Microalgal Proteins and Bioactives for Food, Feed, and Other Applications
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Microalgae for Food and Functional Food Applications
1.1.1. Proteins and Peptides
1.1.2. Lipids
1.1.3. Carbohydrates
1.1.4. Pigments
1.1.5. Vitamins
1.2. Microalgae for Feed Applications
1.3. Microalgae for Pharmaceutical Applications
1.4. Microalgae in Cosmetics and Cosmeceuticals
2. Isolation of Proteins and Functional Peptides from Microalgae
2.1. Protein Extraction
2.2. Protein Purification
2.3. Protein Hydrolysis
2.4. Separation, Purification and Identification of Bioactive Peptides
3. Application of Microalgae as Food, Functional Foods and Feed
4. Legislation Governing The Use of Microalgae
- The consumption history of an alga affects its regulatory status. Entry of a species or extracts from that species into the market is regulated by the Novel Food Regulation. This applies to species having not been used as food to a significant degree in any of the EU member countries before 15 May 1997. These algae need to undergo the authorization procedure in order to ensure their safety for human consumption (Regulation (EC) No 258/97).
- In the New Novel Food Regulation (EC) 2015/2283, an additional notification system is provided for species that have a demonstrated history of safe use for at least 25 years in a country outside of the EU. The notification system may provide an easier route to the EU market for some microalgae species that have not been used in Europe but are consumed elsewhere.
- The EU through Regulation (EU) 2017/2470 maintains an online list—the novel food catalogue—that contains the Union’s list of all authorized novel foods. This legislation applies to microalgae intended to be used as food. This catalogue contains both European and imported algae, and to the current date there were 22 algae listed. The list is accessible at https://ec.europa.eu/food/safety/novel-food/novel-food-catalogue_en (accessed on 21 December 2021) and includes six microalgae, including Arthrospira platensis, Chlorella luteoviridis, Chlorella pyrenoidosa, Chlorella vulgaris, Chlamydomonas reinhardtii and Spirulina sp. when the list was accessed on 1 November 2021.
- In the US, the FDA regulates both US laws applicable to microalgae-based food products, which are the Federal Food, Drug and Cosmetic Act, regulating all food and food additives, and the Dietary Supplement Health and Education Act, regulating dietary ingredients and supplements. The FDA Center for Food Safety and Applied Nutrition governs all food ingredients and is responsible for their safety [16].
- The European Union and United States have largely different attitudes and regulations that apply to microalgae-based products. One of the main differences is the criterion for novel food definition and consequently the authorization process [16].
4.1. European Regulation on Marketing of Microalgae for Food
4.1.1. Regulation on Food Safety
4.1.2. Regulation on Novel Foods and Novel Food Ingredients
4.1.3. Regulation on Nutrition and Health Claims Made on Foods
4.2. United States Regulation on Marketing of Microalgae for Food
5. Challenges and Bottlenecks
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. World Population Prospects 2019: Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- WHO. Malnutrition. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 20 December 2021).
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Rengefors, K.; Kremp, A.; Reusch, T.B.H.; Wood, A.M. Genetic diversity and evolution in eukaryotic phytoplankton: Revelations from population genetic studies. J. Plankton Res. 2017, 39, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Darzins, A.; Pienkos, P.; Edye, L. Current Status and Potential for Algal Biofuels Production; A Report to IEA Bioenergy Task 39; National Renewable Energy Laboratory: Denver, CO, USA, 2010. [Google Scholar]
- Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Factories 2012, 11, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Horsman, M.; Wu, N.; Lan, C.Q.; Dubois-Calero, N. Biofuels from microalgae. Biotechnol. Prog. 2008, 24, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Eltanahy, E.; Torky, A. Chapter 1 Microalgae as Cell Factories: Food and Feed-grade High-value Metabolites. In Microalgal Biotechnology: Recent Advances, Market Potential, and Sustainability; The Royal Society of Chemistry: London, UK, 2021; pp. 1–35. [Google Scholar]
- Farrar, W.V. Tecuitlatl; A Glimpse of Aztec Food Technology. Nature 1966, 211, 341–342. [Google Scholar] [CrossRef]
- Ciferri, O. Spirulina, the edible microorganism. Microbiol. Rev. 1983, 47, 551–578. [Google Scholar] [CrossRef] [PubMed]
- Potts, M. Etymology of the Genus Name Nostoc (Cyanobacteria). Int. J. Syst. Evol. Microbiol. 1997, 47, 584. [Google Scholar] [CrossRef] [Green Version]
- Gao, K. Chinese studies on the edible blue-green alga, Nostoc flagelliforme: A review. J. Appl. Phycol. 1998, 10, 37–49. [Google Scholar] [CrossRef]
- Ohki, K.; Kanesaki, Y.; Suzuki, N.; Okajima, M.; Kaneko, T.; Yoshikawa, S. Physiological properties and genetic analysis related to exopolysaccharide (EPS) production in the fresh-water unicellular cyanobacterium Aphanothece sacrum (Suizenji Nori). J. Gen. Appl. Microbiol. 2019, 65, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burlew, J.S. Algal Culture from Laboratory to Pilot Plant; Carnegie Institution of Washington: Washington, DC, USA, 1953. [Google Scholar]
- Olguin, E.J. Appropriate biotechnological systems in the arid environment. Appl. Microbiol. 1986, 4, 111–134. [Google Scholar]
- Enzing, C.M.; Ploeg, M.; Barbosa, M.J.; Sijtsma, L. Microalgae-Based Products for the Food and Feed Sector: An Outlook for Europe; Joint Research Centre: Petten, The Netherlands, 2014; pp. 19–37. [Google Scholar]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 1–24. [Google Scholar] [CrossRef]
- Rocha, R.; Machado, M.; Vaz, M.; Vinson, C.C.; Leite, M.; Richard, R.; Mendes, L.; Araújo, W.; Caldana, C.; Martins, M.; et al. Exploring the metabolic and physiological diversity of native microalgal strains (Chlorophyta) isolated from tropical freshwater reservoirs. Algal Res. 2017, 28, 139–150. [Google Scholar] [CrossRef]
