1.51 | 0.215 | 0.03 |
Ectomorphy* | 2.03 ± 1.23 | 2.59 ± 1.42 | 2.55 ± 1.05 | 3.16 | 0.046 | 0.05 | 3.31 | 0.071 | 0.03 | 2.34 | 0.076 | 0.05 |
∑6 Skinfolds (mm) * | 97.85 ± 25.86 | 86.59 ± 25.18 | 78.29 ± 18.48 | 7.92 | 0.001 | 0.11 | 5.47 | 0.021 | 0.04 | 4.41 | 0.005 | 0.08 |
∑8 Skinfolds (mm) * | 122.79 ± 33.57 | 108.27 ± 34.09 | 96.61 ± 23.80 | 7.31 | 0.001 | 0.10 | 4.63 | 0.033 | 0.03 | 3.82 | 0.011 | 0.07 |
Fat mass percentage (%) * | 26.40 ± 5.41 | 24.53 ± 5.75 | 22.46 ± 4.64 | 7.39 | 0.001 | 0.10 | 5.72 | 0.018 | 0.04 | 3.91 | 0.010 | 0.07 |
Muscle mass (%) | 30.46 ± 2.18 | 31.06 ± 2.48 | 31.54 ± 2.03 | 0.14 | 0.872 | 0.00 | 1.66 | 0.200 | 0.01 | 2.29 | 0.081 | 0.04 |
Bone mass percentage (%) * | 15.84 ± 1.97 | 16.40 ± 2.04 | 16.32 ± 1.74 | 6.33 | 0.002 | 0.09 | 17.79 | <0.001 | 0.12 | 6.36 | <0.001 | 0.11 |
Fat mass (Kg) * | 16.61 ± 5.50 | 14.11 ± 5.13 | 12.12 ± 3.70 | 21.88 | <0.001 | 0.25 | 28.87 | <0.001 | 0.18 | 13.19 | <0.001 | 0.21 |
Muscle mass (Kg) * | 18.80 ± 3.37 | 17.41 ± 3.24 | 16.80 ± 2.50 | 36.71 | <0.001 | 0.36 | 84.54 | <0.001 | 0.40 | 38.05 | <0.001 | 0.44 |
Bone mass (Kg) * | 9.61 ± 0.81 | 9.05 ± 0.94 | 8.61 ± 0.85 | 70.39 | <0.001 | 0.52 | 106.77 | <0.001 | 0.45 | 53.97 | <0.001 | 0.52 |
BMI (Kg/m2) * | 22.93 ± 3.27 | 21.34 ± 3.02 | 20.92 ± 2.23 | 13.27 | <0.001 | 0.17 | 20.91 | <0.001 | 0.14 | 9.65 | <0.001 | 0.16 |
Waist to hip ratio * | 0.75 ± 0.06 | 0.75 ± 0.06 | 0.72 ± 0.04 | 1.13 | 0.325 | 0.02 | 5.86 | 0.017 | 0.04 | 4.72 | 0.004 | 0.09 |
Muscle-bone index * | 1.95 ± 0.28 | 1.92 ± 0.25 | 1.95 ± 0.21 | 4.48 | 0.013 | 0.06 | 21.58 | <0.001 | 0.14 | 8.44 | <0.001 | 0.15 |
Sit-and-reach test (cm) | 5.50 ± 6.02 | 5.85 ± 8.60 | 4.81 ± 9.89 | 0.54 | 0.584 | 0.01 | 0.09 | 0.760 | 0.00 | 0.40 | 0.752 | 0.01 |
Back scratch test (cm) | 4.03 ± 4.56 | 4.44 ± 5.68 | 4.16 ± 5.36 | 0.25 | 0.778 | 0.00 | 0.27 | 0.605 | 0.00 | 0.17 | 0.915 | 0.00 |
Long jump (m) | 1.59 ± 0.19 | 1.63 ± 0.21 | 1.68 ± 0.20 | 0.06 | 0.939 | 0.00 | 2.51 | 0.115 | 0.02 | 2.65 | 0.051 | 0.05 |
Medicine ball throw (m) * | 4.87 ± 0.91 | 5.00 ± 1.08 | 5.17 ± 0.97 | 4.24 | 0.016 | 0.06 | 21.41 | <0.001 | 0.14 | 10.49 | <0.001 | 0.18 |
CMJ (cm) * | 22.87 ± 3.79 | 24.84 ± 4.46 | 25.43 ± 4.26 | 0.57 | 0.568 | 0.01 | 2.60 | 0.110 | 0.02 | 4.20 | 0.007 | 0.08 |
CMJ power (W) * | 635.00 ± 96.98 | 603.35 ± 111.99 | 580.89 ± 94.36 | 40.16 | <0.001 | 0.38 | 105.66 | <0.001 | 0.45 | 44.06 | <0.001 | 0.47 |
20 m sprint (s) | 4.24 ± 0.26 | 4.14 ± 0.31 | 4.16 ± 0.25 | 2.09 | 0.128 | 0.03 | 0.00 | 0.956 | 0.00 | 1.88 | 0.136 | 0.04 |
