Accurate Characterization of the Properties of the Rare-Earth-Doped Crystal for Laser Cooling
Abstract
:1. Introduction
2. LITMoS Test Theory
3. Experimental Set-Up
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Epstein, R.I.; Buchwald, M.I.; Edwards, B.C.; Gosnell, T.R.; Mungan, C.E. Observation of laser-induced fluorescent cooling of a solid. Nature 1995, 377, 500–503. [Google Scholar] [CrossRef]
- Seletskiy, D.V.; Melgaard, S.D.; Bigotta, S.; Di Lieto, A.; Tonelli, M.; Sheik-Bahae, M. Laser cooling of solids to cryogenic temperatures. Nat. Photonics 2010, 4, 161–164. [Google Scholar] [CrossRef]
- Mills, G.; Mord, A. Performance modeling of optical refrigerators. Cryogenics 2006, 46, 176–182. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Laser cooling of solids. Rep. Prog. Phys. 2010, 73, 086501. [Google Scholar] [CrossRef] [Green Version]
- Nemova, G. Laser Cooling: Fundamental Properties and Applications; Jenny Stanford Publishing: New York, NY, USA, 2016. [Google Scholar]
- Epstein, R.I.; Sheik-Bahae, M. Optical Refrigeration: Science and Applications of Laser Cooling of Solids; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Seletskiy, D.; Hehlen, M.; Epstein, R.; Sheik-Bahae, M. Cryogenic optical refrigeration. Adv. Opt. Photonics 2012, 4, 78–107. [Google Scholar] [CrossRef] [Green Version]
- Rostami, S.; Albrecht, A.R.; Volpi, A.; Hehlen, M.P.; Tonelli, M.; Sheik-Bahae, M. Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers. Opt. Lett. 2019, 44, 1419–1422. [Google Scholar] [CrossRef]
- Yang, Z.; Meng, J.; Albrecht, A.R.; Sheik-Bahae, M. Radiation-balanced Yb:YAG disk laser. Opt. Express 2019, 27, 1392–1400. [Google Scholar] [CrossRef]
- Xia, X.; Pant, A.; Davis, E.J.; Pauzauskie, P.J. Design of a radiation-balanced fiber laser via optically active composite cladding materials. J. Opt. Soc. Am. B 2019, 36, 3307–3314. [Google Scholar] [CrossRef]
- Khurgin, J.B. Radiation-balanced tandem semiconductor/Yb3+:YLF lasers: Feasibility study. J. Opt. Soc. Am. B 2020, 37, 1886–1895. [Google Scholar] [CrossRef]
- Knall, J.M.; Engholm, M.; Boilard, T.; Bernier, M.; Digonnet, M.J.F. Radiation-Balanced Silica Fiber Amplifier. Phys. Rev. Lett. 2021, 127, 013903. [Google Scholar] [CrossRef]
- Nemova, G. Radiation-Balanced Lasers: History, Status, Potential. Appl. Sci. 2021, 11, 7539. [Google Scholar] [CrossRef]
- Peysokhan, M.; Mobini, E.; Allahverdi, A.; Abaie, B.; Mafi, A. Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers. Photon. Res. 2020, 8, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Melgaard, S.; Seletskiy, D.; Polyak, V.; Asmerom, Y.; Sheik-Bahae, M. Identification of parasitic losses in Yb: YLF and prospects for optical refrigeration down to 80K. Opt. Express 2014, 22, 7756–7764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyt, C.W.; Hasselbeck, M.P.; Sheik-Bahae, M.; Epstein, R.I.; Greenfield, S.; Thiede, J.; Distel, J.; Valencia, J. Advances in laser cooling of thulium-doped glass. J. Opt. Soc. Am. B 2003, 20, 1066–1074. [Google Scholar] [CrossRef]
- Walsh, B.M.; Barnes, N.P.; Petros, M.; Yu, J.; Singh, U.N. Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4. J. Appl. Phys. 2004, 95, 3255–3271. [Google Scholar] [CrossRef]
