Removal of Methylene Blue by Metal Oxides Supported by Oily Sludge Pyrolysis Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents
2.2. Preparation Composite Materials
- (1)
- Preparation of pyrolysis residues
- (2)
- Synthesis of composite materials
2.3. Batch Experiment
2.4. Optimization of the Removal Parameters
2.5. Characterization Analysis
2.6. Kinetic and Diffusion Models
2.7. Isotherms
- Langmuir isotherm
- Freundlish isotherm
2.8. Regeneration Performance
3. Results and Discussion
3.1. Influence of Preparation Conditions
3.1.1. Impregnation Time
3.1.2. Impregnation Ratio
3.2. Characterization of Composite Materials
3.2.1. Morphology Characterization of Composite Materials
SEM
BET
Source | Specific Surface Area (m2/g) SBET | Micropore Volume (cm3/g) Vmic | Mesopore Volume (cm3/g) Vmes | Total Pore Volume (cm3/g) Vtot | Mesopore Average Pore Diameter (nm) | Total Pore Average Pore Diameter (nm) DP |
---|---|---|---|---|---|---|
AC-CuO | 5.9082 | 0.0014 | 0.0208 | 0.0222 | 16.6842 | 14.6344 |
AC-ZnO | 4.9138 | 0.0012 | 0.0204 | 0.0216 | 19.6171 | 17.1305 |
AC-TiO2 | 7.8951 | 0.0001 | 0.0834 | 0.0837 | 15.8715 | 15.6531 |
3.2.2. Composition Characterization of Composite Materials
XRD
FT-IR
XPS
3.3. Influence of Adsorption Conditions
3.3.1. Effect of Composite Material Dosage
3.3.2. Effect of Contact Time
3.3.3. Effect of Concentration
3.4. Removal Parameters Optimization
3.5. Kinetic and Diffusion Studies
Adsorption Model | Lagergren Model | McKay Model | ||||
---|---|---|---|---|---|---|
Composite material | AC-CuO | AC-ZnO | AC-TiO2 | AC-CuO | AC-ZnO | AC-TiO2 |
Nonlinear expression | ||||||
Fitting parameters | Qe = 4.3604 K1 = 0.1573 | Qe = 4.5795 K1 = 0.0840 | Qe = 4.7746 K1 = 0.0437 | Qe = 4.6903 K2 = 0.0511 | Qe = 5.0446 K2 = 0.0245 | Qe = 5.5352 K2 = 0.0099 |
R2 | 0.68 | 0.88 | 0.95 | 0.90 | 0.96 | 0.97 |
Adsorption Model | Intra-Particle Diffusion Model | ||
---|---|---|---|
Composite material | AC-CuO | AC-ZnO | AC-TiO2 |
Nonlinear expression | |||
Fitting parameters | Kd = 0.1689 b = 2.8412 | Kd = 0.2355 b = 2.2788 | Kd = 0.3270 b = 1.3115 |
R2 | 0.83 | 0.80 | 0.85 |
3.6. Isotherm Studies
3.7. Regeneration Studies
Number of Regenerations | Regeneration Efficiency | ||
---|---|---|---|
AC-CuO | AC-ZnO | AC-TiO2 | |
1 | 100 | 97.97 | 99.30 |
2 | 88.78 | 91.91 | 96.70 |
3 | 79.50 | 66.60 | 66.85 |
4 | 62.27 | 45.73 | 24.03 |
Number of Regenerations | Loss Rate | ||
---|---|---|---|
AC-CuO | AC-ZnO | AC-TiO2 | |
1 | 4.24 | 6.12 | 4.83 |
2 | 10.82 | 9.49 | 9.03 |
3 | 17.74 | 17.83 | 16.89 |
4 | 25.33 | 30.17 | 34.24 |
3.8. Mechanism of the Methylene Blue Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dal, F.; Zeng, X.; Huang, Q.; Li, J. Quantifying material flow of oily sludge in China and its implications. J. Environ. Manag. 2021, 287, 112115. [Google Scholar]
- Wang, Z.; Gong, Z.; Wang, Z.; Li, X.; Chu, Z. Application and development of pyrolysis technology in petroleum oily sludge treatment. Environ. Eng. Res. 2021, 26, 1–15. [Google Scholar] [CrossRef]
- Hu, G.; Feng, H.; He, P.; Li, J.; Hewage, K.; Sadiq, R. Comparative life-cycle assessment of traditional and emerging oily sludge treatment approaches. J. Clean. Prod. 2020, 251, 119594–119603. [Google Scholar] [CrossRef]
- Teng, Q.; Zhang, D.; Yang, C. A review of the application of different treatment processes for oily sludge. Environ. Sci. Pollut. 2021, 28, 121–132. [Google Scholar] [CrossRef]