Agility test (s) | 9.65 ± 0.73 | 9.22 ± 1.05 | 9.23 ± 0.66 | 1.46 | 0.237 | 0.02 | 1.56 | 0.214 | 0.01 | 0.74 | 0.528 | 0.01 |
Test | Group | Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Maturity Status Group | Maturity Status Group × Age | |||||||||
Mean Difference ± SD | p-Value | 95% CI | ES | Mean Difference ± SD | p-Value | 95% CI | ES | |||
Maturity offset (years) | E | A * | −0.54 ± 0.18 | 0.011 | −0.97 to −0.10 | 0.53 | 00.64 ± 0.06 | <0.001 | 0.49 to 0.78 | 15.30 |
E | L * | −0.99 ± 0.22 | <0.001 | −1.52 to −0.45 | 0.58 | 1.25 ± 0.08 | <0.001 | 1.05 to 1.45 | 23.89 | |
A | L * | −0.45 ± 0.18 | 0.037 | −0.88 to −0.02 | 0.68 | 0.61 ± 0.06 | <0.001 | 0.47 to 0.75 | 15.18 | |
APHV (years) | E | A * | −0.82 ± 0.06 | <0.001 | −0.97 to −0.68 | 0.95 | −0.64 ± 0.06 | <0.001 | −0.78 to −0.49 | 15.32 |
E | L * | −1.61 ± 0.07 | <0.001 | −1.79 to −1.44 | 3.13 | −1.25 ± 0.08 | <0.001 | −1.45 to −1.05 | 23.91 | |
A | L * | −0.79 ± 0.06 | <0.001 | −0.93 to −0.64 | 2.81 | −0.61 ± 0.06 | <0.001 | −0.75 to −0.47 | 15.18 | |
Body mass (Kg) | E | A * | 5.61 ± 1.99 | 0.017 | 0.77 to 10.45 | 0.81 | 14.13 ± 1.81 | <0.001 | 9.73 to 18.52 | 11.01 |
E | L * | 8.42 ± 2.44 | 0.002 | 2.50 to 14.35 | 0.63 | 24.45 ± 2.55 | <0.001 | 18.27 to 30.64 | 15.22 | |
A | L * | 2.82 ± 1.973 | 0.467 | −1.96 to 7.59 | 0.33 | 10.32 ± 1.75 | <0.001 | 6.09 to 14.56 | 8.35 | |
Height (cm) | E | A * | 2.01 ± 1.29 | 0.363 | −1.11 to 5.14 | 0.36 | 8.82 ± 0.95 | <0.001 | 6.51 to 11.13 | 13.09 |
E | L * | 4.47 ± 1.58 | 0.016 | 0.64 to 8.303 | 0.37 | 17.33 ± 1.34 | <0.001 | 14.08 to 20.58 | 20.53 | |
A | L * | 2.45 ± 1.27 | 0.167 | −0.63 to 5.55 | 0.39 | 8.51 ± 0.92 | <0.001 | 6.28 to 10.73 | 13.10 | |
BMI (Kg/m2) | E | A * | 1.58 ± 0.62 | 0.037 | 0.07 to 3.09 | 0.50 | 3.05 ± 0.68 | <0.001 | 1.40 to 4.69 | 6.34 |
E | L * | 2.00 ± 0.76 | 0.029 | 0.15 to 3.86 | 0.34 | 4.76 ± 0.96 | <0.001 | 2.44 to 7.07 | 7.90 | |
A | L * | 0.42 ± 0.61 | 1.000 | −1.07 to 1.92 | 0.16 | 1.71 ± 0.65 | 0.030 | 0.12 to 3.29 | 3.69 | |
Arm span (cm) | E | A * | 1.421 ± 1.563 | 1.000 | −2.37 to 5.21 | 0.21 | 8.67 ± 1.34 | <0.001 | 5.42 to 11.93 | 9.13 |
E | L * | 3.68 ± 1.92 | 0.171 | −0.96 to 8.33 | 0.26 | 17.27 ± 1.89 | <0.001 | 12.69 to 21.85 | 14.51 | |
A | L * | 2.26 ± 1.55 | 0.438 | −1.48 to 6.00 | 0.30 | 8.60 ± 1.29 | <0.001 | 5.46 to 11.73 | 9.39 | |
Sitting height (cm) | E | A * | 0.91 ± 0.75 | 0.687 | −0.91 to 2.73 | 0.27 | 4.55 ± 0.61 | <0.001 | 3.08 to 6.02 | 10.59 |
E | L * | 2.47 ± 0.92 | 0.025 | 0.24 to 4.70 | 0.35 | 9.41 ± 0.86 | <0.001 | 7.34 to 11.49 | 17.49 | |
A | L * | 1.56 ± 0.74 | 0.113 | −0.24 to 3.36 | 0.43 | 4.86 ± 0.58 | <0.001 | 3.44 to 6.28 | 11.74 |