- Fazeli Danesh, A.; Mooij, P.; Ebrahimi, S.; Kleerebezem, R.; van Loosdrecht, M. Effective role of medium supplementation in microalgal lipid accumulation. Biotechnol. Bioeng. 2018, 115, 1152–1160. [Google Scholar] [CrossRef]
- Amorim, M.L.; Soares, J.; Coimbra, J.; Leite, M.O.; Albino, L.F.T.; Martins, M.A. Microalgae proteins: Production, separation, isolation, quantification, and application in food and feed. Crit. Rev. Food Sci. Nutr. 2021, 61, 1976–2002. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, R.; Murkovic, M. Food Ingredients and Nutraceuticals from Microalgae: Main Product Classes and Biotechnological Production. Foods 2021, 10, 1626. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation into Innovative Food Products with Potential Health Benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef]
- Habib, M.A.B. Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish; FAO: Rome, Italy, 2008. [Google Scholar]
- FAO Expert Consultation. Dietary protein quality evaluation in human nutrition. FAO Food Nutr. Pap. 2013, 92, 1–66. [Google Scholar]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, S.; Patelakis, S. Apparent digestibility coefficients (ADCs) of intact-cell marine microalgae meal (Pavlova sp. 459) for juvenile Atlantic salmon (Salmo salar L.). Aquaculture 2021, 546, 737236. [Google Scholar] [CrossRef]
- Tessier, R.; Calvez, J.; Khodorova, N.; Gaudichon, C. Protein and amino acid digestibility of (15)N Spirulina in rats. Eur. J. Nutr. 2021, 60, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Palinska, K.A.; Krumbein, W.E. Perforation patterns in the peptidoglycan wall of filamentous cyanobacteria. J. Phycol. 2000, 36, 139–145. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; Berrue, F.; McGinn, P.J.; MacQuarrie, S.P.; Puttaswamy, A.; Patelakis, S.; Schmidt, D.; Melanson, R.; MacKenzie, S.E. A Rat Study to Evaluate the Protein Quality of Three Green Microalgal Species and the Impact of Mechanical Cell Wall Disruption. Foods 2020, 9, 1531. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H. Classification of Chlorella strains by cell wall sugar composition. Phytochemistry 1988, 27, 3823–3826. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; da Silva Bon, E.P. Evaluation of Chlorella (Chlorophyta) as Source of Fermentable Sugars via Cell Wall Enzymatic Hydrolysis. Enzym. Res 2011, 2011, 405603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowitzka, M.A. Chapter 9—Microalgae in Medicine and Human Health: A Historical Perspective. In Microalgae in Health and Disease Prevention; Levine, I.A., Fleurence, J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 195–210. [Google Scholar]
- Hagen, C.; Siegmund, S.; Braune, W. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 2002, 37, 217–226. [Google Scholar] [CrossRef]
- Brown, M.R. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 1991, 145, 79–99. [Google Scholar] [CrossRef]
- Zhu, C.J.; Lee, Y.K. Determination of biomass dry weight of marine microalgae. J. Appl. Phycol. 1997, 9, 189–194. [Google Scholar] [CrossRef]
- Matos, Â.P.; Cavanholi, M.G.; Moecke, E.H.S.; Sant’Anna, E.S. Effects of different photoperiod and trophic conditions on biomass, protein and lipid production by the marine alga Nannochloropsis gaditana at optimal concentration of desalination concentrate. Bioresour. Technol. 2017, 224, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Scholz, M.J.; Weiss, T.L.; Jinkerson, R.E.; Jing, J.; Roth, R.; Goodenough, U.; Posewitz, M.C.; Gerken, H.G. Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 2014, 13, 1450–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, A.A.; Genard, B.; Zito, F.; Tremblay, R.; Warschawski, D.E.; Marcotte, I. Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim. Biophys. Acta BBA Biomembr. 2015, 1848, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Hart, B.; Schurr, R.; Narendranath, N.; Kuehnle, A.; Colombo, S.M. Digestibility of Schizochytrium sp. whole cell biomass by Atlantic salmon (Salmo salar). Aquaculture 2021, 533, 736156. [Google Scholar] [CrossRef]
- Darley, W.M.; Porter, D.; Fuller, M.S. Cell wall composition and synthesis via Golgi-directed scale formation in the marine eucaryote, Schizochytrium aggregatum, with a note on Thraustochytrium sp. Arch. Mikrobiol. 1973, 90, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Kermanshahi-Pour, A.; Sommer, T.J.; Anastas, P.T.; Zimmerman, J.B. Enzymatic and acid hydrolysis of Tetraselmis suecica for polysaccharide characterization. Bioresour Technol. 2014, 173, 415–421. [Google Scholar] [CrossRef]
- Franca-Oliveira, G.; Fornari, T.; Hernández-Ledesma, B. A Review on the Extraction and Processing of Natural Source-Derived Proteins through Eco-Innovative Approaches. Processes 2021, 9, 1626. [Google Scholar] [CrossRef]
- Roy, U.K.; Nielsen, B.V.; Milledge, J.J. Antioxidant Production in Dunaliella. Appl. Sci. 2021, 11, 3959. [Google Scholar] [CrossRef]
- Echave, J.; Fraga-Corral, M.; Garcia-Perez, P.; Popović-Djordjević, J.; Avdović, E.H.; Radulović, M.; Xiao, J.; Prieto, M.A.; Simal-Gandara, J. Seaweed Protein Hydrolysates and Bioactive Peptides: Extraction, Purification, and Applications. Mar. Drugs 2021, 19, 500. [Google Scholar] [CrossRef] [PubMed]
- Sathya, R.; MubarakAli, D.; MohamedSaalis, J.; Kim, J.-W. A Systemic Review on Microalgal Peptides: Bioprocess and Sustainable Applications. Sustainability 2021, 13, 3262. [Google Scholar] [CrossRef]
- Mellander, O. The physiological importance of the casein phosphopeptide calcium salts. II. Peroral calcium dosage of infants. Acta Soc. Med. Ups. 1950, 55, 247–255. [Google Scholar] [PubMed]
- Vo, T.-S.; Ryu, B.; Kim, S.-K. Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima. J. Funct. Foods 2013, 5, 1336–1346. [Google Scholar] [CrossRef]
- Safitri, N.; Herawati, E.; Hsu, J.-L. Antioxidant Activity of Purified Active Peptide Derived from Spirulina platensis Enzymatic Hydrolysates. Res. J. Life Sci. 2017, 4, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, X. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol. Prog. 2013, 29, 1230–1238. [Google Scholar] [CrossRef]
