Diketo-Pyrrolo Pyrrole-Based Acceptor-Acceptor Copolymers with Deep HOMO and LUMO Levels Absorbing in the Near Infrared
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Computational Methods
3. Results and Discussion
3.1. Synthesis of the A-A’ Copolymers
3.2. Computational Results
3.3. Opto-Electronic Properties of A-A’ Copolymers in Solution and in the Solid State
3.4. Thermal Properties of A-A’ Copolymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chochos, C.L.; Choulis, S.A. How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog. Polym. Sci. 2011, 36, 1326–1414. [Google Scholar] [CrossRef]
- Heumueller, T.; Mateker, W.R.; Distler, A.; Fritze, U.F.; Cheacharoen, R.; Nguyen, W.H.; Biele, M.; Salvador, M.; von Delius, M.; Egelhaaf, H.-J.; et al. Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 2016, 9, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Distler, A.; Sauermann, T.; Egelhaaf, H.-J.; Rodman, S.; Waller, D.; Cheon, K.S.; Lee, M.; Drolet, N.; Guldi, D.M. The Effect of PCBM Dimerization on the Performance of Bulk Heterojunction Solar Cells. Adv. Energy Mater. 2014, 4, 1300693. [Google Scholar] [CrossRef]
- Pont, S.; Osella, S.; Smith, A.; Marsh, A.V.; Li, Z.; Beljonne, D.; Cabral, J.T.; Durrant, J.R. Evidence for Strong and Weak Phenyl-C61-Butyric Acid Methyl Ester Photodimer Populations in Organic Solar Cells. Chem. Mater. 2019, 31, 6076–6083. [Google Scholar] [CrossRef]
- Holliday, S.; Li, Y.; Luscombe, C.K. Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Prog. Polym. Sci. 2017, 70, 34–51. [Google Scholar] [CrossRef]
- Yoo, S.; Shin, E.-Y.; Cho, N.-K.; Park, S.; Woo, H.-Y.; Son, H.-J. Progress in morphology control from fullerene to nonfullerene acceptors for scalable high-performance organic photovoltaics. J. Mater. Chem. A 2021, 9, 24729–24758. [Google Scholar]
- Chochos, C.L.; Tagmatarchis, N.; Gregoriou, V.G. Rational design on n-type organic materials for high performance organic photovoltaics. RSC Adv. 2013, 3, 7160–7181. [Google Scholar] [CrossRef]
- Facchetti, A. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chem. Mater. 2011, 23, 733–758. [Google Scholar] [CrossRef]
- Cho, S.; Lee, J.; Tong, M.H.; Seo, J.H.; Yang, C. Poly (diketopyrrolopyrrole-benzothiadiazole) with Ambipolarity Approaching 100% Equivalency. Adv. Funct. Mater. 2011, 21, 1910–1916. [Google Scholar] [CrossRef]
- Guo, X.; Kim, F.S.; Seger, M.J.; Enekhe, J.S.A.; Watson, M.D. Naphthalene Diimide-Based Polymer Semiconductors: Synthesis, Structure–Property Correlations, and n-Channel and Ambipolar Field-Effect Transistors. Chem. Mater. 2012, 24, 1434–1442. [Google Scholar] [CrossRef]
- Facchetti, A. Polymer donor–polymer acceptor (all-polymer) solar cells. Mater. Today 2013, 16, 123–132. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Z.-G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Adv. Mater. 2016, 28, 1884–1890. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Song, X.; Thomas, S.; Kan, Z.; Cruciani, F.; Laquai, F.; Bredas, J.-L.; Beaujuge, P.M. Thieno [3,4-c] Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells. Adv. Energy Mater. 2017, 7, 1602574. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, Y.; Wang, X.; Yang, F.; Zhang, A.; Li, C.; Ma, W.; Li, W. Conjugated polymer acceptors based on fused perylene bisimides with a twisted backbone for non-fullerene solar cells. Polym. Chem. 2017, 8, 3300–3306. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, B.; Tajima, K.; Nakano, M.; Takimiya, K.; Tang, A.; Zhou, E. Comparison among Perylene Diimide (PDI), Naphthalene Diimide (NDI), and Naphthodithiophene Diimide (NDTI) Based n-Type Polymers for All-Polymer Solar Cells Application. Macromolecules 2017, 50, 3179–3185. [Google Scholar] [CrossRef]