- Rostami, S.; Albrecht, A.R.; Volpi, A.; Sheik-Bahae, M. Observation of optical refrigeration in a holmium-doped crystal. Photonics Res. 2019, 7, 445–450. [Google Scholar] [CrossRef]
- Fernandez, J.; Garcia-Adeva, A.J.; Balda, R. Anti-stokes laser cooling in bulk erbium-doped materials. Phys. Rev. Lett. 2006, 97, 033001. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Adeva, A.J. Spectroscopy, upconversion dynamics, and applications of -doped low-phonon materials. J. Lumin. 2008, 128, 697–702. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Laser cooling of Er3+-doped solids. Opt. Commun. 2010, 283, 3736–3739. [Google Scholar] [CrossRef]
- Soares de Lima Filho, E.; Nemova, G.; Loranger, S.; Kashyap, R. Laser-induced cooling of a Yb: YAG crystal in air at atmospheric pressure. Opt. Express 2013, 21, 24711–24720. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Laser cooling in Yb3+:YAG. J. Opt. Soc. Am. B 2014, 31, 340–348. [Google Scholar] [CrossRef]
- Cante, S.; Valle, S.; Yoon, S.J.; Mackenzie, J.I. 60W 946nm cryogenically-cooled Nd: YAG laser. Appl. Phys. B 2019, 125, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Allison, S.W.; Beshears, D.L.; Cates, M.R.; Scudiere, M.B.; Shaw, D.W.; Ellis, A.D. Luminescence of YAG: Dy and YAG: Dy, Er crystals to 1700 °C. Meas. Sci. Technol. 2020, 31, 1–10. [Google Scholar] [CrossRef]
- Zhong, B.; Yin, J.; Jia, Y.; Chen, L.; Hang, Y.; Yin, J. Laser cooling of Yb3+-doped LuLiF4 crystal. Opt. Lett. 2014, 39, 2747–2750. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.; Luo, H.; Shi, Y.; Yin, J. Laser cooling of 5 mol. % Yb3+:LuLiF4 crystal in air. Opt. Eng. 2016, 56, 011102. [Google Scholar] [CrossRef]
- Zhong, B.; Luo, H.; Lei, Y.; Shi, Y.; Yin, J. Forward to Cryogenic Temperature: Laser Cooling of Yb:LuLiF Crystal; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series: San Francisco, CA, USA, 2017; p. 101800C. [Google Scholar]
- Zhong, B.; Lei, Y.; Luo, H.; Shi, Y.; Yang, T.; Yin, J. Laser cooling of the Yb3+-doped LuLiF4 single crystal for optical refrigeration. J. Lumin. 2020, 226, 117472. [Google Scholar] [CrossRef]
- Püschel, S.; Mauerhoff, F.; Kränkel, C.; Tanaka, H. Solid-state laser cooling in Yb:CaF2 and Yb:SrF2 by anti-Stokes fluorescence. Opt. Lett. 2022, 47, 333–336. [Google Scholar] [CrossRef]
- Zhong, B.; Lei, Y.; Duan, X.; Yang, T.; Yin, J. Optical refrigeration of the Yb3+-doped YAG crystal close to the thermoelectric cooling limit. Appl. Phys. Lett. 2021, 118, 131104. [Google Scholar] [CrossRef]
- Hehlen, M.; Epstein, R.; Inoue, H. Model of Laser Cooling in the Yb3+-Doped Fluorozirconate Glass ZBLAN. Phys. Rev. B 2007, 75, 144302. [Google Scholar] [CrossRef] [Green Version]
- Thiede, J.; Distel, J.; Greenfield, S.R.; Epstein, R.I. Cooling to 208 K by optical refrigeration. Appl. Phys. Lett. 2005, 86, 154107. [Google Scholar] [CrossRef]
- Thomas, J.; Meyneng, T.; Ledemi, Y.; Rakotonandrasana, A.; Seletskiy, D.; Maia, L.; Messaddeq, Y.; Kashyap, R.; Epstein, R.I.; Seletskiy, D.V.; et al. Oxyfluoride Glass-Ceramics: A Bright Future for Laser Cooling; Photonic Heat Engines: Science and Applications II; SPIE OPTO: San Francisco, CA, USA, 2020; p. 112980E. [Google Scholar]