- Yaqoob, A.; Parveen, T.; Umar, K.; Mohamad, M.N. Role of nanomaterials in the treatment of wastewater: A review. Water 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.X.; Ding, R.; Chen, X.; Gong, Z.B.; Zhang, Y.; Yang, M. Ultrasonic washing for oily sludge treatment in pilot scale. Ultrasonics 2018, 90, 1–4. [Google Scholar] [CrossRef]
- Gao, N.; Duan, Y.; Li, Z.; Quan, C.; Yoshikawa, K. Hydrothermal treatment combined with in-situ mechanical compression for floated oily sludge dewatering. J. Hazard. Mater. 2021, 402, 124173–124184. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, Z.; Wang, Z.; Li, X.; Liu, J.; Tang, C.; Chu, Z. Pyrolysis performance and kinetic analysis of oily sludge. J. Therm. Anal. Calorim. 2022, 147, 4621–4633. [Google Scholar] [CrossRef]
- Li, J.; Lin, F.; Li, K.; Zheng, F.; Yan, B.; Che, L.; Yoshikawa, K.A. critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis. J. Hazard. Mater. 2021, 406, 124706–124718. [Google Scholar] [CrossRef]
- Chen, C.; Yan, X.; Xu, Y.Y.; Yoza, B.A.; Wang, X.; Kou, Y.; Li, Q.X. Activated petroleum waste sludge biochar for efficient catalytic ozonation of refinery wastewater. Sci. Total Environ. 2019, 651, 2631–2640. [Google Scholar] [CrossRef]
- Ma, W.; Li, Z.; Yang, H.; Fu, P. Evaluation of pyrolysis residue derived by oily sludge on removing heavy metals from artificial flotation wastewater. S. Afr. J. Chem. Eng. 2020, 34, 82–89. [Google Scholar]
- Lawal, A.A.; Hassan, M.A.; Farid, M.A.; Yasim-Anuar, T.A.T.; Yusoff, M.Z.M.; Zakaria, M.R.; Shirai, Y. Production of biochar from oil palm frond by steam pyrolysis for removal of residual contaminants in palm oil mill effluent final discharge. J. Clean. Prod. 2020, 265, 121643–121649. [Google Scholar] [CrossRef]
- Mia, R.; Selim, M.; Shamim, A.M.; Chowdhury, M.; Sultana, S.; Armin, M.; Naznin, H. Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. J. Text. Eng. Fash. Technol. 2019, 5, 220–226. [Google Scholar]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef] [Green Version]
- Wiehe, A.; O’Brien, J.M.; Senge, M.O. Trends and targets in antiviral phototherapy. Photoch. Photobio. Sci. 2019, 18, 2565–2612. [Google Scholar] [CrossRef]
- Iwuozor, K.O.; Ighalo, J.O.; Ogunfowora, L.A.; Adeniyi, A.G.; Igwegbe, C.A. An empirical literature analysis of adsorbent performance for methylene blue uptake from aqueous media. J. Environ. Chem. Eng. 2021, 9, 105658–105669. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, N.; Liu, Q. Functionalized biomass carbon-based adsorbent for simultaneous removal of Pb2+ and MB in wastewater. Materials 2021, 14, 3537. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chu, C.; Zhang, Y.; Ju, M.; Wang, Y. Contrasting eutrophication risks and countermeasures in different water bodies: Assessments to support targeted watershed management. Int. J. Environ. Res. Public Health 2017, 14, 695. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Setapar, S.H.; Yaqoob, A.A.; Ibrahim, M.N.M. Synthesis and characterization of GO-Ag nanocomposite for removal of malachite dye from aqueous solution. Mater. Today Proc. 2021, 47, 1359–1365. [Google Scholar] [CrossRef]
- Zhang, P.; O’Connor, D.; Wang, Y.; Jiang, L.; Xia, T.; Wang, L.; Hou, D. A green biochar/iron oxide composite for methylene blue removal. J. Hazard. Mater. 2020, 384, 121286. [Google Scholar] [CrossRef]
- Zhai, S.; Li, M.; Wang, D.; Zhang, L.; Yang, Y.; Fu, S. In situ loading metal oxide particles on bio-chars: Reusable materials for efficient removal of methylene blue from wastewater. J. Clean. Prod. 2019, 220, 460–474. [Google Scholar] [CrossRef]