- Zhou, E.; Nakano, M.; Izawa, S.; Cong, J.; Osaka, I.; Takimiya, K.; Tajima, K. All-Polymer Solar Cell with High Near-Infrared Response Based on a Naphthodithiophene Diimide (NDTI) Copolymer. ACS Macro Lett. 2014, 3, 872–875. [Google Scholar] [CrossRef]
- Zhang, Z.-G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells. Angew. Chem. Int. Ed. 2017, 56, 13503–13507. [Google Scholar] [CrossRef]
- Guo, Y.-K.; Li, Y.-K.; Han, H.; Yan, H.; Zhao, D. All-Polymer Solar Cells with Perylenediimide Polymer Acceptors. Chin. J. Polym. Sci. 2017, 35, 293–301. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, Q.; Zheng, Y.-Q.; Wang, J.-Y.; Zhao, D.; Pei, J. New polymer acceptors for organic solar cells: The effect of regio-regularity and device configuration. J. Mater. Chem. A 2013, 1, 6609–6613. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, X.; Su, W.; Guo, B.; Xu, Z.; Zhang, M.; Li, Y. Perylene diimide-benzodithiophene D-A copolymers as acceptor in all-polymer solar cells. Org. Electron. 2017, 41, 49–55. [Google Scholar] [CrossRef]
- Dai, S.; Cheng, P.; Lin, Y.; Wang, Y.; Ma, L.; Ling, Q.; Zhan, X. Perylene and naphthalene diimide polymers for all-polymer solar cells: A comparative study of chemical copolymerization and physical blend. Polym. Chem. 2015, 6, 5254–5263. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; Yan, H.; Zhao, D. Improved Performance of All-Polymer Solar Cells Enabled by Naphthodiperylenetetraimide-Based Polymer Acceptor. Adv. Mater. 2017, 29, 1700309. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Chen, H.; Guo, Y.; Han, H.; Zhang, D.; Zhu, Y.; He, F.; Zhao, D. Thiophene-Fused Perylenediimide-Based Polymer Acceptors for High-Performance All-Polymer Solar Cells. Macromolecules 2021, 54, 1499–1506. [Google Scholar] [CrossRef]
- Hendriks, K.H.; Li, W.; Wienk, M.M.; Janssen, R.A.J. Small-Bandgap Semiconducting Polymers with High Near-Infrared Photoresponse. J. Am. Chem. Soc. 2014, 136, 12130–12136. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.-H.; Ha, J.-W.; Choi, H.; Yoon, S.C.; Lee, B.R.; Ko, S.-J. Recent progress of ultra-narrow-bandgap polymer donors for NIR-absorbing organic solar cells. Nanoscale Adv. 2021, 3, 4306–4320. [Google Scholar] [CrossRef]
- Verstraeten, F.; Gielen, S.; Verstappen, P.; Raymakers, J.; Penxten, H.; Lutsen, L.; Vandewal, K.; Maes, W. Efficient and readily tuneable near-infrared photodetection up to 1500 nm enabled by thiadiazoloquinoxaline-based push-pull type conjugated polymers. J. Mater. Chem. C 2020, 8, 10098–10103. [Google Scholar] [CrossRef]
- Qian, G.; Qi, J.; Wang, Z.Y. Synthesis and study of low-bandgap polymers containing the diazapentalene and diketopyrrolopyrrole chromophores for potential use in solar cells and near-infrared photodetectors. J. Mater. Chem. 2012, 22, 12867–12873. [Google Scholar] [CrossRef]