- Suetsuna, K.; Chen, J.R. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Mar. Biotechnol. 2001, 3, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.C.; Kim, D.; Jeon, Y.J. Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chem Toxicol 2012, 50, 2294–2302. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X. Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnol. Prog. 2013, 29, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Aiello, G.; Fassi, E.M.A.; Boschin, G.; Bartolomei, M.; Bollati, C.; Roda, G.; Arnoldi, A.; Grazioso, G.; Lammi, C. Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients 2021, 13, 1624. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.F.; Chen, L.C.; Cherng, J.Y. Chlorella 11-peptide inhibits the production of macrophage-induced adhesion molecules and reduces endothelin-1 expression and endothelial permeability. Mar. Drugs 2013, 11, 3861–3874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejano, L.A.; Peralta, J.P.; Yap, E.E.S.; Panjaitan, F.C.A.; Chang, Y.W. Prediction of Bioactive Peptides from Chlorella sorokiniana Proteins Using Proteomic Techniques in Combination with Bioinformatics Analyses. Int. J. Mol. Sci. 2019, 20, 71786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheih, I.C.; Wu, T.-K.; Fang, T.J. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour. Technol. 2009, 100, 3419–3425. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-F.; Zhang, Y.Y.; Di He, M.; Li, C.Y.; Zhou, C.; Hong, P.; Qian, Z.-J. Antioxidant Peptide Purified from Enzymatic Hydrolysates of Isochrysis Zhanjiangensis and Its Protective Effect against Ethanol Induced Oxidative Stress of HepG2 Cells. Biotechnol. Bioprocess Eng. 2019, 24, 308–317. [Google Scholar] [CrossRef]
- Zhong-Ji, Q.; Heo, S.-J.; Oh, C.; Kang, D.-H.; Hwa, J.; Park, W.; Choi, I.-W.; Jeon, Y.-J.; Jung, W.-K. Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptide Isolated from Biodiesel Byproducts of Marine Microalgae, Nannochloropsis oculata. J. Biobased Mater. Bioenergy 2013, 7, 135–142. [Google Scholar] [CrossRef]
- Samarakoon, K.; Kwon, O.N.; Ko, J.-Y.; Lee, J.-H.; Kang, M.-C.; Kim, D.; Lee, J.-B.; Lee, J.; Jeon, Y.-J. Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptide from cultured marine microalgae (Nannochloropsis oculata) protein hydrolytes. J. Appl. Phycol. 2013, 25, 1595–1606. [Google Scholar] [CrossRef]
- Kang, K.-H.; Qian, Z.-J.; Ryu, B.; Kim, D.; Kim, S.-K. Protective effects of protein hydrolysate from marine microalgae Navicula incerta on ethanol-induced toxicity in HepG2/CYP2E1 cells. Food Chem. 2012, 132, 677–685. [Google Scholar] [CrossRef]
- Kang, K.-H.; Qian, Z.-J.; Ryu, B.; Kim, S.-K. Characterization of growth and protein contents from microalgae Navicula incerta with the investigation of antioxidant activity of enzymatic hydrolysates. Food Sci. Biotechnol. 2011, 20, 183–191. [Google Scholar] [CrossRef]
- Montone, C.M.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Piovesana, S.; Zenezini Chiozzi, R.; Laganà, A. Peptidomic strategy for purification and identification of potential ACE-inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae. Anal. Bioanal. Chem. 2018, 410, 3573–3586. [Google Scholar] [CrossRef] [PubMed]
- Randhir, A.; Laird, D.W.; Maker, G.; Trengove, R.; Moheimani, N.R. Microalgae: A potential sustainable commercial source of sterols. Algal Res. 2020, 46, 101772. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, H.; Kang, S.; Park, W.J. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients 2016, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Ramesh-Kumar, B.; Deviram, G.; Mathimani, T.; Duc, P.A.; Pugazhendhi, A. Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 2019, 17, 583–588. [Google Scholar] [CrossRef]
- Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef]
- Molina Grima, E.; Sánchez Pérez, J.A.; Garcia Camacho, F.; Garcia Sánchez, J.L.; López Alonso, D. n-3 PUFA productivity in chemostat cultures of microalgae. Appl. Microbiol. Biotechnol. 1993, 38, 599–605. [Google Scholar] [CrossRef]
- Ma, R.; Thomas-Hall, S.R.; Chua, E.T.; Eltanahy, E.; Netzel, M.E.; Netzel, G.; Lu, Y.; Schenk, P.M. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae. Bioresour. Technol. 2018, 252, 118–126. [Google Scholar] [CrossRef]
- Meireles, L.A.; Guedes, A.C.; Malcata, F.X. Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol. Bioeng. 2003, 81, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Matsakas, L.; Hrůzová, K.; Rova, U.; Christakopoulos, P. Biosynthesis of Nutraceutical Fatty Acids by the Oleaginous Marine Microalgae Phaeodactylum tricornutum Utilizing Hydrolysates from Organosolv-Pretreated Birch and Spruce Biomass. Mar. Drugs 2019, 17, 119. [Google Scholar] [CrossRef] [Green Version]
- de Swaaf, M.E.; de Rijk, T.C.; Eggink, G.; Sijtsma, L. Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. J. Biotechnol. 1999, 70, 185–192. [Google Scholar] [CrossRef]
- Yokochi, T.; Honda, D.; Higashihara, T.; Nakahara, T. Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl. Microbiol. Biotechnol. 1998, 49, 72–76. [Google Scholar] [CrossRef]
- Colla, L.M.; Bertolin, T.E.; Costa, J.A. Fatty acids profile of Spirulina platensis grown under different temperatures and nitrogen concentrations. Z. Nat. C 2004, 59, 55–59. [Google Scholar] [CrossRef]
- Su, G.; Jiao, K.; Chang, J.; Li, Z.; Guo, X.; Sun, Y.; Zeng, X.; Lu, Y.; Lin, L. Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresour. Bioprocess. 2016, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Romero, S.; Torrella, J.R.; Pagès, T.; Viscor, G.; Torres, J.L. Edible Microalgae and Their Bioactive Compounds in the Prevention and Treatment of Metabolic Alterations. Nutrients 2021, 13, 563. [Google Scholar] [CrossRef]
- Andreeva, A.; Budenkova, E.; Babich, O.; Sukhikh, S.; Dolganyuk, V.; Michaud, P.; Ivanova, S. Influence of Carbohydrate Additives on the Growth Rate of Microalgae Biomass with an Increased Carbohydrate Content. Mar. Drugs 2021, 19, 381. [Google Scholar] [CrossRef] [PubMed]
