Optimization of Locking Plate Screw Angle Used to Treat Two-Part Proximal Humerus Fractures to Maintain Fracture Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proximal Humerus Modeling
2.2. PHILOS Locking Plate Modeling
2.3. Considerations for Finite Element Analysis FEA
2.4. Screw Angle Direction
2.5. Design of Experiments
3. Results and Discussions
Experimentation and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ceri, L.; Mondanelli, N.; Sangaletti, R.; Bottai, V.; Muratori, F.; Giannotti, S. Simultaneous bilateral reverse shoulder arthroplasty for bilateral four-part fracture of the proximal humerus in an elderly patient: A case report. Trauma Case Rep. 2019, 23, 100242. [Google Scholar] [CrossRef] [PubMed]
- Reske-Nielsen, C.; Medzon, R. Geriatric Trauma. Emerg. Med. Clin. N. Am. 2016, 34, 483–500. [Google Scholar] [CrossRef] [PubMed]
- Nowak, L.L.; Dehghan, N.; McKee, M.D.; Schemitsch, E.H. Plate fixation for management of humerus fractures. Injury 2018, 49, S33–S38. [Google Scholar] [CrossRef]
- Meinberg, E.G.; Agel, J.; Roberts, C.S.; Karam, M.D.; Kellam, J.F. Fracture and Dislocation Classification Compendium—2018. J. Orthop. Trauma 2018, 32, S1–S10. [Google Scholar] [CrossRef]
- Pires, R.E.; Yoon, R.S.; Liporace, F.A.; Balbachevsky, D.; Bitar, R.C.; Giordano, V.; Wajnsztejn, A.; Kfuri, M. Expanding the horizons of clinical applications of proximal humerus locking plates in the lower extremities: A technical note. Chin. J. Traumatol. 2020, 23, 331–335. [Google Scholar] [CrossRef]
- Inzana, J.A.; Varga, P.; Windolf, M. Implicit modeling of screw threads for efficient finite element analysis of complex bone-implant systems. J. Biomech. 2016, 49, 1836–1844. [Google Scholar] [CrossRef]
- Padegimas, E.M.; Zmistowski, B.; Lawrence, C.; Palmquist, A.; Nicholson, T.A.; Namdari, S. Defining optimal calcar screw positioning in proximal humerus fracture fixation. J. Shoulder Elb. Surg. 2017, 26, 1931–1937. [Google Scholar] [CrossRef]
- Woodmass, J.M.; Welp, K.; Chang, M.J.; Borque, K.A.; Wagner, E.; Warner, J.J. Three- and four-part proximal humerus fractures in the elderly: Eminence versus evidence. Semin. Arthroplast. 2017, 28, 102–108. [Google Scholar] [CrossRef]
- Maalouly, J.; Aouad, D.; Dib, N.; Tawk, A.; El Rassi, G. Simultaneous ORIF for bilateral comminuted proximal humerus fractures: Case report in an elderly patient. Int. J. Surg. Case Rep. 2019, 65, 193–196. [Google Scholar] [CrossRef]
- Fletcher, J.W.; Windolf, M.; Richards, R.G.; Gueorguiev, B.; Varga, P. Screw configuration in proximal humerus plating has a significant impact on fixation failure risk predicted by finite element models. J. Shoulder Elb. Surg. 2019, 28, 1816–1823. [Google Scholar] [CrossRef]
- Varga, P.; Inzana, J.A.; Gueorguiev, B.; Südkamp, N.P.; Windolf, M. Validated computational framework for efficient systematic evaluation of osteoporotic fracture fixation in the proximal humerus. Med. Eng. Phys. 2018, 57, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Singla, A.K.; Singh, J.; Sharma, V.S.; Gupta, M.K.; Song, Q.; Rozumek, D.; Krolczyk, G.M. Impact of Cryogenic Treatment on HCF and FCP Performance of β-Solution Treated Ti-6Al-4V ELI Biomaterial. Materials 2020, 13, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-K.; Wei, H.-W.; Lin, K.-P.; Chen, W.-C.; Tsai, C.-L.; Lin, K.-J. Biomechanical effect of the configuration of screw hole style on locking plate fixation in proximal humerus fracture with a simulated gap: A finite element analysis. Injury Int. J. Care Inj. 2016, 47, 1191–1195. [Google Scholar] [CrossRef]
- Schliemann, B.; Risse, N.; Frank, A.; Müller, M.; Michel, P.; Raschke, M.J.; Katthagen, J.C. Screws with larger core diameter and lower thread pitch increase the stability of locked plating in osteoporotic proximal humeral fractures. Clin. Biomech. 2019, 63, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Muñoz, I.; González-Ángeles, A.; Jacobo-Galicia, G.; Castañeda, A.; Valenzuela-Gutiérrez, J. Análisis de los elementos principales en el diseño de placas de bloqueo en una fractura de 2-partes del cuello quirúrgico del húmero utilizando MEF y análisis estadístico. Matéria 2018, 23, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Neer, C.S. Displaced proximal humeral fractures: Part I. Classification and evaluation. 1970. Clin. Orthop. Relat. Res. 2006, 442, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Santos, L. Exercise Could Help Broken Bones Heal Faster—Here’s How. Available online: https://theconversation.com/exercise-could-help-broken-bones-heal-faster-heres-how-175404#:~:text=The%20reason%20exercise%20has%20this,flow%20to%20the%20fracture%20site/ (accessed on 5 March 2022).
