Controlling Laser Irradiation with Tissue Temperature Feedback Enhances Photothermal Applications: Ex-Vivo Evaluation on Bovine Liver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Non-Contact Temperature Controlled Medical Laser System
2.2. Photothermal Irradiation of Bovine Liver Tissue
2.2.1. Groups
2.2.2. Sample Preparation
2.2.3. Irradiation Procedure
3. Results
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PTT | Photothermal therapy |
LTW | Laser tissue welding |
IRt/c | Infrared thermocouple |
SNR | Signal to noise ratio |
USD | United States Dollar |
Near-IR | Near infrared |
Nd:YAG | Neodymium-doped yttrium aluminum garnet |
ZnSe | Zinc selenide |
NIST | National Institute of Standards and Technology |
TTL | Transistor–transistor logic |
I2C | Inter-Integrated circuit |
CW | Continuous wave |
References
- Niemz, M.H. Laser-Tissue Interactions: Fundamentals and Applications. In Laser-Tissue Interactions: Fundamentals and Applications, 3rd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; pp. 58–80. [Google Scholar] [CrossRef]
- Thomsen, S.; Pearce, J.A. Thermal Damage and Rate Processes in Biologic Tissues. In Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed.; Welch, A.J., Van Gemert, M.J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 487–549. [Google Scholar] [CrossRef]
- Valvano, J.W. Tissue thermal properties and perfusion. In Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed.; Welch, A.J., Van Gemert, M.J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 455–485. [Google Scholar] [CrossRef]
- Poppas, D.P.; Stewart, R.B.; Massicotte, J.M.; Wolga, A.E.; Kung, R.T.; Retik, A.B.; Freeman, M.R. Temperature-controlled laser photocoagulation of soft tissue: In Vivo evaluation using a tissue welding model. Lasers Surg. Med. 1996, 18, 335–344. [Google Scholar] [CrossRef]
- Stewart, R.B.; Benbrahim, A.; LaMuraglia, G.M.; Rosenberg, M.; L’Italien, G.J.; Abbott, W.M.; Kung, R.T. Laser assisted vascular welding with real time temperature control. Lasers Surg. Med. 1996, 19, 9–16. [Google Scholar] [CrossRef]
- Çilesiz, İ. Controlled Temperature Photothermal Tissue Welding. J. Biomed. Opt. 1999, 4, 327–336. [Google Scholar] [CrossRef]
- Spector, D.; Rabi, Y.; Vasserman, I.; Hardy, A.; Klausner, J.; Rabau, M.; Katzir, A. In Vitro large diameter bowel anastomosis using a temperature controlled laser tissue soldering system and albumin stent. Lasers Surg. Med. 2009, 41, 504–508. [Google Scholar] [CrossRef]
- Tabakoğlu, H.Ö.; Gülsoy, M. In Vivo comparison of near infrared lasers for skin welding. Lasers Med. Sci. 2010, 25, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Arai, T.; Sato, S.; Morimoto, Y.; Obara, M.; Kikuchi, M. Measurement of the Surface Temperature of the Cornea During ArF Excimer Laser Ablation by Thermal Radiometry With a 15-Nanosecond Time Response. Lasers Surg. Med. 2002, 30, 54–59. [Google Scholar] [CrossRef]
- Kopchok, G.E.; White, R.A.; Tabbara, M.; Saadatmanesh, V.; Peng, S.K. Holmium: YAG laser ablation of vascular tissue. Lasers Surg. Med. 1990, 10, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Schlott, K.; Koinzer, S.; Ptaszynski, L.; Bever, M.; Baade, A.; Roider, J.; Birngruber, R.; Brinkmann, R. Automatic temperature controlled retinal photocoagulation. J. Biomed. Opt. 2012, 17, 061223. [Google Scholar] [CrossRef]