- Guccione, A.; Biondi, N.; Sampietro, G.; Rodolfi, L.; Bassi, N.; Tredici, M.R. Chlorella for protein and biofuels: From strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnol. Biofuels 2014, 7, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajasekar, P.; Palanisamy, S.; Anjali, R.; Vinosha, M.; Elakkiya, M.; Marudhupandi, T.; Tabarsa, M.; You, S.; Prabhu, N.M. Isolation and structural characterization of sulfated polysaccharide from Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial activity and Zebrafish growth and reproductive performance. Int. J. Biol. Macromol. 2019, 141, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Rachidi, F.; Benhima, R.; Sbabou, L.; El Arroussi, H. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnol. Rep. 2020, 25, e00426. [Google Scholar] [CrossRef] [PubMed]
- Parada, J.L.; Zulpa de Caire, G.; Zaccaro de Mulé, M.C.; Storni de Cano, M.M. Lactic acid bacteria growth promoters from Spirulina platensis. Int. J. Food Microbiol. 1998, 45, 225–228. [Google Scholar] [CrossRef]
- Yaakob, Z.; Ali, E.; Zainal, A.; Mohamad, M.; Takriff, M.S. An overview: Biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. 2014, 21, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberman, N.G.; Ochbaum, G.; Mejubovsky-Mikhelis, M.; Bitton, R.; Malis Arad, S. Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum. Int. J. Biol. Macromol. 2020, 145, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Pagels, F.; Salvaterra, D.; Amaro, H.M.; Guedes, A.C. Chapter 18—Pigments from microalgae. In Handbook of Microalgae-Based Processes and Products; Jacob-Lopes, E., Maroneze, M.M., Queiroz, M.I., Zepka, L.Q., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 465–492. [Google Scholar]
- Mulders, K.J.M.; Lamers, P.P.; Martens, D.E.; Wijffels, R.H. Phototrophic pigment production with microalgae: Biological constraints and opportunities. J. Phycol. 2014, 50, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Bubrick, P. Production of astaxanthin from Haematococcus. Bioresour. Technol. 1991, 38, 237–239. [Google Scholar] [CrossRef]
- Sathasivam, R.; Ki, J.-S. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Mar. Drugs 2018, 16, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljubic, A.; Jacobsen, C.; Holdt, S.L.; Jakobsen, J. Microalgae Nannochloropsis oceanica as a future new natural source of vitamin D(3). Food Chem. 2020, 320, 126627. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Cárdenas, E.C.; Tuan, P.M.; Janssen, M.; Wijffels, R.H. Vitamin E (α-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomol. Eng. 2003, 20, 139–147. [Google Scholar] [CrossRef]
- Watanabe, F.; Takenaka, S.; Kittaka-Katsura, H.; Ebara, S.; Miyamoto, E. Characterization and bioavailability of vitamin B12-compounds from edible algae. J. Nutr. Sci. Vitam. 2002, 48, 325–331. [Google Scholar] [CrossRef]
- Bito, T.; Bito, M.; Asai, Y.; Takenaka, S.; Yabuta, Y.; Tago, K.; Ohnishi, M.; Mizoguchi, T.; Watanabe, F. Characterization and Quantitation of Vitamin B12 Compounds in Various Chlorella Supplements. J. Agric. Food Chem. 2016, 64, 8516–8524. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.M.; Andrade, C.J.d.; Dias, M.; Nascimento, C.A.; Mendes, M.A. Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process. Technol. 2018, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- El-Baz, F.; aboul-Enein, A.; El baroty, G.; Youssef, A.; Abd El Baky, H. Accumulation of antioxidant vitamins in Dunaliella salina. Online J. Biolog. Sci. 2002, 2, 220–223. [Google Scholar]
- Tarento, T.D.C.; McClure, D.D.; Vasiljevski, E.; Schindeler, A.; Dehghani, F.; Kavanagh, J.M. Microalgae as a source of vitamin K1. Algal Res. 2018, 36, 77–87. [Google Scholar] [CrossRef]
- Becker, W. Microalgae in Human and Animal Nutrition. In Handbook of Microalgal Culture; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 312–351. [Google Scholar]
- Holman, B.W.B.; Kashani, A.; Malau-Aduli, A.E.O. Growth and body conformation responses of genetically divergent Australian sheep to Spirulina (Arthrospira platensis) supplementation. Am. J. Exp. Agric. 2012, 2, 160–173. [Google Scholar] [CrossRef]
- Kang, H.K.; Salim, H.M.; Akter, N.; Kim, D.W.; Kim, J.H.; Bang, H.T.; Kim, M.J.; Na, J.C.; Hwangbo, J.; Choi, H.C.; et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J. Appl. Poult. Res. 2013, 22, 100–108. [Google Scholar] [CrossRef]
- Fan, K.W.; Chen, F. Chapter 11—Production of High-Value Products by Marine Microalgae Thraustochytrids. In Bioprocessing for Value-Added Products from Renewable Resources; Yang, S.-T., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 293–323. [Google Scholar]
- Sheikhzadeh, N.; Tayefi-Nasrabadi, H.; Oushani, A.K.; Enferadi, M.H. Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 2012, 38, 413–419. [Google Scholar] [CrossRef]
- He, Y.; Lin, G.; Rao, X.; Chen, L.; Jian, H.; Wang, M.; Guo, Z.; Chen, B. Microalga Isochrysis galbana in feed for Trachinotus ovatus: Effect on growth performance and fatty acid composition of fish fillet and liver. Aquac. Int. 2018, 26, 1261–1280. [Google Scholar] [CrossRef]
- Ribeiro, D.M.; Bandarrinha, J.; Nanni, P.; Alves, S.P.; Martins, C.F.; Bessa, R.J.B.; Falcão, E.C.L.; Almeida, A.M. The effect of Nannochloropsis oceanica feed inclusion on rabbit muscle proteome. J. Proteom. 2020, 222, 103783. [Google Scholar] [CrossRef] [PubMed]
- Ginzberg, A.; Cohen, M.; Sod-Moriah, U.; Shany, S.; Rosenshtrauch, A.; Arad, S. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J. Appl. Phycol. 2000, 12, 325–330. [Google Scholar] [CrossRef]
- Franklin, S.T.; Martin, K.R.; Baer, R.J.; Schingoethe, D.J.; Hippen, A.R. Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. J. Nutr. 1999, 129, 2048–2054. [Google Scholar] [CrossRef] [PubMed]
- Kafarski, P. Rainbow code of biotechnology. Chemik 2012, 66, 814–816. [Google Scholar]