- Roe, S. Biomechanics of Fracture Fixation. Vet. Clin. N. Am. Small Anim. Pract. 2019, 50, 1–15. [Google Scholar] [CrossRef] [PubMed]
- International Society of Biomechanics. 2022. Available online: https://isbweb.org/ (accessed on 5 March 2022).
- Zhao, L.-M.; Tian, D.-M.; Wei, Y.; Zhang, J.-H.; Di, Z.-L.; He, Z.-Y.; Hu, Y.-C. Biomechanical Analysis of a Novel Intercalary Prosthesis for Humeral Diaphyseal Segmental Defect Reconstruction. Orthop. Surg. 2018, 10, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 3D Slicer. 3D Slicer Image Computing Platform. Available online: https://www.slicer.org/ (accessed on 5 March 2022).
- Solórzano, W.; Ojeda, C.; Lantada, A.D. Biomechanical Study of Proximal Femur for Designing Stems for Total Hip Replacement. Appl. Sci. 2020, 10, 4208. [Google Scholar] [CrossRef]
- Autodesk. Autodesk Meshmixer. 2020. Available online: https://meshmixer.com/ (accessed on 5 March 2022).
- Systemes, D. Solid Works. 2022. Available online: https://www.solidworks.com/ (accessed on 5 March 2022).
- ®DePuy Synthes Companies. Philos and Philos LongTM. The Anatomic Fixation System for the Proximal Humerus. Available online: https://ifu.depuysynthes.com/json?amid=MEDIA_BIN_AJAX&mbid=2036.000.166/ (accessed on 5 March 2022).
- ®DePuy Synthes Companies. DePuy Synthes eCatalog. Available online: https://catalog.synthes.com/getcat.ch?catalogId=TRA (accessed on 5 March 2022).
- Hamandi, F.; Laughlin, R.; Goswami, T. Failure analysis of PHILOS plate construct used for pantalar arthrodesis Paper II—Screws and FEM simulations. Metals 2018, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Castro-Franco, A.D.; Mendoza-Muñoz, I.; González-Ángeles, Á.; Cruz-Sotelo, S.E.; Castañeda, A.M.; Siqueiros-Hernández, M. Trends in the Characterization of the Proximal Humerus in Biomechanical Studies: A Review. Appl. Sci. 2020, 10, 6514. [Google Scholar] [CrossRef]
- Jabran, A.; Peach, C.; Zou, Z.; Ren, L. Parametric Design Optimisation of Proximal Humerus Plates Based on Finite Element Method. Ann. Biomed. Eng. 2018, 47, 601–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarezadeh, A.; Mamelson, K.; Thomas, W.C.; Schoch, B.S.; Wright, T.W.; King, J.J. Résultats du traitement des fractures de l’humérus distal. Que mesurons-nous? Outcomes of distal humerus fractures: What are we measuring? Rev. Chir. Orthop. Traumatol. 2018, 104, 835. [Google Scholar] [CrossRef]
Ax | Ay | Cx | Cy | Ex | Ey | Flexion (ε %) | Compression (ε %) | |
---|---|---|---|---|---|---|---|---|
Max | 5° | −5° | 5° | 5° | 0° | 5° | 6.76661 | 3.52573 |
Min | −5° | −10° | −10° | −5° | 0° | −10° | 6.25003 | 3.26282 |
Percentage of improvement (%) | ||||||||
7.63425 | 7.45690 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Franco, A.D.; Mendoza-Muñoz, I.; González-Angeles, A.; Montoya-Reyes, M.I.; Pitalúa-Díaz, N. Optimization of Locking Plate Screw Angle Used to Treat Two-Part Proximal Humerus Fractures to Maintain Fracture Stability. Appl. Sci. 2022, 12, 4739. https://doi.org/10.3390/app12094739
Castro-Franco AD, Mendoza-Muñoz I, González-Angeles A, Montoya-Reyes MI, Pitalúa-Díaz N. Optimization of Locking Plate Screw Angle Used to Treat Two-Part Proximal Humerus Fractures to Maintain Fracture Stability. Applied Sciences. 2022; 12(9):4739. https://doi.org/10.3390/app12094739
Chicago/Turabian StyleCastro-Franco, Angel D., Ismael Mendoza-Muñoz, Alvaro González-Angeles, Mildrend I. Montoya-Reyes, and Nun Pitalúa-Díaz. 2022. "Optimization of Locking Plate Screw Angle Used to Treat Two-Part Proximal Humerus Fractures to Maintain Fracture Stability" Applied Sciences 12, no. 9: 4739. https://doi.org/10.3390/app12094739
APA StyleCastro-Franco, A. D., Mendoza-Muñoz, I., González-Angeles, A., Montoya-Reyes, M. I., & Pitalúa-Díaz, N. (2022). Optimization of Locking Plate Screw Angle Used to Treat Two-Part Proximal Humerus Fractures to Maintain Fracture Stability. Applied Sciences, 12(9), 4739. https://doi.org/10.3390/app12094739