Prefetching Method for Low-Latency Web AR in the WMN Edge Server
Abstract
:1. Introduction
2. Background Theory
2.1. WebAR Service
2.2. Wireless Mesh Network
2.3. Edge Server
2.4. Prefetching
3. Proposed Method
3.1. AR Prefetching
3.2. Client Server Architecture
3.2.1. Client
3.2.2. Edge Server
4. Experiments
4.1. Experimental Environment
4.2. Evaluation Method
4.2.1. Hit Ratio
4.2.2. Waste Ratio
4.2.3. Latency
4.2.4. Moving Average
4.3. Experimental Results
4.3.1. Comparison between the Edge and Cloud Servers
4.3.2. Comparative Analysis of the Network Traffic
4.3.3. Results per Request of the Proposed Method
4.3.4. Average Result per User of the Proposed Method
4.3.5. Results Based on Content Request Order of the Proposed Method
4.3.6. Waste Ratio Results of the Proposed and Conventional Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Web XR Device API. Available online: https://www.w3.org/TR/webxr/ (accessed on 1 May 2022).
- Three.js. Available online: https://threejs.org/ (accessed on 1 May 2022).
- AR.js. Augmented Reality on the Web. Available online: https://ar-js-org.github.io/AR.js-Docs/ (accessed on 1 May 2022).
- Mai, S.; Liu, Y. Implementation of Web AR applications with fog radio access networks based on openairinterface platform. In Proceedings of the 2019 5th International Conference on Control, Automation and Robotics (ICCAR), Beijing, China, 19–22 April 2019; IEEE Publications: Beijing, China, 2019; pp. 639–643. [Google Scholar] [CrossRef]
- Han, D.-I.; Tom Dieck, M.C.; Jung, T. User experience model for augmented reality applications in urban heritage tourism. J. Herit. Tour. 2018, 13, 46–61. [Google Scholar] [CrossRef]
- Naka, R.; Hagiwara, N.; Ohta, M. Accelerating data loading for photo-based augmented reality on web browser. In Proceedings of the 2018 IEEE 7th Global Conference Consumer Electronics (GCCE), Nara, Japan, 9–12 October 2018; IEEE Publications: Nara, Japan, 2018; pp. 698–699. [Google Scholar] [CrossRef]
- Banerji, S.; Chowdhury, R.S. On IEEE 802.11: Wireless LAN technology. IJMNCT 2013, 3, 45–64. [Google Scholar] [CrossRef]
- IEEE. 802.11TM Wireless Local Area Networks. Available online: https://www.ieee802.org/11 (accessed on 5 May 2022).
- IEEE. P802.11 Wireless LANs Draft Terms and Definitions for 802.11s. Available online: https://mentor.ieee.org/802.11/dcn/04/11-04-0730-01-000s-draft-core-terms-and-definitions-802-11s.doc (accessed on 5 May 2022).
- IEEE. 802.11-s Tutorial Overview of the Amendment for Wireless Local Area Mesh Networking. Available online: https://www.ieee802.org/802_tutorials/06-November/802.11s_Tutorial_r5.pdf (accessed on 5 May 2022).
- Lin, Y.; Kemme, B.; Patino-Martinez, M.; Jimenez-Peris, R. Enhancing edge computing with database replication. In Proceedings of the 2007 26th IEEE International Symposium on Reliable Distributed Systems (SRDS 2007), Beijing, China, 10–12 October 2007; IEEE Publications: Beijing, China, 2007; pp. 45–54. [Google Scholar] [CrossRef]
- Seyun, C.; Woosung, S.; Sukjun, H.; Hoijun, K.; Seunghyun, L.; Soonchul, K. A Novle Method for Efficient Mobile AR Service in Edge Mesh Network. Int. J. Internet Broadcast. Commun. 2022, 14, 22–29. [Google Scholar]
- Ren, J.; He, Y.; Huang, G.; Yu, G.; Cai, Y.; Zhang, Z. An edge-computing based architecture for mobile augmented reality. IEEE Netw. 2019, 33, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Xiuquan, Q.; Pei, R.; Schahram, D.; Ling, L.; Huadong, M.; Junliang, C.; Web, A.R. A promising future for mobile augmented reality—State of the art, challenges, and insights. Proc. IEEE 2019, 107, 651–666. [Google Scholar]
- Ali, W.; Shamsuddin, S.M.; Ismail, A.S. A survey of web caching and prefetching. Int. J. Adv. Soft Comput. 2011, 3, 18–44. [Google Scholar]
