A Study on the Prediction of Electrical Energy in Food Storage Using Machine Learning
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Freezers and Data Acquisition Devices
2.2. Software Development
2.3. Test Case Composition
2.4. Machine Learning Modeling Methods
2.4.1. Single-Layer Perceptron (SLP)
2.4.2. Multi-Layer Perceptron (MLP)
2.5. Web-Based Power Electrical Energy Prediction Service
2.6. Statistics
2.7. Electrical Energy Optimization
- Target (°C) = −20;
- Hysteresis (°C) = 1, 2, 3, 4, or 5;
- Compressor delay (s) = 0, 20, 120, 220, 320, 420, 520, 620, or 720;
- Fan speed (step) = 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, 11,000, 12,000, 13,000, 14,000, 15,000, 16,000, 17,000, 18,000, 19,000, 20,000, 21,000, 22,000, or 23,000;
- Fan delay (s) = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, or 120;
- Room temperature average (°C) = 24.
3. Results
3.1. Test Automation Program and Data Collection
3.2. Web-Based Prediction Service and TS Calculation
3.3. The Combination of Items for Minimum Electrical Energy
4. Discussion
Funding
Conflicts of Interest
References
- James, C. Food Transportation and Refrigeration Technologies—Design and Optimization; Sustainable Food Supply Chains; Elsevier: Amsterdam, The Netherlands, 2019; pp. 185–199. [Google Scholar]
- Bertoldi, P.; Atanasiu, B. Electricity Consumption and Efficiency Trends in the Enlarged European Union; IES–JRC, European Union: Brussels, Belgium, 2007. [Google Scholar]
- Gutberlet, K.L. Domestic Appliances: Progress & Potential. In Proceedings of the 5th International Conference on Energy Efficiency in Domestic Appliances and Lighting EEDAL, Berlin, Germany, 16–18 June 2009; p. 9. [Google Scholar]
- Brito, P.; Lopes, P.; Reis, P.; Alves, O. Simulation and optimization of energy consumption in cold storage chambers from the horticultural industry. Int. J. Energy Environ. Eng. 2014, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Sakallı, Ö.; Kerpiççi, H.; Kuddusi, L. A study on optimizing the energy consumption of a cold storage cabinet. Appl. Therm. Eng. 2017, 112, 424–430. [Google Scholar] [CrossRef]
- Meneghetti, A.; Monti, L. Greening the food supply chain: An optimisation model for sustainable design of refrigerated automated warehouses. Int. J. Prod. Res. 2014, 53, 6567–6587. [Google Scholar] [CrossRef]
- Yilmaz, I.C.; Yilmaz, D. Optimal capacity for sustainable refrigerated storage buildings. Case Stud. Therm. Eng. 2020, 22, 100751. [Google Scholar] [CrossRef]
- Tian, S.; Shao, S.; Liu, B. Investigation on transient energy consumption of cold storages: Modeling and a case study. Energy 2019, 180, 1–9. [Google Scholar] [CrossRef]
- Nunes, J.; Neves, D.; Gaspar, P.D.; Silva, P.D.; Andrade, L.P. Predictive tool of energy performance of cold storage in agrifood industries: The Portuguese case study. Energy Convers. Manag. 2014, 88, 758–767. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Das, R. Optimization of different control parameters of a cold storage using Taguchi Methodology. AMSE J. 2014 Ser. Model. D 2015, 36, 1–9. [Google Scholar]
- Hovgaard, T.G.; Larsen, L.F.; Edlund, K.; Jørgensen, J.B. Model predictive control technologies for efficient and flexible power consumption in refrigeration systems. Energy 2012, 44, 105–116. [Google Scholar] [CrossRef]
- Granter, S.R.; Beck, A.H.; Papke, D.J., Jr. AlphaGo, deep learning, and the future of the human microscopist. Arch. Pathol. Lab. Med. 2017, 141, 619–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kim, S. Impact and prospect of the fourth industrial revolution in food safety: Mini-review. Food Sci. Biotechnol. 2022, 31, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Koritsoglou, K.; Papadopoulou, M.S.; Boursianis, A.D.; Sarigiannidis, P.; Nikolaidis, S.; Goudos, S.K. Smart Refrigeration Equipment based on IoT Technology for Reducing Power Consumption. In Proceedings of the 2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022; pp. 1–4. [Google Scholar]
- Loisel, J.; Duret, S.; Cornuéjols, A.; Cagnon, D.; Tardet, M.; Derens-Bertheau, E.; Laguerre, O. Cold chain break detection and analysis: Can machine learning help? Trends Food Sci. Technol. 2021, 112, 391–399. [Google Scholar] [CrossRef]