- Wang, N.; Xiao, F.; Zhang, J.; Zhou, H.; Qin, Y.; Pan, D. Spherical montmorillonite-supported nano-silver as a self-sedimentary catalyst for methylene blue removal. Appl. Clay Sci. 2019, 174, 146–151. [Google Scholar] [CrossRef]
- Wu, J.; Lin, G.; Li, P.; Yin, W.; Wang, X.; Yang, B. Heterogeneous Fenton-like degradation of an azo dye reactive brilliant orange by the combination of activated carbonFeOOH catalyst and H2O2. Water Sci. Technol. 2013, 67, 572–578. [Google Scholar] [CrossRef]
- Oliveira, S.M.; Andrade, H.M.; Soares, L.F.; Azevedo, R.P. Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. J. Hazard. Mater. 2010, 174, 84–92. [Google Scholar]
- Liu, X.; He, C.; Yu, X.; Bai, Y.; Ye, L.; Wang, B.; Zhang, L. Net-like porous activated carbon materials from shrimp shell by solution-processed carbonization and H3PO4 activation for methylene blue adsorption. Powder Technol. 2018, 326, 181–189. [Google Scholar] [CrossRef]
- Duan, C.; Chen, Z.; Liu, X.; Li, K.; Wang, X.; Jia, W.; Liu, Z. Noble surface molecularly imprinted polymer modified titanium dioxide toward solanesol adsorption selectivity study. J. Mater. Res. 2019, 34, 3271–3287. [Google Scholar] [CrossRef] [Green Version]
- Novais, R.M.; Ascensao, G.; Tobaldi, D.M.; Seabra, M.P.; Labrincha, J.A. Biomass fly ash geopolymer monoliths for effective methylene blue removal from wastewaters. J. Clean. Prod. 2018, 171, 783–794. [Google Scholar] [CrossRef]
- Jeong, J.; Chun, J.; Lim, W.G.; Kim, W.B.; Jo, C.; Lee, J. Mesoporous carbon host material for stable lithium metal anode. Nanoscale 2020, 12, 11818–11824. [Google Scholar] [CrossRef]
- Saepurahman, M.A.; Abdullah, F.K. Preparation and characterization of tungsten-loaded titanium dioxide photocatalyst for enhanced dye degradation. J. Hazard. Mater 2010, 176, 451–458. [Google Scholar] [CrossRef]
- Lee, H.; Kannan, P.; Shoaibi, A.; Srinivasakannan, C. Phenol degradation catalyzed by metal oxide supported porous carbon matrix under UV irradiation. J. Water Process Eng. 2019, 31, 100869–100875. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Fan, S. Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes 2019, 7, 891. [Google Scholar] [CrossRef] [Green Version]
- Santoso, E.; Ediati, R.; Kusumawati, Y.; Bahruji, H.; Sulistiono, D.O.; Prasetyoko, D. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mater. Today Chem. 2020, 16, 100233–100241. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, R.; Rong, S.; Zhang, L.; Ma, C. A systematic preparation mechanism for directional regulation of pore structure in activated carbon including specific surface area and pore hierarchy. J. Anal. App. Pyroly 2021, 158, 105266–105272. [Google Scholar] [CrossRef]
- Cui, W.; He, J.; Wang, H.; Hu, J.; Liu, L.; Liang, Y. Polyaniline hybridization promotes photo-electro-catalytic removal of organic contaminants over 3D network structure of rGH-PANI/TiO2 hydrogel. Appl. Catal. B-Environ. 2018, 232, 232–245. [Google Scholar] [CrossRef]
- Botsa, S.M.; Basavaiah, K. Removal of Nitrophenols from wastewater by monoclinic CuO/RGO nanocomposite. Nano. Environ. Eng. 2019, 4, 1–7. [Google Scholar] [CrossRef]
- Samanta, P.; Saha, A.; Kamilya, T. Wet chemically synthesized CuO bipods and their optical properties. Recent Pat. Nanotechnol. 2016, 10, 20–25. [Google Scholar] [CrossRef]
- Ramimoghadam, D.; Hussein, M.Z.B.; Taufiq-Yap, Y.H. Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate. Chem. Cent. J. 2013, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Li, K.; Yan, L. One-step fabrication of g-C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems. Appl. Catal. B Environ. 2018, 222, 88–98. [Google Scholar] [CrossRef]