- Miyashita, T.; Meier, P.; Tachikawa, T.; Orlic, S.; Eble, T.; Scholz, V.; Gapel, A.; Gerl, O.; Arnaudov, S.; Lieberknecht, S. An augmented reality museum guide. In Proceedings of the 2008 7th IEEE/ACM International Symposium Mixed Augmented Reality, Cambridge, UK, 15–18 September 2008; IEEE Publications: Cambridge, UK, 2008; pp. 103–106. [Google Scholar] [CrossRef]
- Lee, D.; Shim, W.; Lee, M.; Lee, S.; Jung, K.-D.; Kwon, S. Performance evaluation of ground AR anchor with WebXR device API. Appl. Sci. 2021, 11, 7877. [Google Scholar] [CrossRef]
- Lee, G.A.; Dunser, A.; Kim, S.; Billinghurst, M. CityViewAR: A mobile outdoor AR application for city visualization. In Proceedings of the 2012 IEEE International Symposium Mixed Augmented Reality—Arts, Media, and Humanities (ISMAR-AMH), Atlanta, GA, USA, 5–8 November 2012; IEEE Publications: Atlanta, GA, USA, 2012; pp. 57–64. [Google Scholar]
- Chung, N.; Han, H.; Joun, Y. Tourists’ intention to visit a destination: The role of augmented reality (AR) application for a heritage site. Comput. Hum. Behav. 2015, 50, 588–599. [Google Scholar] [CrossRef]
- He, J.; Ren, J.; Zhu, G.; Cai, S.; Chen, G. Mobile-based AR application helps to promote EFL children’s vocabulary study. In Proceedings of the 2014 IEEE 14th International Conference on Advanced Learning Technologies, Athens, Greece, 7–10 July 2014; IEEE Publications: Athens, Greece, 2014; pp. 431–433. [Google Scholar] [CrossRef]
- Nguyen, M.; Lai, M.P.; Le, H.; Yan, W.Q. A web-based augmented reality platform using pictorial QR code for educational purposes and beyond. In Proceedings of the 25th ACM Symposium on Virtual Reality Software Technology, Parramatta, Australia, 12–15 November 2019; ACM: Parramatta, NSW, Australia, 2019; pp. 1–2. [Google Scholar]
- Barone Rodrigues, A.; Dias, D.R.C.; Martins, V.F.; Bressan, P.A.; de Paiva Guimarães, M. WebAR: A web-augmented reality-based authoring tool with experience API support for educational applications. In International Conference on Universal Access in Human-Computer Interaction; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 118–128. [Google Scholar] [CrossRef]
- Karthika, K.C. Wireless mesh network: A survey. In Proceedings of the 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 21–23 March 2016; IEEE Publications: Chennai, India, 2016; pp. 1966–1970. [Google Scholar] [CrossRef]
- Passos, D.; Teixeira, D.V.; Muchaluat-Saade, D.C.; Magalhães, L.S.; Albuquerque, C. Mesh network performance measurements. In Proceedings of the International Information and Telecommunication Technologies Symposium (I2TS), Cuiabá, Brazil, 6–8 December 2006; pp. 48–55. [Google Scholar]
- Navda, V.; Kashyap, A.; Das, S.R. Design and evaluation of IMesh: An infrastructure-mode wireless mesh network. In Proceedings of the Sixth IEEE International Symposium World of Wireless Mobile Multimedia Networks, Naxos, Italy, 13–16 June 2005; IEEE Publications: Taormina-Giardini Naxos, 2005; pp. 164–170. [Google Scholar] [CrossRef]
- Paulon, J.V.M.; Olivieri de Souza, B.J.; Endler, M. Exploring data collection on Bluetooth mesh networks. Ad Hoc Netw. 2022, 130, 102809. [Google Scholar] [CrossRef]
- Benyamina, D.; Hafid, A.; Gendreau, M. Wireless mesh networks design—A survey. IEEE Commun. Surv. Tutor. 2012, 14, 299–310. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Xudong, W. A survey on wireless mesh networks. IEEE Commun. Mag. Inst. Electr. Electron. Eng. 2005, 43, S23–S30. [Google Scholar] [CrossRef]
- Loven, L.; Lahderanta, T.; Ruha, L.; Leppanen, T.; Peltonen, E.; Riekki, J.; Sillanpaa, M.J. Scaling up an edge server deployment. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 13–17 March 2020; IEEE Publications: Austin, TX, USA, 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Xu, J.; Yuan, J.; Hsu, C.-H. Edge server placement in mobile edge computing. J. Parallel Distrib. Comput. 2019, 127, 160–168. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the internet of things: A case study. IEEE Internet Things J. 2018, 5, 1275–1284. [Google Scholar] [CrossRef]