- Small IV, W.; Celliers, P.; Kopchok, G.; Reiser, K.; Heredia, N.; Maitland, D.; Eder, D.; London, R.; Heilbron, M.; Hussain, F.; et al. Temperature Feedback and Collagen Cross-Linking in Argon Laser Vascular Welding. Lasers Surg. Med. 1998, 13, 98–105. [Google Scholar] [CrossRef]
- Singleton, D.; Paraskevopoulos, G.; Taylor, R.; Higginson, L. Excimer laser angioplasty: Tissue ablation, arterial response, and fiber optic delivery. IEEE J. Quantum Electron. 1987, 23, 1772–1782. [Google Scholar] [CrossRef]
- Landsberg, R.; DeRowe, A.; Katzir, A.; Shtabsky, A.; Fliss, D.M.; Gil, Z. Laser-induced hyperthermia for treatment of granulation tissue growth in rats. Otolaryngol.—Head Neck Surg. 2009, 140, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Sobol, E.; Shekhter, A.; Guller, A.; Baum, O.; Baskov, A. Laser-induced regeneration of cartilage. J. Biomed. Opt. 2011, 16, 080902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, B.J.F.; Milner, T.E.; Anvari, B.; Sviridov, A.; Omel’chenko, A.; Bagratashvili, V.V.; Sobol, E.; Nelson, J.S. Measurement of radiometric surface temperature and integrated backscattered light intensity during feedback-controlled laser-assisted cartilage reshaping. Lasers Med. Sci. 1998, 13, 66–72. [Google Scholar] [CrossRef]
- Simhon, D.; Halpern, M.; Brosh, T.; Vasilyev, T.; Ravid, A.; Tennenbaum, T.; Nevo, Z.; Katzir, A. Immediate tight sealing of skin incisions using an innovative temperature-controlled laser soldering device: In Vivo study in porcine skin. Ann. Surg. 2007, 245, 206–213. [Google Scholar] [CrossRef]
- Coad, J.E. Thermal fixation: A central outcome of hyperthermic therapies (Invited Paper). In Proceedings of the Thermal Treatment of Tissue: Energy Delivery and Assessment III; Ryan, T.P., Ed.; SPIE: Bellingham, WA, USA, 2005. [Google Scholar] [CrossRef]
- Barton, J.K. Dynamic changes in optical properties. In Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed.; Welch, A.J., Van Gemert, M.J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 321–349. [Google Scholar] [CrossRef]
- Lim, H.S. Reduction of thermal damage in photodynamic therapy by laser irradiation techniques. J. Biomed. Opt. 2012, 17, 128001. [Google Scholar] [CrossRef]
- Grandinétti, V.d.S.; Miranda, E.F.; Johnson, D.S.; de Paiva, P.R.V.; Tomazoni, S.S.; Vanin, A.A.; Albuquerque-Pontes, G.M.; Frigo, L.; Marcos, R.L.; de Carvalho, P.d.T.C.; et al. The thermal impact of phototherapy with concurrent super-pulsed lasers and red and infrared LEDs on human skin. Lasers Med. Sci. 2015, 30, 1575–1581. [Google Scholar] [CrossRef]
- Çilesiz, İ.; Thomsen, S.; Welch, A.J. Controlled temperature tissue fusion: Argon laser welding of rat intestine in vivo, Part One. Lasers Surg. Med. 1997, 21, 269–277. [Google Scholar] [CrossRef]
- Çilesiz, İ.; Thomsen, S.; Welch, A.J.; Chan, E.K. Controlled temperature tissue fusion: Ho:YAG laser welding of rat intestine in vivo, Part Two. Lasers Surg. Med. 1997, 21, 278–286. [Google Scholar] [CrossRef]
- Tunç, B.; Gülsoy, M. Tm:Fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: Ex Vivo dosimetry for ovine brain. Lasers Surg. Med. 2013, 45, 48–56. [Google Scholar] [CrossRef]
- Simhon, D.; Gabay, I.; Shpolyansky, G.; Vasilyev, T.; Nur, I.; Meidler, R.; Hatoum, O.A.; Katzir, A.; Hasmonai, M.; Kopelman, D. Temperature-controlled laser-soldering system and its clinical application for bonding skin incisions. J. Biomed. Opt. 2015, 20, 128002. [Google Scholar] [CrossRef]