- Ruan, X.L.; Kaviany, M. Advances in Laser Cooling of Solids. J. Heat Transfer 2006, 129, 3–8. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Epstein, R.I. Optical refrigeration. Nat. Photonics 2007, 1, 693–699. [Google Scholar] [CrossRef]
- Seletskiy, D.V.; Melgaard, S.D.; Lieto, A.D.; Tonelli, M.; Sheikbahae, M. Laser cooling of a semiconductor load to 165 K. Opt. Express 2010, 18, 18061–18066. [Google Scholar] [CrossRef]
- Hehlen, M.P.; Sheik-Bahae, M.; Epstein, R.I.; Melgaard, S.D.; Seletskiy, D.V. Materials for Optical Cryocoolers. J. Mater. Chem. 2013, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Pant, A.; Ganas, A.S.; Jelezko, F.; Pauzauskie, P.J. Quantum Point Defects for Solid-State Laser Refrigeration. Adv. Mater. 2021, 33, 1905406. [Google Scholar] [CrossRef]
- Bigotta, S.; Di Lieto, A.; Parisi, D.; Toncelli, A.; Tonelli, M. Single Fluoride Crystals as Materials for Laser Cooling Applications; Laser Cooling of Solids: San Jose, CA, USA, 2007; pp. 75–84. [Google Scholar]
- Volpi, A.; Meng, J.; Gragossian, A.; Albrecht, A.R.; Rostami, S.; Lieto, A.D.; Epstein, R.I.; Tonelli, M.; Hehlen, M.P.; Sheik-Bahae, M. Optical refrigeration: The role of parasitic absorption at cryogenic temperatures. Opt. Express 2019, 27, 29710–29718. [Google Scholar] [CrossRef]
- Peysokhan, M.; Rostami, S.; Mobini, E.; Albrecht, A.R.; Kuhn, S.; Hein, S.; Hupel, C.; Nold, J.; Haarlammert, N.; Schreiber, T.; et al. Implementation of Laser-Induced Anti-Stokes Fluorescence Power Cooling of Ytterbium-Doped Silica Glass. ACS Omega 2021, 6, 8376–8381. [Google Scholar] [CrossRef]
- Knall, J.; Engholm, M.; Ballato, J.; Dragic, P.D.; Yu, N.; Digonnet, M.J. Experimental comparison of silica fibers for laser cooling. Opt. Lett. 2020, 45, 4020–4023. [Google Scholar] [CrossRef]
- Knall, J.; Engholm, M.; Boilard, T.; Bernier, M.; Vigneron, P.B.; Yu, N.; Dragic, P.D.; Ballato, J.; Digonnet, M.J.F. Radiation-balanced silica fiber laser. Optica 2021, 8, 830–833. [Google Scholar] [CrossRef]
- Knall, J.; Digonnet, M. Design of High-Power Radiation-Balanced Silica Fiber Lasers with a Doped Core and Cladding. J. Lightwave Technol. 2021, 39, 2497–2504. [Google Scholar] [CrossRef]
- Melgaard, S.D. Cryogenic Optical Refrigeration: Laser Cooling of Solids Below 123 K. Ph.D. Thesis, University of New Mexico, Albuquerque, NM, USA, 2013. [Google Scholar]
- Volpi, A.; Kock, J.; Albrecht, A.R.; Hehlen, M.P.; Epstein, R.I.; Sheik-Bahae, M. Open-aperture Z-scan study for absorption saturation: Accurate measurement of saturation intensity in YLF: Yb for optical refrigeration. Opt. Lett. 2021, 46, 1421–1424. [Google Scholar] [CrossRef]
- Seletskiy, D.V.; Melgaard, S.D.; Epstein, R.I.; Di Lieto, A.; Tonelli, M.; Sheik-Bahae, M. Precise determination of minimum achievable temperature for solid-state optical refrigeration. J. Lumin. 2013, 133, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Melgaard, S.D.; Seletskiy, D.V.; Di Lieto, A.; Tonelli, M.; Sheik-Bahae, M. Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature. Opt. Lett. 2013, 38, 1588–1590. [Google Scholar] [CrossRef] [Green Version]