Test | Group | Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Maturity Status Group | Maturity Status Group × Age | |||||||||
Mean Difference ± SD | p-Value | 95% CI | ES | Mean Difference ± SD | p-Value | 95% CI | ES | |||
Upper limb length (cm) | E | A * | 0.81 ± 0.69 | 0.755 | −0.89 to 2.50 | 0.27 | 3.77 ± 0.62 | <0.001 | 2.27 to 5.27 | 6.15 |
E | L * | 1.54 ± 0.86 | 0.220 | −0.53 to 3.62 | 0.24 | 7.21 ± 0.88 | <0.001 | 5.09 to 9.34 | 11.68 | |
A | L * | 0.74 ± 0.69 | 0.858 | −0.93 to 2.41 | 0.21 | 3.44 ± 0.60 | <0.001 | 1.98 to 4.90 | 7.58 | |
Iliospinale height (cm) | E | A * | 0.95 ± 0.91 | 0.890 | −1.25 to 3.15 | 0.25 | 4.22 ± 0.90 | <0.001 | 2.04 to 6.40 | 6.64 |
E | L * | 2.34 ± 1.11 | 0.111 | −0.35 to 5.04 | 0.30 | 8.49 ± 1.26 | <0.001 | 5.43 to 11.56 | 10.67 | |
A | L * | 1.39 ± 0.90 | 0.370 | −0.78 to 3.57 | 0.31 | 4.27 ± 0.87 | <0.001 | 2.18 to 6.37 | 6.98 | |
Biacromial breadth (cm) | E | A * | 0.86 ± 0.40 | 0.098 | −0.11 to 1.83 | 0.48 | 2.56 ± 0.36 | <0.001 | 1.68 to 3.44 | 9.97 |
E | L * | 0.94 ± 0.49 | 0.167 | −0.24 to 2.13 | 0.24 | 4.14 ± 0.51 | <0.001 | 2.90 to 5.38 | 12.89 | |
A | L * | 0.08 ± 0.39 | 1.000 | −0.87 to 1.04 | 0.04 | 1.58 ± 0.35 | <0.001 | 0.74 to 2.43 | 6.40 | |
Biiliocristal breadth (cm) | E | A * | 0.67 ± 0.40 | 0.270 | −0.28 to 1.64 | 0.34 | 2.28 ± 0.37 | <0.001 | 1.38 to 3.18 | 8.67 |
E | L * | 0.99 ± 0.49 | 0.125 | −0.17 to 2.17 | 0.26 | 4.00 ± 0.52 | <0.001 | 2.73 to 5.27 | 12.13 | |
A | L * | 0.32 ± 0.39 | 1.000 | −0.63 to 1.27 | 0.19 | 1.72 ± 0.36 | <0.001 | 0.85 to 2.59 | 6.78 | |
Femur breadth (cm) | E | A * | 0.30 ± 0.10 | 0.011 | 0.05 to 0.55 | 0.59 | .061 ± 0.10 | <0.001 | 0.35 to 0.87 | 8.02 |
E | L * | 0.52 ± 0.13 | <0.001 | 0.21 to 0.82 | 0.49 | 1.09 ± 0.15 | <0.001 | 0.73 to 1.46 | 11.55 | |
A | L * | 0.22 ± 0.10 | 0.104 | −0.03 to 0.46 | 0.48 | 0.49 ± 0.10 | <0.001 | 0.24 to 0.74 | 6.69 | |
Humerus breadth (cm) | E | A * | 0.23 ± 0.07 | 0.007 | 0.05 to 0.40 | 0.63 | 0.41 ± 0.08 | <0.001 | 0.22 to 0.60 | 7.38 |
E | L * | 0.36 ± 0.09 | <0.001 | 0.14 to 0.57 | 0.45 | 0.71 ± 0.11 | <0.001 | 0.44 to 0.98 | 10.15 | |
A | L * | 0.13 ± 0.07 | 0.225 | −0.04 to 0.30 | 0.39 | 0.30 ± 0.08 | <0.001 | 0.11 to 0.48 | 5.54 | |
Bi-styloid breadth (cm) | E | A * | 0.15 ± 0.5 | 0.024 | 0.01 to 0.28 | 0.60 | 0.24 ± 0.06 | <0.001 | 0.09 to 0.39 | 5.65 |
E | L * | 0.21 ± 0.06 | 0.005 | 0.05 to 0.37 | 0.39 | 0.40 ± 0.08 | <0.001 | 0.19 to 0.60 | 7.46 | |
A | L * | 0.06 ± 0.05 | 0.675 | −0.06 to 0.19 | 0.25 | 0.16 ± 0.06 | 0.022 | 0.02 to 0.30 | 3.84 | |
Bone mass percentage (%) | E | A * | −0.56 ± 0.42 | 0.554 | −1.57 to 0.46 | 0.28 | −1.51 ± 0.46 | 0.004 | −2.62 to −0.39 | 4.64 |