- Skjånes, K.; Aesoy, R.; Herfindal, L.; Skomedal, H. Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity. Physiol. Plant. 2021, 173, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Villarruel-López, A.; Ascencio, F.; Nuño, K. Microalgae, a Potential Natural Functional Food Source—A Review. Pol. J. Food Nutr. Sci. 2017, 67, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Villaró, S.; Ciardi, M.; Morillas-España, A.; Sánchez-Zurano, A.; Acién-Fernández, G.; Lafarga, T. Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Food 2021, 10, 2303. [Google Scholar] [CrossRef] [PubMed]
- Jewell, C.; O’Brien, N.M. Effect of dietary supplementation with carotenoids on xenobiotic metabolizing enzymes in the liver, lung, kidney and small intestine of the rat. Br. J. Nutr. 1999, 81, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malla, A.; Rosales-Mendoza, S.; Phoolcharoen, W.; Vimolmangkang, S. Efficient Transient Expression of Recombinant Proteins Using DNA Viral Vectors in Freshwater Microalgal Species. Front. Plant Sci. 2021, 12, 513. [Google Scholar] [CrossRef] [PubMed]
- Comission, E. Regulation (EC) No 1123/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Rodrigues, F.; Cádiz-Gurrea, M.d.l.L.; Nunes, M.A.; Pinto, D.; Vinha, A.F.; Linares, I.B.; Oliveira, M.B.P.P.; Carretero, A.S. 12—Cosmetics. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 393–427. [Google Scholar]
- Kim, S.-K.; Ravichandran, Y.D.; Khan, S.B.; Kim, Y.T. Prospective of the cosmeceuticals derived from marine organisms. Biotechnol. Bioprocess Eng. 2008, 13, 511–523. [Google Scholar] [CrossRef]
- Yarkent, Ç.; Gürlek, C.; Oncel, S.S. Potential of microalgal compounds in trending natural cosmetics: A review. Sustain. Chem. Pharm. 2020, 17, 100304. [Google Scholar] [CrossRef]
- Koller, M.; Muhr, A.; Braunegg, G. Microalgae as versatile cellular factories for valued products. Algal Res. 2014, 6, 52–63. [Google Scholar] [CrossRef]
- Letsiou, S.; Kalliampakou, K.; Gardikis, K.; Mantecon, L.; Infante, C.; Chatzikonstantinou, M.; Labrou, N.E.; Flemetakis, E. Skin protective effects of Nannochloropsis gaditana extract on H2O2-stressed human dermal fibroblasts. Front. Mar. Sci. 2017, 4, 221. [Google Scholar] [CrossRef] [Green Version]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Teuling, E.; Schrama, J.W.; Gruppen, H.; Wierenga, P.A. Characterizing emulsion properties of microalgal and cyanobacterial protein isolates. Algal Res. 2019, 39, 101471. [Google Scholar] [CrossRef]
- Dong, T.; Knoshaug, E.P.; Pienkos, P.T.; Laurens, L.M.L. Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review. Appl. Energy 2016, 177, 879–895. [Google Scholar] [CrossRef] [Green Version]
- Günerken, E.; D’Hondt, E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H. Cell disruption for microalgae biorefineries. Biotechnol. Adv. 2015, 33, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Cho, J.M.; Chang, Y.K.; Oh, Y.-K. Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresour. Technol. 2017, 244, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Grimi, N.; Dubois, A.; Marchal, L.; Jubeau, S.; Lebovka, N.I.; Vorobiev, E. Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour. Technol. 2014, 153, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Menegotto, A.L.L.; Fernandes, I.A.; Steffens, J.; Valduga, E. Protein purification of Arthrospira platensis using aqueous two-phase system composed of polyethylene glycol and potassium phosphate/sodium citrate. J. Appl. Phycol. 2021, 34, 311–320. [Google Scholar] [CrossRef]
- Vernès, L.; Abert-Vian, M.; El Maâtaoui, M.; Tao, Y.; Bornard, I.; Chemat, F. Application of ultrasound for green extraction of proteins from spirulina. Mechanism, optimization, modeling, and industrial prospects. Ultrason. Sonochem. 2019, 54, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Phong, W.N.; Le, C.F.; Show, P.L.; Lam, H.L.; Ling, T.C. Evaluation of Different Solvent Types on the Extraction of Proteins from Microalgae. Chem. Eng. Trans. 2016, 52, 1063–1068. [Google Scholar]
- Phong, W.N.; Le, C.F.; Show, P.L.; Chang, J.S.; Ling, T.C. Extractive disruption process integration using ultrasonication and an aqueous two-phase system for protein recovery from Chlorella sorokiniana. Eng. Life Sci. 2017, 17, 357–369. [Google Scholar] [CrossRef]
- Chia, S.R.; Chew, K.W.; Zaid, H.F.M.; Chu, D.-T.; Tao, Y.; Show, P.L. Microalgal Protein Extraction from Chlorella vulgaris FSP-E Using Triphasic Partitioning Technique with Sonication. Front. Bioeng. Biotechnol. 2019, 7, 396. [Google Scholar] [CrossRef] [Green Version]
- Postma, P.R.; Miron, T.L.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour. Technol. 2015, 184, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Ursu, A.-V.; Marcati, A.; Sayd, T.; Sante-Lhoutellier, V.; Djelveh, G.; Michaud, P. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresour. Technol. 2014, 157, 134–139. [Google Scholar] [CrossRef]
- Awaluddin, S.A.; Thiruvenkadam, S.; Izhar, S.; Hiroyuki, Y.; Danquah, M.K.; Harun, R. Subcritical Water Technology for Enhanced Extraction of Biochemical Compounds from Chlorella vulgaris. Biomed. Res. Int. 2016, 2016, 5816974. [Google Scholar] [CrossRef] [Green Version]
- Safi, C.; Ursu, A.V.; Laroche, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Res. 2014, 3, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Ba, F.; Ursu, A.V.; Laroche, C.; Djelveh, G. Haematococcus pluvialis soluble proteins: Extraction, characterization, concentration/fractionation and emulsifying properties. Bioresour. Technol. 2016, 200, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Schwenzfeier, A.; Wierenga, P.A.; Gruppen, H. Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour. Technol. 2011, 102, 9121–9127. [Google Scholar] [CrossRef] [PubMed]
- Suarez Garcia, E.; van Leeuwen, J.; Safi, C.; Sijtsma, L.; Eppink, M.H.M.; Wijffels, R.H.; van den Berg, C. Selective and energy efficient extraction of functional proteins from microalgae for food applications. Bioresour. Technol. 2018, 268, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, S.A.; Emire, S.A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon 2020, 6, e04765. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Fleurence, J.; Le Coeur, C.; Mabeau, S.; Maurice, M.; Landrein, A. Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. J. Appl. Phycol. 1995, 7, 577–582. [Google Scholar] [CrossRef]
- Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT Food Sci. Technol. 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Durmaz, Y.; Kilicli, M.; Toker, O.S.; Konar, N.; Palabiyik, I.; Tamtürk, F. Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Res. 2020, 47, 101811. [Google Scholar] [CrossRef]
- Gouveia, L.; Batista, A.P.; Raymundo, A.; Bandarra, N.M. Spirulina maxima and Diacronema vlkianum microalgae in vegetable gelled desserts. Nutr. Food Sci. 2008, 38, 492–501. [Google Scholar] [CrossRef]
- Hlaing, S.A.A.; Sadiq, M.B.; Anal, A.K. Enhanced yield of Scenedesmus obliquus biomacromolecules through medium optimization and development of microalgae based functional chocolate. J. Food Sci. Technol. 2020, 57, 1090–1099. [Google Scholar] [CrossRef]
- Batista, A.P.; Gouveia, L.; Nunes, M.C.; Franco, J.M.; Raymundo, A. Microalgae Biomass as a Novel Functional Ingredient in Mixed Gel Systems. In Gums and Stabilisers for the Food Industry 14; The Royal Society of Chemistry: London, UK, 2008; pp. 487–494. [Google Scholar]
- Malik, P.; Kempanna, C.; Murthy, N.; Anjum, A. Quality Characteristics of Yoghurt Enriched with Spirulina Powder. Mysore J. Agric. Sci. 2013, 47, 354–359. [Google Scholar]
- Shalaby, S.M. Quality of Novel Healthy Processed Cheese Analogue Enhanced with Marine Microalgae Chlorella vulgaris Biomass. World Appl. Sci. J. 2013, 93, 914–925. [Google Scholar]
- Bertsch, P.; Böcker, L.; Mathys, A.; Fischer, P. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci. Technol. 2021, 108, 326–342. [Google Scholar] [CrossRef]
- Teuling, E.; Wierenga, P.A.; Schrama, J.W.; Gruppen, H. Comparison of Protein Extracts from Various Unicellular Green Sources. J. Agric. Food Chem. 2017, 65, 7989–8002. [Google Scholar] [CrossRef] [Green Version]
- Benelhadj, S.; Gharsallaoui, A.; Degraeve, P.; Attia, H.; Ghorbel, D. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chem. 2016, 194, 1056–1063. [Google Scholar] [CrossRef]
- Martelli, F.; Alinovi, M.; Bernini, V.; Gatti, M.; Bancalari, E. Arthrospira platensis as Natural Fermentation Booster for Milk and Soy Fermented Beverages. Foods 2020, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Niccolai, A.; Venturi, M.; Galli, V.; Pini, N.; Rodolfi, L.; Biondi, N.; D’Ottavio, M.; Batista, A.P.; Raymundo, A.; Granchi, L.; et al. Development of new microalgae-based sourdough “crostini”: Functional effects of Arthrospira platensis (spirulina) addition. Sci. Rep. 2019, 9, 19433. [Google Scholar] [CrossRef]
- Grossmann, L.; Ebert, S.; Hinrichs, J.; Weiss, J. Formation and Stability of Emulsions Prepared with a Water-Soluble Extract from the Microalga Chlorella protothecoides. J. Agric. Food Chem. 2019, 67, 6551–6558. [Google Scholar] [CrossRef]
- Abd El-Razik, M.M.; Mohamed, A.G. Utilization of acid casein curd enriched with Chlorella vulgaris biomass as substitute of egg in mayonnaise production. World Appl. Sci. J. 2013, 26, 917–925. [Google Scholar] [CrossRef]
- Hossain, A.; Brennan, M.A.; Mason, S.L.; Guo, X.; Zeng, X.A.; Brennan, C.S. The Effect of Astaxanthin-Rich Microalgae “Haematococcus pluvialis” and Wholemeal Flours Incorporation in Improving the Physical and Functional Properties of Cookies. Foods 2017, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Hernández-López, I.; Benavente Valdés, J.R.; Castellari, M.; Aguiló-Aguayo, I.; Morillas-España, A.; Sánchez-Zurano, A.; Acién-Fernández, F.G.; Lafarga, T. Utilisation of the marine microalgae Nannochloropsis sp. and Tetraselmis sp. as innovative ingredients in the formulation of wheat tortillas. Algal Res. 2021, 58, 102361. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Helbig, A.; Wierenga, P.A.; Gruppen, H. Emulsion properties of algae soluble protein isolate from Tetraselmis sp. Food Hydrocoll. 2013, 30, 258–263. [Google Scholar] [CrossRef]
- US FDA. GRAS Notices. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices (accessed on 22 December 2021).
- Ruiz, J.; Olivieri, G.; de Vree, J.; Bosma, R.; Willems, P.; Reith, J.H.; Eppink, M.H.M.; Kleinegris, D.M.M.; Wijffels, R.H.; Barbosa, M.J. Towards industrial products from microalgae. Energy Environ. Sci. 2016, 9, 3036–3043. [Google Scholar] [CrossRef] [Green Version]
- Tredici, M.R.; Rodolfi, L.; Biondi, N.; Bassi, N.; Sampietro, G. Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Res. 2016, 19, 253–263. [Google Scholar] [CrossRef] [Green Version]
- van der Spiegel, M.; Noordam, M.Y.; van der Fels-Klerx, H.J. Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production. Compr. Rev. Food Sci. Food Saf. 2013, 12, 662–678. [Google Scholar] [CrossRef] [PubMed]
- Moaveni, S.; Salami, M.; Khodadadi, M.; McDougall, M.; Emam-Djomeh, Z. Investigation of S. limacinum microalgae digestibility and production of antioxidant bioactive peptides. LWT 2022, 154, 112468. [Google Scholar] [CrossRef]
- Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
Species | Proteins [% DW] | Lipids [% DW] | Carbohydrates [% DW] |
---|---|---|---|
Arthrospira platensis | 53–70 | 6–20 | 12–24 |
Chlorella vulgaris | 49–55 | 3–36 | 7–42 |
Dunaliella salina | 57 | 32 | 6 |
Haematococcus pluvialis | 48 | 15 | 27 |
Nannochloropsis oceanica | 29 | 19–24 | 32–39 |
Nannochloropsis sp. | 29–32 | 15–18 | 9–36 |
Schizochytrium sp. | 12 | 32 | 38–71 |
Species | Protein [% DW] | PDCAAS | Cell Wall Composition |
---|---|---|---|
Arthrospira platensis | 53–70 [21] | 0.84 [27] | Peptidoglycan + outer membrane [28] |
Chlorella sorokiniana | 50 [29] | 0.81 [29] | Glucosamin, rhamnose [30] |
Chlorella vulgaris | 54 [29] | 0.77 [29] | Cellulose [31] |
Dunaliella salina | 57 [21] | n/d | No cell wall, glycocalyx-type cell covering [32] |
Haematococcus pluvialis | 48 [21] | n/d | Cellulose, mannan [33] |
Isochrysis galbana | 29 [34] | n/d | No cell wall [35] |
Nannochloropsis gaditana | 20–45 [36] | n/d | Cellulose (inner wall) + outer hydrophobic algaenan layer [37] |
Nannochloropsis oculata | 35 [34] | n/d | Cellulose [38] |
Pavlova lutheri | 29 [34] | n/d | Cellulose, hemicellulose [38] |
Scenedesmus obliquus | 50–56 [21] | n/d | - |
Schizochytrium sp. | 12 [39] | n/d | Galactose [40] |