- Zhao, X.; Wen, Y.; Ren, L.; Ma, L.; Liu, Y.; Zhan, X. An acceptor-acceptor conjugated copolymer based on perylene diimide for high mobility n-channel transistor in air. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4266–4271. [Google Scholar] [CrossRef]
- Gwinner, M.C.; Brenner, T.J.K.; Lee, J.-K.; Newby, C.; Ober, C.K.; McNeil, C.R.; Sirringhaus, H. Organic field-effect transistors and solar cells using novel high electron-affinity conjugated copolymers based on alkylbenzotriazole and benzothiadiazole. J. Mater. Chem. 2012, 22, 4436–4439. [Google Scholar] [CrossRef]
- Banal, J.L.; Subbiah, J.; Graham, H.; Lee, J.-K.; Ghiggino, K.P.; Wong, W.W.H. Electron deficient conjugated polymers based on benzotriazole. Polym. Chem. 2013, 4, 1077–1083. [Google Scholar] [CrossRef]
- Stalder, R.; Mei, J.; Subbiah, J.; Grand, C.; Estrada, L.A.; So, F.; Reynolds, J.R. n-Type Conjugated Polyisoindigos. Macromolecules 2011, 44, 6303–6310. [Google Scholar] [CrossRef]
- Ge, C.-W.; Mei, C.-Y.; Ling, J.; Wang, J.-T.; Zhao, F.-G.; Liang, L.; Li, H.-J.; Xie, Y.-S.; Li, W.-S. Acceptor–acceptor conjugated copolymers based on perylenediimide and benzothiadiazole for all-polymer solar cells. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 1200–1215. [Google Scholar] [CrossRef]
- Du, J.; Hu, K.; Zhang, J.; Meng, L.; Yue, J.; Angunawela, I.; Yan, H.; Qin, S.; Kong, X.; Zhang, Z.; et al. Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nat. Commun. 2021, 12, 5264. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, T.; Wang, W.; Sun, R.; Wu, Q.; Shen, H.; Xia, J.; Wang, Y.; Zhang, M.; Min, J. Polymerized small-molecule acceptors based on vinylene as π-bridge for efficient all-polymer solar cells. Polymer 2021, 230, 124104–124110. [Google Scholar] [CrossRef]
- Yuen, J.D.; Fan, J.; Seifter, J.; Lim, B.; Hufschmid, R.; Heeger, A.J.; Wudl, F. High Performance Weak Donor–Acceptor Polymers in Thin Film Transistors: Effect of the Acceptor on Electronic Properties, Ambipolar Conductivity, Mobility, and Thermal Stability. J. Am. Chem. Soc. 2011, 133, 20799–20807. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Ashizawa, M.; Hiyoshi, J.; Kawauchi, S.; Mei, J.; Bao, Z.; Matsumoto, H. An ultra-narrow bandgap derived from thienoisoindigo polymers: Structural influence on reducing the bandgap and self-organization. Polym. Chem. 2016, 7, 1181–1190. [Google Scholar] [CrossRef]
- Wang, K.; Huang, J.; Ko, J.; Leong, W.L.; Wang, M. Direct arylation polymerization toward ultra-low bandgap poly (thienoisoindigo-alt-diketopyrrolepyrrole) conjugated polymers: The effect of β-protection on the polymerization and properties of the polymers. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3205–3213. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Zeng, W.; Yu, G.; Yang, C. Narrow band-gap copolymers with two acceptors of benzo [1,2-c;3,4-c′] bis [1,2,5] thiadiazole and Benzo [c] [1,2,5] thiadiazole: Synthesis, characteristics and application in field-effect transistors. Dye. Pigment. 2016, 130, 291–297. [Google Scholar] [CrossRef]
- Li, Y.; Sonar, P.; Murphy, L.; Honga, W. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 2013, 6, 1684–1710. [Google Scholar] [CrossRef]