E | L * | −0.49 ± 0.51 | 1.000 | −1.73 to 0.75 | 0.78 | −2.25 ± 0.65 | 0.002 | −3.82 to −0.69 | 5.53 | |
A | L | 0.07 ± 0.41 | 1.000 | −0.93 to 1.07 | 0.04 | −0.75 ± 0.44 | 0.282 | −1.82 to 0.33 | 2.38 | |
Bone mass (Kg) | E | A * | 0.57 ± 0.20 | 0.011 | 0.10 to 1.03 | 0.65 | 1.45 ± 0.16 | <0.001 | 1.06 to 1.84 | 12.66 |
E | L * | 1.00 ± 0.23 | <0.001 | 0.43 to 1.56 | 0.99 | 2.68 ± 0.23 | <0.001 | 2.13 to 3.23 | 18.67 | |
A | L * | 0.43 ± 0.19 | 0.071 | −0.02 to 0.89 | 0.48 | 1.23 ± 0.16 | <0.001 | 0.85 to 1.61 | 11.13 |
Test | Group Comparison | Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Maturity Status Group | Maturity Status Group × Age | |||||||||
Mean Difference ± SD | p-Value | 95% CI | ES | Mean Difference ± SD | p-Value | 95% CI | ES | |||
Corrected arm girth (cm) | E | A * | 1.24 ± 0.42 | 0.010 | 0.23 to 2.26 | 0.61 | 2.70 ± 0.42 | <0.001 | 1.69 to 3.72 | 9.13 |
E | L * | 1.15 ± 0.51 | 0.078 | −0.09 to 2.39 | 0.88 | 3.86 ± 0.59 | <0.001 | 2.43 to 5.29 | 10.42 | |
A | L * | −0.09 ± 0.41 | 1.000 | −1.09 to 0.90 | 0.05 | 1.16 ± 0.40 | 0.014 | 0.18 to 2.14 | 4.07 | |
Corrected thigh girth (cm) | E | A * | 1.72 ± 0.86 | 0.140 | −0.36 to 3.81 | 0.41 | 4.53 ± 0.87 | <0.001 | 2.41 to 6.65 | 7.33 |
E | L * | 3.04 ± 1.05 | 0.013 | 0.49 to 5.59 | 0.79 | 8.35 ± 1.23 | <0.001 | 5.37 to 11.33 | 10.78 | |
A | L * | 1.31 ± 0.85 | 0.370 | −0.74 to 3.37 | 0.35 | 3.82 ± 0.84 | <0.001 | 1.78 to 5.86 | 6.41 | |
Corrected leg girth (cm) | E | A * | 0.43 ± 0.56 | 1.000 | −0.93 to 1.80 | 0.15 | 2.57 ± 0.54 | <0.001 | 1.27 to 3.88 | 6.75 |
E | L * | 0.27 ± 0.69 | 1.000 | −1.40 to 1.95 | 0.05 | 4.37 ± 0.76 | <0.001 | 2.53 to 6.21 | 9.15 | |
A | L * | −0.16 ± 0.56 | 1.000 | −1.51 to 1.19 | 0.07 | 1.80 ± 0.52 | 0.002 | 0.54 to 3.06 | 4.90 | |
∑6 Skinfolds (mm) | E | A * | 11.26 ± 5.14 | 0.090 | −1.18 to 23.70 | 0.44 | 16.32 ± 5.89 | 0.019 | 2.06 to 30.58 | 3.92 |
E | L * | 19.56 ± 6.29 | 0.007 | 4.33 to 34.79 | 0.40 | 29.06 ± 8.29 | 0.002 | 9.00 to 49.13 | 5.58 | |
A | L | 8.30 ± 5.07 | 0.312 | −3.98 to 20.58 | 0.38 | 12.74 ± 5.67 | 0.078 | −0.99 to 26.47 | 3.18 | |
∑8 Skinfolds (mm) | E | A * | 14.52 ± 6.86 | 0.107 | −2.08 to 31.13 | 0.43 | 19.27 ± 7.90 | 0.048 | 0.13 to 38.40 | 3.45 |
E | L * | 26.19 ± 8.40 | 0.007 | 5.86 to 46.52 | 0.41 | 34.95 ± 11.12 | 0.006 | 8.02 to 61.88 | 5.00 | |
A | L | 11.66 ± 6.77 | 0.261 | −4.73 to 28.05 | 0.40 | 15.68 ± 7.61 | 0.123 | −2.74 to 34.10 | 2.91 |
Test | Group Comparison | Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Maturity Status Group | Maturity Status Group × Age | |||||||||