- Besson, E. Performance of TCP in a wide-area network: Influence of successive bottlenecks and exogenous traffic. In Proceedings of the Globecom’00—IEEE. Global Telecommunications Conference, Cat. No. 00CH37137, San Francisco, CA, USA, 27 November–1 December 2000; IEEE Publications: San Francisco, CA, USA, 2000; Volume 3, pp. 1798–1804. [Google Scholar]
- Sukhmani, S.; Sadeghi, M.; Erol-Kantarci, M.; El Saddik, A. Edge caching and computing in 5G for mobile AR/VR and tactile internet. IEEE Multimed. 2019, 26, 21–30. [Google Scholar] [CrossRef]
- Domènech, J.; Gil, J.A.; Sahuquillo, J.; Pont, A. Web prefetching performance metrics: A survey. Perform. Eval. 2006, 63, 988–1004. [Google Scholar] [CrossRef]
- Pallis, G.; Vakali, A.; Pokorny, J. A clustering-based prefetching scheme on a Web cache environment. Comput. Electr. Eng. 2008, 34, 309–323. [Google Scholar] [CrossRef]
- Robert, L.C.; Mark, E.C. Measuring bottleneck link speed in packet-switched networks. Perform. Eval. 1996, 27–28, 297–318. [Google Scholar]
- Manish, S.; Tripathi, R.C. Cloud computing: Comparison and analysis of cloud service providers-AWs, Microsoft and Google. In Proceedings of the 9th International Conference System Modeling and Advancement in Research Trends (SMART), Moradabad, India, 4–5 December 2020; Volume 2020. [Google Scholar]
- Christos, B.; Agisilaos, K.; Dionysios, K. Predictive Prefetching on the Web and Its Potential Impact in the Wide Area. World Wide Web 2004, 7, 143–179. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, T.I.; Cheng-Zhong, X. Neural nets based predictive prefetching to tolerate WWW latency. In Proceedings of the 20th IEEE International Conference on Distributed Computing Systems, Taipei, Taiwan, 10–13 April 2000. [Google Scholar] [CrossRef]
- Craig, A.E.; Simon, A.P. Is smarter better? A comparison of adaptive, and simple moving average trading strategies. Res. Int. Bus. Financ. 2005, 19, 399–411. [Google Scholar] [CrossRef]
Client (Samsung Tab S6 SM-T860) | |
---|---|
CPU | Qualcomm Snapdragon 855 SM8150 Platform |
RAM | 8 GB LPDDR4X SDRAM |
OS | Android 11 |
Wi-Fi | Wi-Fi 1/2/3/4/5 |
Chrome | 97.0.4692.98 |
Edge Server (VEEA VHE10) | Cloud Server (Amazon EC2) | |
---|---|---|
Type | - | t2.large |
CPU | ARMv8 Quad Core processer, 1.5 GHz | 2vCPU |
RAM | 8 GB DRAM | 8 GB |
Wi-Fi | Tri-band Wi-Fi5 | - |
NETWORK | 1 Gbps | 500 Mbps |
Average (ms) | Standard Deviation (ms) | Distance (km) | |
---|---|---|---|
Singapore | 12,070.50 | 2542.15 | 4688.87 |
Virginia | 17,181.00 | 2506.36 | 11,137.60 |
Seoul | 5062.90 | 178.41 | 11.34 |
Edge | 4329.50 | 170.31 | - |
Average (ms) | Standard Deviation (ms) | |
---|---|---|
Initial time | 295.60 | 34.99 |
Prefetching false | 385.91 | 60.08 |
Prefetching true | 17.98 | 8.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Hong, S.; Kim, H.; Lee, S.; Kwon, S. Prefetching Method for Low-Latency Web AR in the WMN Edge Server. Appl. Sci. 2023, 13, 133. https://doi.org/10.3390/app13010133
Choi S, Hong S, Kim H, Lee S, Kwon S. Prefetching Method for Low-Latency Web AR in the WMN Edge Server. Applied Sciences. 2023; 13(1):133. https://doi.org/10.3390/app13010133
Chicago/Turabian StyleChoi, Seyun, Sukjun Hong, Hoijun Kim, Seunghyun Lee, and Soonchul Kwon. 2023. "Prefetching Method for Low-Latency Web AR in the WMN Edge Server" Applied Sciences 13, no. 1: 133. https://doi.org/10.3390/app13010133
APA StyleChoi, S., Hong, S., Kim, H., Lee, S., & Kwon, S. (2023). Prefetching Method for Low-Latency Web AR in the WMN Edge Server. Applied Sciences, 13(1), 133. https://doi.org/10.3390/app13010133