- Liu, Q.; Bottle, S.E.; Sonar, P. Developments of Diketopyrrolopyrrole-Dye-Based Organic Semiconductors for a Wide Range of Applications in Electronics. Adv. Mater. 2019, 36, 1903882. [Google Scholar] [CrossRef]
- Luo, N.; Zhang, G.; Liu, Z. Keep glowing and going: Recent progress in diketopyrrolopyrrole synthesis towards organic optoelectronic materials. Org. Chem. Front. 2021, 8, 4560–4581. [Google Scholar] [CrossRef]
- Luo, N.; Ren, P.; Feng, Y.; Shao, X.; Zhang, H.-L.; Liu, Z. Side-Chain Engineering of Conjugated Polymers for High-Performance Organic Field-Effect Transistors. J. Phys. Chem. Lett. 2022, 13, 1131–1146. [Google Scholar] [CrossRef] [PubMed]
- Khelifi, W.; Awada, H.; Brymora, K.; Blanc, S.; Hirsch, L.; Castet, F.; Bousquet, A.; Lartigau-Dagron, C. Halochromic Switch from the 1st to 2nd Near-Infrared Window of Diazapentalene–Dithienosilole Copolymers. Macromolecules 2019, 52, 4820–4827. [Google Scholar] [CrossRef]
- Zhang, G.; Ye, Z.; Li, P.; Guo, J.; Wang, Q.; Tang, L.; Lua, H.; Qiu, L. A new thieno-isoindigo derivative-based D–A polymer with very low bandgap for high-performance ambipolar organic thin-film transistors. Polym. Chem. 2015, 6, 3970–3978. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, J.; Dai, Y.; Song, S.; Ye, Z.; Lu, H.; Qiu, L.; Cho, K. Synthesis and optimization solid-state order using side-chain position of thieno-isoindigo derivative-based D–A polymers for high-performance ambipolar organic thin films transistors. Dye. Pigment. 2017, 137, 221–228. [Google Scholar] [CrossRef]
- Cao, Y.; Dou, J.-H.; Zhao, N.-J.; Zhang, S.; Zheng, Y.-Q.; Zhang, J.-P.; Wang, Y.-Y.; Pei, J.; Wang, Y. Highly Efficient NIR-II Photothermal Conversion Based on an Organic Conjugated Polymer. Chem. Mater. 2017, 29, 718–725. [Google Scholar] [CrossRef]
- Brymora, K.; Khelifi, W.; Awada, H.; Blanc, S.; Hirsch, L.; Bousquet, A.; Lartigau-Dagron, C.; Castet, F. Comprehensive theoretical and experimental study of near infrared absorbing copolymers based on dithienosilole. Polym. Chem. 2020, 11, 3637–3643. [Google Scholar] [CrossRef]
- Gierschner, J.; Cornil, J.; Egelhaaf, H.J. Optical Bandgaps of π-Conjugated Organic Materials at the Polymer Limit: Experiment and Theory. Adv. Mater. 2007, 19, 173–191. [Google Scholar] [CrossRef]
- Wykes, M.; Milián-Medina, B.; Gierschner, J. Computational engineering of low bandgap copolymers. Front. Chem. 2013, 1, 1–12. [Google Scholar] [CrossRef]
- Oliveira, E.F.; Roldao, J.C.; Milián-Medina, B.; Lavarda, F.C.; Gierschner, J. Calculation of low bandgap homopolymers: Comparison of TD-DFT methods with experimental oligomer series. J. Chem. Phys. Lett. 2016, 645, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Torras, J.; Casanovas, J.; Alemán, C. Reviewing Extrapolation Procedures of the Electronic Properties on the π-Conjugated Polymer Limit. J. Phys. Chem. A 2012, 116, 7571–7583. [Google Scholar] [CrossRef] [PubMed]
- Karsten, B.P.; Viani, L.; Gierschner, J.; Cornil, J.; Janssen, R.A.J. An Oligomer Study on Small Band Gap Polymers. J. Phys. Chem. A 2008, 112, 10764–10773. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Sancho-García, J.C.; Pérez-Jiménez, A.J. Improved accuracy with medium cost computational methods for the evaluation of bond length alternation of increasingly long oligoacetylenes. Phys. Chem. Chem. Phys. 2007, 9, 5874–5879. [Google Scholar] [CrossRef]