Tetraselmis suecica | 31 [34] | n/d | Polysaccharides (high content of 3-deoxy-d-manno-oct-2-ulosonic acid, galacturonic acid, galactose) [41] |
Species | Enzyme Used for Hydrolysis | Peptide | Effect | References |
---|---|---|---|---|
Arthrospira maxima | Trypsin, chymotrypsin, and pepsin | LDAVNR MMLDF | Anti-inflammatory | [47] |
Arthrospira platensis | Thermolysin | FSESSAPEQHY | Antioxidant | [48] |
Arthrospira platensis | Trypsin | n/d | Antitumor | [49] |
Arthrospira platensis | Pepsin | IAE FAL AEL IAPG VAF | ACE-1 inhibitory | [50] |
Chlorella ellipsoidea | Pepsin | LNGDVW | Antioxidant | [51] |
Chlorella pyrenoidosa | Papain | n/d | Antitumor | [52] |
Chlorella pyrenoidosa | Trypsin, pepsin | FLKPLGSGK QIYTMGK LFVAEAIYK QHAGTKAK | ACE-inhibitory DPP-IV inhibitory | [53] |
Chlorella pyrenoidosa | Pepsin, flavourzyme, alcalase, and papain | VECYGPNRPQF | Ant-inflammatory Anti-atherosclerotic | [54] |
Chlorella sorokiniana | Pepsin, mixture of proteases | n/d | DPP-IV inhibitory ACE-1 inhibitory Antioxidant | [55] |
Chlorella vulgaris | Pepsin | VECYGPNRPQF | Protective effect on DNA Antioxidant | [56] |
Chlorella vulgaris | Pepsin | IVVE AFL FAL AEL VVPPA | ACE-1 inhibitory | [50] |
Isochrysis zhanjiangensis | Chymotrypsin | NDAEYGICGF | Antioxidant | [57] |
Nannochloropsis oculata | Alcalase | LVTVM | ACE-inhibitory | [58] |
Nannochloropsis oculata | Pepsin | GMNNLTP LEQ | ACE-inhibitory | [59] |
Navicula incerta | Papain | n/d | Cytoprotective effect Antioxidant | [60] |
Navicula incerta | Alcalase neutrase, pepsin, papain, trypsin, pronase-E, α-chymotrypsin | n/d | Antioxidant | [61] |
Tetradesmus obliquus | Alcalase | WPRGYL GPDRPKFLGPF WYGPDRPKFL SDWDRF | Antioxidant ACE-1 inhibitory | [62] |
Species | Omega-3 [% of FA] | Omega-3 [% of DW] | References |
Isochrysis galbana | EPA 25 | EPA 5.3 | [67] |
Nannochloropsis oculata | EPA 20 | EPA 8.3 | [68] |
Pavlova lutheri | EPA 12 | EPA 2.3 | [69] |
Phaeodactylum tricornutum | EPA 20 | EPA 7.7 | [70] |
Cryptheconidium cohnii | DHA 44 | DHA 5.8 | [71] |
Schizochytrium sp. | DHA 43 | DHA 11 | [72] |
Species | Omega-6 [% of FA] | Omega-6 [% of DW] | References |
Arthrospira platensis | GLA 20–23 | - | [73] |
Porphyridium purpureum | ARA 24 | AEA 0.8 | [74] |
Species | Carbohydrate | Application | References |
---|---|---|---|
Arthrospira platensis | Sulfated polysaccharides—exopolysaccharides/glycogen | Antibacterial and antioxidant activity | [78] |
Arthrospira platensis Dunaliella salina Porphyridium sp. | Polysaccharides | Plant bio-stimulants | [79] |
Arthrospira platensis | Extracellular polysaccharides—exopolysaccharides/glycogen | Prebiotic/stimulate growth of Lactobacilli | [80] |
Chlorella sp. | β-1,3-glucan | Immuno-stimulator, antioxidant, reduce blood lipid levels, thickener in the food industry | [81] |
Phaeodactylum tricornutum | Mannose | Alternative to antibiotics, prebiotic effect | [8] |
Porphyridium sp. | Sulfated polysaccharides | Thickening/lubrication agent | [82] |
Species | Vitamin | Vitamin Recommended Daily Allowance (RDA) | Vitamin [mg/100 g DW] | References |
---|---|---|---|---|
Arthrospira sp. | A | 800 µg | 0.34 | [91] |
Chlorella sp. | A | 30.77 | [91] | |
Arthrospira sp. | B3 | 18 mg | 12.8 | [91] |
Chlorella sp. | B3 | 23.8 | [91] | |
Arthrospira sp. | B9 | 200 µg | 0.094 | [91] |
Chlorella sp. | B9 | 0.094 | [91] | |
Arthrospira sp. | C | 60 mg | 10.1 | [91] |
Chlorella sp. | C | 10.4 | [91] | |
Dunaliella salina | C | 2500 | [92] | |
Nannochloropsis oceanica | D3 | 5 µg | 0.1 | [87] |
Tetraselmis suecica | E | 10 µg | 108.0 | [88] |
Anabaena cylindrica | K1 | 120 µg | 20.0 | [93] |
Species | Animal, Duration of Experiment | Content of Microalga in Diet | Findings | References |
---|---|---|---|---|
Arthrospira platensis | Lambs 6 weeks | 10–20% | Increase of weight (10%) | [96] |
Chlorella sp. | Broiler chicks 4 weeks | 1% | Increase of average daily gain (ADG) | [97] |
Haematococcus pluvialis | Rainbow trout 30 days | 0.3% | Decreased serum glucose, Triglycerides (TAG) and cholesterol levels | [98] |
Isochrysis galbana | Silver fish 80 days | 4.5–5% | Increased fish growth performance Increased content of omega-3 fatty acids | [99] |
Nannochloropsis oceanica | Rabbits 5 weeks | 4.5% | Increase of abundance of proteins related to amino acid catabolism and synthesis Results suggested that more tender meat may result from algae feeding | [100] |
Porphyridium sp. | Chickens 10 days | 5–10% | Decreased feed intake (10%) Decreased serum cholesterol level (28%) | [101] |
Schizochytrium sp. | Dairy cows 6 weeks | 4% | Decreased feed intake | [102] |
Species | Observed Effects | References |
---|---|---|
Arthrospira maxima | Skin protection Skin regeneration | [116] |
Arthrospira platensis | Wrinkle formation prevention Early skin aging prevention | [116] |
Chlorella vulgaris | Support collagen repair mechanism | [117] |
Haematococcus pluvialis | Sunscreen protection | [117] |
Nannochloropsis gaditana | Decreased oxidative stress in human dermal fibroblasts Skin protection Skin hydration | [118] |
Nannochloropsis sp. | Tanning cosmetics | [117] |
Mechanical Techniques of Cell Disruption | ||
Technique | Advantages | Disadvantages |
Bead mills | Low dependence on cell wall composition [20] High efficiency [117] High biomass loading [118] Easy scale-up [118] Short processing time [119] | High energy consumption [118] Difficult/energy consuming control of temperature [118,119] Low selectivity [20] |
High-pressure homogenization | Low dependence on cell wall composition [20] High efficiency [119] Easy scale-up [117] Simple [117] Applicable to highly concentrated microalgae pastes [119] | Difficult/energy consuming control of temperature [120] Low selectivity [120] High energy consumption [20] |
Microwave | High efficiency [118,119] Short processing time [119] Easy scale-up [118] | Intensive heat production [118] Formation of free radicals [118] |
Osmotic shock | Simple [119] Low energy consumption [20] Easy scale-up [119] | Low efficiency [117] High cost of salt [117,119] |