- Melgaard, S.D.; Albrecht, A.R.; Hehlen, M.P.; Sheik-Bahae, M. Solid-state optical refrigeration to sub-100 Kelvin regime. Sci. Rep. 2016, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gragossian, A.; Ghasemkhani, M.; Meng, J.; Albrecht, A.; Tonelli, M.; Sheik-Bahae, M. Optical refrigeration inches toward liquid-nitrogen temperatures. SPIE Newsroom 2017, 2–4. [Google Scholar] [CrossRef]
- Püschel, S.; Kalusniak, S.; Kränkel, C.; Tanaka, H. Temperature-dependent radiative lifetime of Yb: YLF: Refined cross sections and potential for laser cooling. Opt. Express 2021, 29, 11106–11120. [Google Scholar] [CrossRef]
- Hehlen, M.P.; Meng, J.W.; Albrecht, A.R.; Lee, E.R.; Gragossian, A.; Love, S.P.; Hamilton, C.E.; Epstein, R.I.; Sheik-Bahae, M. First demonstration of an all-solid-state optical cryocooler. Light Sci. Appl. 2018, 7, 1–10. [Google Scholar] [CrossRef]
- Volpi, A.; Di Lieto, A.; Tonelli, M. Novel approach for solid state cryocoolers. Opt. Express 2015, 23, 821626. [Google Scholar] [CrossRef]
- Seletskiy, D.V.; Hasselbeck, M.P.; Sheik-Bahae, M. Resonant cavity-enhanced absorption for optical refrigeration. Appl. Phys. Lett. 2010, 96, 181106. [Google Scholar] [CrossRef] [Green Version]
- Gragossian, A.; Meng, J.; Ghasemkhani, M.; Albrecht, A.R.; Sheik-Bahae, M. Astigmatic Herriott cell for optical refrigeration. Opt. Eng. 2016, 56, 011110. [Google Scholar] [CrossRef]
- Volpi, A.; Cittadino, G.; Di Lieto, A.; Cassanho, A.; Jenssen, H.P.; Tonelli, M. Investigation of Yb-doped LiLuF4 single crystals for optical cooling. Opt. Eng. 2016, 56, 011105. [Google Scholar] [CrossRef]
- Volpi, A.; Krämer, K.W.; Biner, D.; Wiggins, B.; Kock, J.; Albrecht, A.R.; Peterson, E.J.; Spilde, M.N.; Sheik-Bahae, M.; Hehlen, M.P. Bridgman Growth of Laser-Cooling-Grade LiLuF4: Yb3+ Single Crystals. Cryst. Growth Des. 2021, 21, 2142–2153. [Google Scholar] [CrossRef]
- Volpi, A. Laser Cooling of Fluoride Crystals. Ph.D. Thesis, University of Pisa, Pisa, Italy, 2012–2015. [Google Scholar]
- Dobretsova, E.A.; Xia, X.; Pant, A.; Lim, M.B.; De Siena, M.C.; Boldyrev, K.N.; Molchanova, A.D.; Novikova, N.N.; Klimin, S.A.; Popova, M.N. Hydrothermal Synthesis of Yb3+:LuLiF4 Microcrystals and Laser Refrigeration of Yb3+:LuLiF4/Silicon-Nitride Composite Nanostructures. Laser Photonics Rev. 2021, 15, 2100019. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.; Zhong, B.; Lei, Y.; Wang, C.; Xu, J.; Zhang, Z.; Ding, J.; Yin, J. Accurate Characterization of the Properties of the Rare-Earth-Doped Crystal for Laser Cooling. Appl. Sci. 2022, 12, 4447. https://doi.org/10.3390/app12094447
Duan X, Zhong B, Lei Y, Wang C, Xu J, Zhang Z, Ding J, Yin J. Accurate Characterization of the Properties of the Rare-Earth-Doped Crystal for Laser Cooling. Applied Sciences. 2022; 12(9):4447. https://doi.org/10.3390/app12094447
Chicago/Turabian StyleDuan, Xuelu, Biao Zhong, Yongqing Lei, Chaoyu Wang, Jiajin Xu, Ziheng Zhang, Jingxin Ding, and Jianping Yin. 2022. "Accurate Characterization of the Properties of the Rare-Earth-Doped Crystal for Laser Cooling" Applied Sciences 12, no. 9: 4447. https://doi.org/10.3390/app12094447
APA StyleDuan, X., Zhong, B., Lei, Y., Wang, C., Xu, J., Zhang, Z., Ding, J., & Yin, J. (2022). Accurate Characterization of the Properties of the Rare-Earth-Doped Crystal for Laser Cooling. Applied Sciences, 12(9), 4447. https://doi.org/10.3390/app12094447