Mean Difference ± SD | p-Value | 95% CI | ES | Mean difference ± SD | p-Value | 95% CI | ES | |||
Fat mass percentage (%) | E | A | 1.87 ± 1.17 | 0.336 | −0.96 to 4.69 | 0.33 | 3.14 ± 1.33 | 0.059 | −0.09 to 6.37 | 3.33 |
E | L * | 3.94 ± 1.43 | 0.020 | 0.48 to 7.40 | 0.36 | 6.35 ± 1.88 | 0.003 | 1.80 to 10.90 | 5.37 | |
A | L * | 2.07 ± 1.15 | 0.223 | −0.72 to 4.86 | 0.40 | 3.21 ± 1.28 | 0.041 | 0.10 to 6.32 | 3.53 | |
Fat mass (Kg) | E | A * | 2.50 ± 1.05 | 0.057 | −0.05 to 5.06 | 0.47 | 5.27 ± 1.13 | <0.001 | 2.54 to 8.01 | 6.61 |
E | L * | 4.50 ± 1.29 | 0.002 | 1.37 to 7.62 | 0.43 | 9.70 ± 1.59 | <0.001 | 5.86 to 13.55 | 9.71 | |
A | L * | 1.99 ± 1.04 | 0.172 | −0.53 to 4.51 | 0.45 | 4.43 ± 1.09 | <0.001 | 1.80 to 7.06 | 5.76 | |
Muscle mass (Kg) | E | A | 1.38 ± 0.67 | 0.120 | −0.23 to 2.99 | 0.42 | 4.31 ± 0.59 | <0.001 | 2.87 to 5.74 | 10.28 |
E | L * | 1.99 ± 0.81 | 0.048 | 0.01 to 3.97 | 0.32 | 7.51 ± 0.83 | <0.001 | 5.49 to 9.53 | 14.31 | |
A | L * | 0.61 ± 0.66 | 1.000 | −0.98 to 2.20 | 0.21 | 3.20 ± 0.57 | <0.001 | 1.82 to 4.58 | 7.93 | |
Muscle-bone index | E | A * | 0.03 ± 0.05 | 1.000 | −0.09 to 0.16 | 0.13 | 0.017 ± 0.06 | 0.008 | 0.03 to 0.31 | 4.30 |
E | L * | 0.003 ± 0.07 | 1.000 | −0.15 to 0.16 | 0.01 | 0.026 ± 0.08 | 0.004 | 0.07 to 0.46 | 5.24 | |
A | L | −0.03 ± 0.05 | 1.000 | −0.16 to 0.10 | 0.13 | 0.09 ± 0.05 | 0.301 | −0.04 to 0.22 | 2.35 | |
Endomorphy | E | A | 0.51 ± 0.27 | 0.193 | −0.15 to 1.16 | 0.37 | 0.66 ± 0.31 | 0.112 | −0.10 to 1.41 | 2.97 |
E | L * | 0.91 ± 0.33 | 0.020 | 0.11 to 1.71 | 0.35 | 1.20 ± 0.44 | 0.021 | 0.14 to 2.27 | 4.35 | |
A | L | 0.41 ± 0.27 | 0.383 | −0.24 to 1.06 | 0.35 | 0.55 ± 0.30 | 0.210 | −0.18 to 1.28 | 2.58 | |
Ectomorphy | E | A * | −0.56 ± 0.28 | 0.141 | −1.24 to 0.12 | 0.42 | −0.82 ± 0.32 | 0.036 | −1.60 to −0.04 | 3.60 |
E | L | −0.51 ± 0.34 | 0.397 | −1.35 to 0.31 | 0.22 | −1.01 ± 0.45 | 0.084 | −2.10 to 0.09 | 3.52 | |
A | L | 0.04 ± 0.28 | 1.000 | −0.62 to 0.71 | 0.03 | −0.19 ± 0.31 | 1.000 | −0.94 to 0.57 | 0.84 |
Test | Group Comparison | Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Maturity Status Group | Maturity Status Group × Age | |||||||||
Mean Difference ± SD | p-Value | 95% CI | ES | Mean Difference ± SD | p-Value | 95% CI | ES | |||
Medicine ball throw (m) | E | A | −0.12 ± 0.21 | 1.000 | −0.66 to 0.40 | 0.18 | 0.48 ± 0.23 | 0.115 | −0.08 to 1.04 | 2.96 |
E | L * | −0.30 ± 0.27 | 0.804 | −0.95 to 0.35 | 0.16 | 0.86 ± 0.33 | 0.026 | 0.08 to 1.65 | 4.22 | |
A | L | −0.17 ± 0.22 | 1.000 | −0.69 to 0.35 | 0.12 | 0.38 ± 0.22 | 0.269 | −0.16 to 0.92 | 2.41 | |