- Wang, N.; Chen, J.; Wang, J.; Feng, J.; Yan, W. Removal of methylene blue by Polyaniline/TiO2 hydrate: Adsorption kinetic, isotherm and mechanism studies. Powder Technol. 2019, 347, 93–102. [Google Scholar] [CrossRef]
- Yang, X.; Yi, H.; Tang, X.; Zhao, S.; Yang, Z.; Ma, Y.; Cui, X. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure. J. Environ. Sci. 2018, 67, 104–114. [Google Scholar] [CrossRef]
- Alver, E.; Metin, A.Ü.; Brouers, F. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int. J. Biol. Macro. 2020, 154, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Bayomie, O.S.; Kandeel, H.; Shoeib, T.; Yang, H.; Youssef, N.; El-Sayed, M.M. Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci. Rep.-UK 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mouni, L.; Belkhiri, L.; Bollinger, J.C.; Bouzaza, A.; Assadi, A.; Tirri, A.; Remini, H. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 2018, 153, 38–45. [Google Scholar] [CrossRef]
- Sagita, C.P.; Nulandaya, L.; Kurniawan, Y.S. Efficient and low-cost removal of methylene blue using activated natural kaolinite material. J. Mult. App. Nat. Sci. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Reczek, L.; Michel, M.M.; Trach, Y.; Siwiec, T.; Tytkowska-Owerko, M. The kinetics of manganese sorption on ukrainian tuff and basalt-order and diffusion models analysis. Minerals 2020, 10, 1065. [Google Scholar] [CrossRef]
- Piccin, J.S.; Cadaval, T.; DePinto, L.; Dotto, G.L. Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations; Springer: Cham, Switzerland, 2017; Volume 19, pp. 19–27. [Google Scholar]
Factor | Levels | ||
---|---|---|---|
−1 | 0 | +1 | |
A—dosage (g) | 0.5 | 0.7 | 0.9 |
B—time (min) | 30 | 60 | 90 |
C—concentration (mg/L) | 3 | 5 | 7 |
Composite Material | Lack of Fit(P) | C.V.% | R-Squared | Adj R-Squared | Pred R-Squared | Std. Dev. |
---|---|---|---|---|---|---|
AC-CuO | 0.2702 | 0.62 | 0.9996 | 0.9930 | 0.9950 | 0.60 |
AC-ZnO | 0.9455 | 0.55 | 0.9997 | 0.9993 | 0.9992 | 0.42 |
AC-TiO2 | 0.3302 | 1.49 | 0.9986 | 0.9967 | 0.9866 | 1.13 |
Isotherm Model | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
Composite material | AC-CuO | AC-ZnO | AC-TiO2 | AC-CuO | AC-ZnO | AC-TiO2 |
Nonlinear expression | ||||||
Fitting parameters | KL = 0.1035 Qmax = 12.08 | KL = 0.0341 Qmax = 32.71 | KL = 0.0339 Qmax = 33.36 | KF = 1.2609 n = 0.7094 | KF = 1.1485 n = 0.8711 | KF = 1.1677 n = 0.8704 |
R2 | 0.95 | 0.99 | 0.99 | 0.92 | 0.99 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Han, L.; Zhang, T.; Qu, C.; Yu, T.; Yang, B. Removal of Methylene Blue by Metal Oxides Supported by Oily Sludge Pyrolysis Residues. Appl. Sci. 2022, 12, 4725. https://doi.org/10.3390/app12094725
Li J, Han L, Zhang T, Qu C, Yu T, Yang B. Removal of Methylene Blue by Metal Oxides Supported by Oily Sludge Pyrolysis Residues. Applied Sciences. 2022; 12(9):4725. https://doi.org/10.3390/app12094725
Chicago/Turabian StyleLi, Jinling, Lei Han, Tiantian Zhang, Chengtun Qu, Tao Yu, and Bo Yang. 2022. "Removal of Methylene Blue by Metal Oxides Supported by Oily Sludge Pyrolysis Residues" Applied Sciences 12, no. 9: 4725. https://doi.org/10.3390/app12094725
APA StyleLi, J., Han, L., Zhang, T., Qu, C., Yu, T., & Yang, B. (2022). Removal of Methylene Blue by Metal Oxides Supported by Oily Sludge Pyrolysis Residues. Applied Sciences, 12(9), 4725. https://doi.org/10.3390/app12094725