Pulsed electric field | Easy scale-up [118] Mild conditions [118] Selective extraction of water-soluble compounds [119] | Medium has to be non-conductive [117,118] |
Subcritical water hydrolysis | Possible to scale-up [121] | High capital cost [121] |
Ultrasonication | Simple [20] | Intensive heat production [118] Low efficiency [118] Low selectivity Formation of free radicals [118] High energy consumption [117,119] Difficult scale-up [117] |
Non-Mechanical Techniques of Cell Disruption | ||
Technique | Advantages | Disadvantages |
Chemical disruption | Low energy consumption [117] | High dependence on cell wall composition [118] Risk of protein degradation [119] Contamination by solvents [118] |
Enzymatic disruption | Low energy consumption, biological specificity, mild operational conditions, low capital investments [118] Suitable for thermo-sensitive compounds [117] High efficiency [119] Environmentally friendly [119] | High cost of enzymes [117,118] Long processing time [118] Low production capacity [118] Product inhibition [118] Difficult scale-up [119] |
Species | Extraction Method, Conditions | Results | References |
---|---|---|---|
Arthrospira platensis | Aqueous two-phase system (16% sodium citrate, 18% PEG 1500 kDa) | Protein recovery 75% | [121] |
Arthrospira platensis | Manothermosonication (probe 20 kHz, solvent sodium buffer) | Protein recovery 50% | [122] |
Chlamydomonas sp. | Solvent extraction (tested solvents: water, methanol, ethanol, 1-propanol) | Highest yields using water | [123] |
Chlorella sorokiniana | Aqueous two-phase system (30% K3PO4, 20% methanol and 3% NaCl) | Yield 84.2% | [124] |
Chlorella vulgaris | Ultrasonic-assisted three phase partitioning(salt saturation 50%, slurry to t-butanol 1:2, sonication power 100%, irradiation time 10 min, frequency 35 kHz, duty cycle 80%, biomass loading 0.75 wt%) | Separation efficiency 74.6%Yield 56.6% | [125] |
Chlorella vulgaris | Bead milling (DYNO-Mill Type MULTI LAB, 1 mm ZrO2 beads, time < 1 min) | Yield 42% | [126] |
Chlorella vulgaris | High pressure and high pH (pressure 2.7 kbar, two passes, pH 12) | Yield 98% | [127] |
Chlorella vulgaris | Subcritical water extraction (277 °C, 5% of microalgae biomass loading, time 5 min) | Yield 31.2% | [128] |
Haematococcus pluvialisNannochloropsis oculataChlorella vulgarisArthrospira platensisPorphyridium cruentum | High pressure homogenization (pressure 2.7 kbar, two passes) | Yield 41.0%Yield 52.3%Yield 52.8%Yield 78.0%Yield 90.0% | [129] |
Haematococcus pluvialis | High pressure homogenization (pressure 2.7 kbar) | Yield 73% | [130] |
Nannochloropsis sp. | High pressure homogenization (pressure 1.5 kbar, three passes) | Yield 91% | [120] |
Tetraselmis sp. | Bead milling (DYNO-Mill Type MULTI LAB, ceramic beads 0.4–0.6 mm) | Yield 79% | [131] |
Tetraselmis suecica | Bead milling (DYNO-Mill Type MULTI LAB, Y2O3 stabilized ZrO2 beads 0.4 mm) | Yield 22.5% | [132] |
Species | Fraction/Product | Effects | References |
---|---|---|---|
Arthrospira platensis Nannochloropsis gaditana Tetraselmis impellucida Scenedesmus dimorphus | Soluble protein isolate | High solubility at low ionic strength and pH < 6.5 | [144] |
Arthrospira platensis | Soluble protein isolate | High oil and water absorption capacity, high emulsifying capacity, high foam stability All properties strongly influenced by pH | [145] |
Arthrospira platensis | Biomass | Boost of fermentation performance of lactic acid bacteria (LAB)22 a | [146] |
Arthrospira platensis | Biomass incorporated into bread (crostini) | Increased protein and phenolic content Increased antioxidant capacity Decreased protein digestibility | [147] |
Chlorella protothecoides | Water soluble extract of lyophilized biomass | Emulsion stable for at least 7 days, resistant to high salt concentration (to 500 mM NaCl) at pH 2–9 | [148] |
Chlorella vulgaris | Protein extract | Emulsifying capacity and stability comparable or higher that to commercial emulsifiers | [127] |
Chlorella vulgaris | Biomass incorporated into mayonnaise (replacement of eggs by Chlorella and acid casein curd) | Improved nutritional value and stability Better rheological properties Positive effect on sensory characteristics | [149] |
Haematococcus pluvialis | Biomass incorporated into cookies | Increased phenolic content and antioxidant capacity Reduction in the rate of glucose released during digestion | [150] |
Nannochloropsis sp. Tetraselmis sp. | Biomass incorporated into wheat tortillas | Increased phenolic content and antioxidant capacity No difference in physical parameters Sensory acceptable | [151] |
Tetraselmis sp. | Soluble protein isolate | High emulsion stability at pH 5–7 at low ionic strength | [152] |
Safety Aspect | Species | Application |
---|---|---|
GRAS | Arthrospira platensis | Biomass |
Chlorella protothecoides | Biomass, oil | |
Crypteconidium cohnii | DHA-rich oil | |
Dunaliella bardawil | Biomass | |
Haematococcus pluvialis | Astaxanthin | |
No toxins known | Synechococcus sp. | |
Tetraselmis sp. | ||
Chlamydomonas reinhardtii | ||
Haematococcus pluvialis | ||
Chlororoccum sp. | ||
Scenedesmus | ||
Desmodesmus sp. | ||
Parietochlors incisa | ||
Navicula sp. | ||
Nitzschia dissipata | ||
Phaeodactylum tricornutum | ||
Thalassiosira pseudonana | ||
Odonrella aurita | ||
Skeletonema sp. | ||
Monodus subterraneus | ||
Nannochloropsis sp. | ||
Isochrysis sp. | ||
Pavlova sp. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucakova, S.; Branyikova, I.; Hayes, M. Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. Appl. Sci. 2022, 12, 4402. https://doi.org/10.3390/app12094402
Lucakova S, Branyikova I, Hayes M. Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. Applied Sciences. 2022; 12(9):4402. https://doi.org/10.3390/app12094402
Chicago/Turabian StyleLucakova, Simona, Irena Branyikova, and Maria Hayes. 2022. "Microalgal Proteins and Bioactives for Food, Feed, and Other Applications" Applied Sciences 12, no. 9: 4402. https://doi.org/10.3390/app12094402
APA StyleLucakova, S., Branyikova, I., & Hayes, M. (2022). Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. Applied Sciences, 12(9), 4402. https://doi.org/10.3390/app12094402