CMJ (cm) | E | A | −1.97 ± 0.92 | 0.099 | −4.19 to 0.25 | 0.14 | −0.82 ± 1.04 | 1.000 | −3.33 to 1.70 | 1.11 |
E | L | −2.56 ± 1.12 | 0.071 | −5.28 to 0.15 | 0.30 | −0.28 ± 1.46 | 1.000 | −3.82 to 3.26 | 0.30 | |
A | L | −0.59 ± 0.90 | 1.000 | −2.78 to 1.60 | 0.48 | 0.54 ± 1.00 | 1.000 | −1.88 to 2.96 | 0.76 | |
CMJ power (W) | E | A * | 31.65 ± 22.55 | 0.488 | −22.96 to 86.26 | 0.30 | 135.49 ± 19.22 | <0.001 | 88.94 to 182.04 | 9.97 |
E | L * | 54.11 ± 27.61 | 0.156 | −12.75 to 120.97 | 0.27 | 251.07 ± 27.05 | <0.001 | 185.56 to 316.58 | 14.75 | |
A | L * | 22.46 ± 22.26 | 0.944 | −31.45 to 76.37 | 0.22 | 115.58 ± 18.51 | <0.001 | 70.76 to 160.40 | 8.83 |
Sit-and-Reach | Back Scratch test | Long Jump | Medicine Ball Throw | CMJ | CMJ Power | 20 m Sprint | Agility Test | |
---|---|---|---|---|---|---|---|---|
Maturity offset | r = 0.096; p = 0.238 | r = 0.046; p = 0.571 | r = 0.221; p = 0.006 | r = 0.470; p < 0.001 | r = 0.221; p = 0.009 | r = 0.629; p < 0.001 | r = −0.078; p = 0.337 | r = 0.052; p = 0.524 |
Age | r = 0.043; p = 0.603 | r = 0.043; p = 0.600 | r = 0.225; p = 0.005 | r = 0.370; p < 0.001 | r = 0.269; p = 0.001 | r = 0.403; p < 0.001 | r = −0.106; p = 0.195 | r = 0.021; p = 0.802 |
Body mass | r = 0.161; p = 0.047 | r = −0.088; p = 0.281 | r = −0.039; p = 0.634 | r = 0.448; p < 0.001 | r = −0.172; p = 0.034 | r = 0.850; p < 0.001 | r = 0.238; p = 0.003 | r = 0.180; p = 0.027 |
Height | r = 0.028; p = 0.730 | r = 0.115; p = 0.158 | r = 0.147; p = 0.070 | r = 0.402; p < 0.001 | r = 0.097; p = 0.234 | r = 0.626; p < 0.001 | r = 0.003; p = 0. 966 | r = 0.064; p = 0.432 |
Arm span | r = 0.180; p = 0.026 | r = 0.329; p < 0.001 | r = 0.200; p = 0.013 | r = 0.473; p < 0.001 | r = 0.157; p = 0.054 | r = 0.594; p < 0.001 | r = −0.011; p = 0.892 | r = 0.015; p = 0.858 |
Sitting height | r = 0.196; p = 0.016 | r = 0.007; p = 0.931 | r = 0.153; p = 0.060 | r = 0.390; p < 0.001 | r = 0.082; p = 0.318 | r = 0.605; p < 0.001 | r = −0.095; p = 0.244 | r = 0.010; p = 0.906 |
Cormic index | r = 0.271; p = 0.001 | r = −0.144; p = 0.076 | r = 0.040; p = 0.624 | r = 0.052; p = 0.526 | r = −0.001; p = 0.994 | r = 0.075; p = 0.358 | r = −0.157; p = 0.053 | r = −0.080; p = 0.331 |
Relative arm span | r = 0.281; p < 0.001 | r = 0.416; p < 0.001 | r = 0.144; p = 0.076 | r = 0.243; p = 0.003 | r = 0.137; p = 0.093 | r = 0.119; p = 0.143 | r = −0.024; p = 0.767 | r = −0.078; p = 0.341 |
Upper limb length | r = 0.099; p = 0.223 | r = 0.241; p = 0.003 | r = 0.157; p = 0.053 | r = 0.412; p < 0.001 | r = 0.067; p = 0.414 | r = 0.564; p < 0.001 | r = 0.069; p = 0.399 | r = 0.032; p = 0.695 |