- Torrent-Sucarrat, M.; Navarro, S.; Cossío, F.P.; Anglada, J.M.; Luis, J.M. Relevance of the DFT method to study expanded porphyrins with different topologies. J. Comput. Chem. 2017, 38, 2819–2828. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Kuhn, W. About the absorption spectrum of the polyenes. Helv. Chim. Acta 1948, 31, 1780–1799. [Google Scholar] [CrossRef]
- Le Bahers, T.; Adamo, C.; Ciofini, I. A Qualitative Index of Spatial Extent in Charge-Transfer Excitations. J. Chem. Theory Comput. 2011, 7, 2498–2506. [Google Scholar]
- Ciofini, I.; Le Bahers, T.; Adamo, C.; Odobel, F.; Jacquemin, D. An all-atom empirical energy function for the simulation of nucleic acids. J. Phys. Chem. C 2012, 116, 11946–11955. [Google Scholar] [CrossRef]
System | ΔE | λ | Δq | Δr | ||
---|---|---|---|---|---|---|
DPP | 2.69 | 461 | 0.532 | 0.310 | 0.001 | 0.002 |
DAP | 2.41 | 516 | 0.506 | 0.736 | 0.003 | 0.006 |
BTPBF | 2.37 | 524 | 0.856 | 0.436 | 0.003 | 0.006 |
DPP-DPP | 2.28 | 544 | 1.817 | 0.358 | 0.007 | 0.012 |
DPP-DAP | 2.12 | 589 | 1.677 | 0.410 | 2.844 | 5.604 |
DPP-BTPBF | 2.03 | 610 | 1.860 | 0.481 | 3.320 | 7.673 |
a λ max (nm) Solution | a λ max (nm) Solid State | a λ edge (nm) Solid State | a Egopt (eV) | b HOMO (eV) | b LUMO (eV) | b Egcv (eV) | |
---|---|---|---|---|---|---|---|
Monomers | |||||||
DPP | 545 | - | 570 (solution) | 2.13 c | −5.7 | −3.5 | 2.2 |
DAP | 565 | - | 640 (solution) | 1.94 c | −5.4 | −3.6 | 1.7 |
BTPBF | 695 | - | 775 (solution) | 1.60 c | −5.3 | −4.0 | 1.3 |
Copolymers | |||||||
P(DPP-DPPeH) | 706 | 632 | 980 | 1.35 | −5.4 | −4.0 | 1.4 |
P(DPP-DPPC12) | 701 | 748 | 1030 | 1.3 | −5.5 | −4.1 | 1.3 |
P(DPP-DAP) | 842 | 839 | 1230 | 1.1 | −5.4 | −4.2 | 1.2 |
P(DPP-BTPBF) | 1051 | 1047 | 1450 | 0.9 | −5.5 | −4.4 | 0.9 |
P(DTS-DPPeH) | 795 | 800 | 1000 | 1.3 | −5.4 | −3.9 | 1.5 |
P(DTS-DAP) | 837 | 867 | 1180 | 1.1 | −5.4 | −4.1 | 1.3 |
P(DTS-BTPBF) | 1100 | 1081 | 1440 | 0.9 | −5.2 | −4.2 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khelifi, W.; Awada, H.; Blanc, S.; Roche, G.H.; Hirsch, L.; Oboho, B.; Castet, F.; Bousquet, A.; Lartigau-Dagron, C. Diketo-Pyrrolo Pyrrole-Based Acceptor-Acceptor Copolymers with Deep HOMO and LUMO Levels Absorbing in the Near Infrared. Appl. Sci. 2022, 12, 4494. https://doi.org/10.3390/app12094494
Khelifi W, Awada H, Blanc S, Roche GH, Hirsch L, Oboho B, Castet F, Bousquet A, Lartigau-Dagron C. Diketo-Pyrrolo Pyrrole-Based Acceptor-Acceptor Copolymers with Deep HOMO and LUMO Levels Absorbing in the Near Infrared. Applied Sciences. 2022; 12(9):4494. https://doi.org/10.3390/app12094494
Chicago/Turabian StyleKhelifi, Wissem, Hussein Awada, Sylvie Blanc, Gilles Henri Roche, Lionel Hirsch, Bassey Oboho, Frédéric Castet, Antoine Bousquet, and Christine Lartigau-Dagron. 2022. "Diketo-Pyrrolo Pyrrole-Based Acceptor-Acceptor Copolymers with Deep HOMO and LUMO Levels Absorbing in the Near Infrared" Applied Sciences 12, no. 9: 4494. https://doi.org/10.3390/app12094494
APA StyleKhelifi, W., Awada, H., Blanc, S., Roche, G. H., Hirsch, L., Oboho, B., Castet, F., Bousquet, A., & Lartigau-Dagron, C. (2022). Diketo-Pyrrolo Pyrrole-Based Acceptor-Acceptor Copolymers with Deep HOMO and LUMO Levels Absorbing in the Near Infrared. Applied Sciences, 12(9), 4494. https://doi.org/10.3390/app12094494