- Kaya, Ö.; Gülsoy, M. A non-contact temperature measurement system for controlling photothermal medical laser treatments. Proc. SPIE 2016, 9706, 97060K. [Google Scholar] [CrossRef]
- Whelan, W.M.; Wyman, D.R. Dynamic modeling of interstitial laser photocoagulation: Implications for lesion formation in liver in vivo. Lasers Surg. Med. 1999, 24, 202–208. [Google Scholar] [CrossRef]
- Jacques, S.L.; Rastegar, S.; Motamedi, M.; Thomsen, S.L.; Schwartz, J.A.; Torres, J.H.; Mannonen, I. Liver photocoagulation with diode laser (805 nm) versus Nd:YAG (1064 nm). Proc. SPIE 1992, 1646, 107–117. [Google Scholar] [CrossRef]
- Diller, K.R. Laser generated heat transfer. In Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed.; Welch, A.J., Van Gemert, M.J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 353–397. [Google Scholar] [CrossRef]
- Jaywant, S.M.; Wilson, B.C.; Patterson, M.S.; Lilge, L.D.; Flotte, T.J.; Woolsey, J.; McCulloch, C. Temperature-dependent changes in the optical absorption and scattering spectra of tissues: Correlation with ultrastructure. Proc. SPIE 1993, 1882, 218–229. [Google Scholar] [CrossRef]
- Mullick, S.; Madhukar, Y.K.; Kumar, S.; Shukla, D.K.; Nath, A.K. Temperature and intensity dependence of Yb-fiber laser light absorption in water. Appl. Opt. 2011, 50, 6319–6326. [Google Scholar] [CrossRef] [PubMed]
- Spells, K.E. The Thermal Conductivities of some Biological Fluids. Phys. Med. Biol. 1960, 5, 139. [Google Scholar] [CrossRef]
- Anderson, R.R. Polarized light examination and photography of the skin. Arch. Dermatol. 1991, 127, 1000–1005. [Google Scholar] [CrossRef]
- Beatty, C.J.; Thomsen, S.L.; Vos, J.A.; Coad, J. Practical pathology for thermal tissue applications. Proc. SPIE 2015, 9326, 932602. [Google Scholar] [CrossRef]
- Thomsen, S.; Pearce, J.; Cheong, W.F. Changes in birefringence as markers of thermal damage in tissues. IEEE Trans. Biomed. Eng. 1989, 36, 1174–1179. [Google Scholar] [CrossRef]
- Sherwood, M.E.; Flotte, T.J. Improved staining method for determining the extent of thermal damage to cells. Lasers Surg. Med. 2007, 39, 128–131. [Google Scholar] [CrossRef]
55 °C | 65 °C | 75 °C | |
---|---|---|---|
( ) | ( ) | ( ) | |
( ) | ( ) | ( ) | |
( ) | ( ) | ( ) |
[°C] | [°C] | [°C] | [°C] | ||
---|---|---|---|---|---|
55 | |||||
65 | |||||
75 | |||||
55 | |||||
65 | |||||
75 | |||||
55 | |||||
65 | |||||
75 |
E | [°C] | [°C] | [°C] | ||
---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, Ö.; Düzgören, İ.; Çilesiz, İ.; Gülsoy, M. Controlling Laser Irradiation with Tissue Temperature Feedback Enhances Photothermal Applications: Ex-Vivo Evaluation on Bovine Liver. Appl. Sci. 2023, 13, 237. https://doi.org/10.3390/app13010237
Kaya Ö, Düzgören İ, Çilesiz İ, Gülsoy M. Controlling Laser Irradiation with Tissue Temperature Feedback Enhances Photothermal Applications: Ex-Vivo Evaluation on Bovine Liver. Applied Sciences. 2023; 13(1):237. https://doi.org/10.3390/app13010237
Chicago/Turabian StyleKaya, Özgür, İpek Düzgören, İnci Çilesiz, and Murat Gülsoy. 2023. "Controlling Laser Irradiation with Tissue Temperature Feedback Enhances Photothermal Applications: Ex-Vivo Evaluation on Bovine Liver" Applied Sciences 13, no. 1: 237. https://doi.org/10.3390/app13010237
APA StyleKaya, Ö., Düzgören, İ., Çilesiz, İ., & Gülsoy, M. (2023). Controlling Laser Irradiation with Tissue Temperature Feedback Enhances Photothermal Applications: Ex-Vivo Evaluation on Bovine Liver. Applied Sciences, 13(1), 237. https://doi.org/10.3390/app13010237