Iliospinale height | r = −0.076; p = 0.354 | r = 0.156; p = 0.055 | r = 0.172; p = 0.034 | r = 0.234; p = 0.004 | r = 0.091; p = 0.267 | r = 0.478; p < 0.001 | r = 0.054; p = 0.512 | r = −0.032; p = 0.698 |
Biacromial breadth | r = 0.360; p < 0.001 | r = 0.216; p = 0.008 | r = 0.122; p = 0.135 | r = 0.560; p < 0.001 | r = 0.100; p = 0.221 | r = 0.703; p < 0.001 | r = 0.089; p = 0.273 | r = −0.103; p = 0.207 |
Biiliocristal breadth | r = 0.048; p = 0.556 | r = −0.095; p = 0.243 | r = −0.112; p = 0.169 | r = 0.333; p < 0.001 | r = −0.249; p = 0.002 | r = 0.580; p < 0.001 | r = 0.210; p = 0.009 | r = 0.142; p = 0.081 |
Corrected arm girth | r = 0.108; p = 0.187 | r = −0.166; p = 0.040 | r = −0.008; p = 0.924 | r = 0.389; p < 0.001 | r = −0.032; p = 0.698 | r = 0.703; p < 0.001 | r = 0.092; p = 0.260 | r = 0.129; p = 0.116 |
Corrected thigh girth | r = 0.173; p = 0.033 | r = −0.137; p = 0.093 | r = −0.004; p = 0.958 | r = 0.381; p < 0.001 | r = −0.115; p = 0.157 | r = 0.725; p < 0.001 | r = 0.136; p = 0.094 | r = 0.129; p = 0.115 |
Corrected leg girth | r = 0.101; p = 0.214 | r = 0.048; p = 0.559 | r = 0.094; p = 0.247 | r = 0.395; p < 0.001 | r = 0.066; p = 0.419 | r = 0.688; p < 0.001 | r = 0.029; p = 0.724 | r = 0.085; p = 0.299 |
∑8 Skinfolds | r = −0.010; p = 0.902 | r = −0.222; p = 0.006 | r = −0.292; p < 0.001 | r = 0.087; p = 0.284 | r = −0.396; p < 0.001 | r = 0.411; p < 0.001 | r = 0.379; p < 0.001 | r = 0.237; p = 0.003 |
Fat mass | r = 0.119; p = 0.143 | r = −0.129; p = 0.112 | r = −0.174; p = 0.032 | r = 0.313; p < 0.001 | r = −0.332; p < 0.001 | r = 0.632; p < 0.001 | r = 0.353; p < 0.001 | r = 0.200; p = 0.014 |
Muscle mass | r = 0.135; p = 0.097 | r = −0.096; p = 0.242 | r = 0.028; p = 0.734 | r = 0.453; p < 0.001 | r = −0.052; p = 0.521 | r = 0.817; p < 0.001 | r = 0.120; p = 0.142 | r = 0.143; p = 0.081 |
Bone mass | r = 0.067; p = 0.409 | r = 0.071; p = 0.387 | r = 0.115; p = 0.157 | r = 0.463; p < 0.001 | r = 0.007; p = 0.936 | r = 0.694; p < 0.001 | r = 0.098; p = 0.232 | r = 0.120; p = 0.141 |
BMI | r = −0.189; p = 0.020 | r = −0.169; p = 0.037 | r = −0.127; p = 0.118 | r = 0.327; p < 0.001 | r = −0.260; p = 0.001 | r = 0.703; p < 0.001 | r = 0.289; p < 0.001 | r = 0.181; p = 0.026 |
Muscle-bone index | r = 0.151; p = 0.063 | r = −0.194; p = 0.017 | r = −0.050; p = 0.541 | r = 0.269; p = 0.001 | r = −0.072; p = 0.379 | r = 0.590; p < 0.001 | r = 0.078; p = 0.342 | r = 0.090; p = 0.270 |
Variable | R2 | p-Value | Included Independent Variables | SC | p-Value | Predictive Equation |
---|---|---|---|---|---|---|
Sit and reach | 0.24 | <0.001 | Biacromial breadth | 0.27 | 0.001 | Sit and reach = −199.309 + 1.183 × biacromial breadth + 1.630 × cormic index + 77.628 × relative arm span |
Cormic index | 0.28 | <0.001 | ||||
Relative arm span | 0.24 | 0.002 | ||||
Back scratch | 0.21 | <0.001 | Relative arm span | 0.40 | <0.001 | Back scratch = −77.836 + 85.116 × relative arm span − 0.031 × ∑8 Skinfolds |
∑8 Skinfolds | −0.19 | 0.010 | ||||
Horizontal jump | 0.13 | <0.001 | Age | 0.20 | 0.010 | Horizontal jump = 1.348 + 0.033 × age − 0.002 × ∑8 Skinfolds |
∑8 Skinfolds | −0.27 | 0.001 | ||||
Medicine ball throw | 0.37 | <0.001 | Biacromial breadth | 0.43 | <0.001 | Medicine ball throw = −6.818 + 0.232 × biacromial breadth + 0.149 × age + 0.076 × corrected arm girth |
Age | 0.18 | 0.011 | ||||
Corrected arm girth | 0.15 | 0.045 | ||||
CMJ | 0.21 | <0.001 | ∑8 Skinfolds | −0.38 | <0.001 | CMJ = 18.339 − 0.050 × ∑8 Skinfolds + 0.821 × age |
Age | 0.24 | 0.002 | ||||
CMJ power | 0.79 | <0.001 | Body mass | 0.58 | <0.001 | CMJ power = 33.780 + 6.391 × body mass + 13.701 × biacromial breadth + 18.304 × muscle mass − 7.662 × corrected thigh girth − 10.436 × biileocrestal breadth |
Biacromial breadth | 0.24 | <0.001 | ||||
Muscle mass | 0.54 | <0.001 | ||||
Corrected thigh girth | −0.30 | 0.010 | ||||
Biiliocrestal breadth | −0.18 | 0.002 | ||||
Sprint | 0.37 | <0.001 | ∑8 Skinfolds | 0.37 | <0.001 | Sprint = 3.809 + 0.003 × ∑8 Skinfolds |
Agility test | 0.04 | 0.019 | Fat mass | 0.20 | 0.019 | Agility test = 8.718 + 0.038 × fat mass |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; García-Roca, J.A.; Esparza-Ros, F. Influence of Maturity Status on Kinanthropometric and Physical Fitness Variables in Adolescent Female Volleyball Players. Appl. Sci. 2022, 12, 4400. https://doi.org/10.3390/app12094400
Albaladejo-Saura M, Vaquero-Cristóbal R, García-Roca JA, Esparza-Ros F. Influence of Maturity Status on Kinanthropometric and Physical Fitness Variables in Adolescent Female Volleyball Players. Applied Sciences. 2022; 12(9):4400. https://doi.org/10.3390/app12094400
Chicago/Turabian StyleAlbaladejo-Saura, Mario, Raquel Vaquero-Cristóbal, Juan Alfonso García-Roca, and Francisco Esparza-Ros. 2022. "Influence of Maturity Status on Kinanthropometric and Physical Fitness Variables in Adolescent Female Volleyball Players" Applied Sciences 12, no. 9: 4400. https://doi.org/10.3390/app12094400
APA StyleAlbaladejo-Saura, M., Vaquero-Cristóbal, R., García-Roca, J. A., & Esparza-Ros, F. (2022). Influence of Maturity Status on Kinanthropometric and Physical Fitness Variables in Adolescent Female Volleyball Players. Applied Sciences, 12(9), 4400. https://doi.org/10.3390/app12094400