- Soltani, Z.; Sørensen, K.K.; Leth, J.; Bendtsen, J.D. Fault detection and diagnosis in refrigeration systems using machine learning algorithms. Int. J. Refrig. 2022, 144, 34–45. [Google Scholar] [CrossRef]
- Khan, I.H.; Sablani, S.S.; Joardder, M.U.H.; Karim, M.A. Application of machine learning-based approach in food drying: Opportunities and challenges. Dry. Technol. 2020, 40, 1051–1067. [Google Scholar] [CrossRef]
- Kim, S.O.; Choi, Y.J. Firmware development process for food refrigeration system. Food Sci. Biotechnol. 2014, 23, 1159–1167. [Google Scholar] [CrossRef]
- Bitter, R.; Mohiuddin, T.; Nawrocki, M. LabVIEW™ Advanced Programming Techniques; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- De Smedt, T.; Daelemans, W. Pattern for python. J. Mach. Learn. Res. 2012, 13, 2063–2067. [Google Scholar]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Newton, MA, USA, 2022. [Google Scholar]
- Ramasubramanian, K.; Singh, A. Deep Learning using Keras and Tensorflow. In Machine Learning Using R; Apress: Berkeley, CA, USA, 2019; pp. 667–688. [Google Scholar]
- Relan, K. Beginning with flask. In Building REST APIs with Flask; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–26. [Google Scholar]
- Mele, M.; Secchiari, P.; Serra, A.; Ferruzzi, G.; Paoletti, F.; Biagioni, M. Application of the ‘tracking signal’ method to the monitoring of udder health and oestrus in dairy cows. Livest. Prod. Sci. 2001, 72, 279–284. [Google Scholar] [CrossRef]
Test Number | Target (°C) | Hysteresis (°C) | Compressor Delay (s) | Fan Speed (Step) | Fan Delay (s) | Average Room Temperature (°C) | Electrical Energy (kWh) | Data Filename | Number of Records |
---|---|---|---|---|---|---|---|---|---|
1 | −20 | 5 | 720 | 13,000 | 0 | 23.0 | 760,567.9 | 1.csv | 456 |
2 | −40 | 5 | 420 | 13,000 | 120 | 24.2 | 1,486,217.0 | 2.csv | 724 |
3 | −20 | 5 | 720 | 3000 | 60 | 23.6 | 890,658.1 | 3.csv | 920 |
4 | −20 | 1 | 720 | 13,000 | 60 | 24.6 | 786,036.6 | 4.csv | 213 |
5 | −30 | 3 | 720 | 23,000 | 60 | 24.8 | 1,070,131 | 5.csv | 182 |
6 | −20 | 3 | 420 | 3000 | 120 | 23.5 | 875,112.1 | 6.csv | 369 |
7 | −30 | 3 | 720 | 3000 | 120 | 22.5 | 1,130,707.0 | 7.csv | 294 |
8 | −20 | 1 | 720 | 3000 | 120 | 23.2 | 851,244.7 | 8.csv | 301 |
9 | −20 | 3 | 720 | 23,000 | 120 | 24.6 | 784,586.0 | 9.csv | 240 |
10 | −30 | 3 | 720 | 13,000 | 120 | 24.5 | 1,056,281.0 | 10.csv | 182 |
11 | −20 | 3 | 720 | 13,000 | 0 | 23.7 | 761,028.9 | 11.csv | 256 |
12 | −30 | 1 | 720 | 3000 | 60 | 22.8 | 1,116,712.0 | 12.csv | 219 |
13 | −40 | 5 | 420 | 23,000 | 60 | 22.6 | 1,432,057.0 | 13.csv | 250 |
14 | −40 | 1 | 720 | 13,000 | 120 | 23.7 | 1,428,087.0 | 14.csv | 136 |
15 | −40 | 1 | 420 | 13,000 | 120 | 23.7 | 1,445,620.0 | 15.csv | 128 |
16 | −40 | 1 | 420 | 3000 | 60 | 24.1 | 1,546,400.0 | 16.csv | 204 |
17 | −30 | 3 | 420 | 13,000 | 0 | 24.0 | 1,044,196.0 | 17.csv | 227 |
18 | −40 | 5 | 420 | 23,000 | 60 | 23.2 | 1,442,864.0 | 18.csv | 248 |
19 | −30 | 5 | 720 | 23,000 | 120 | 22.6 | 1,029,990.0 | 19.csv | 289 |
20 | −20 | 1 | 720 | 23,000 | 60 | 23.6 | 764,630.9 | 20.csv | 192 |
21 | −30 | 5 | 720 | 13,000 | 60 | 24.2 | 1,057,877.0 | 21.csv | 238 |
22 | −30 | 5 | 720 | 13,000 | 0 | 24.1 | 1,051,675.0 | 22.csv | 266 |
23 | −30 | 5 | 720 | 3000 | 0 | 23.7 | 1,179,404.0 | 23.csv | 370 |
24 | −40 | 3 | 420 | 23,000 | 120 | 23.2 | 1,442,853.0 | 24.csv | 194 |
25 | −30 | 1 | 720 | 3000 | 60 | 22.5 | 1,111,537.0 | 25.csv | 248 |
26 | −30 | 1 | 420 | 23,000 | 60 | 23.3 | 1,061,260.0 | 26.csv | 148 |
27 | −40 | 1 | 420 | 3000 | 120 | 24.2 | 1,553,932.0 | 27.csv | 206 |
28 | −40 | 5 | 420 | 13,000 | 60 | 24.2 | 1,475,870.0 | 28.csv | 275 |
29 | −40 | 5 | 720 | 23,000 | 60 | 23.5 | 1,471,280.0 | 29.csv | 274 |
30 | −20 | 1 | 720 | 23,000 | 120 | 22.9 | 761,361.0 | 30.csv | 215 |
31 | −20 | 3 | 720 | 23,000 | 120 | 22.5 | 756,175.3 | 31.csv | 226 |
32 | −30 | 5 | 720 | 3000 | 120 | 23.9 | 1,214,821.0 | 32.csv | 344 |
33 | −40 | 5 | 720 | 13,000 | 120 | 24.7 | 1,495,908.0 | 33.csv | 268 |
34 | −30 | 3 | 720 | 23,000 | 120 | 23.7 | 1,051,823.0 | 34.csv | 225 |
35 | −40 | 3 | 720 | 13,000 | 60 | 23.2 | 1,425,506.0 | 35.csv | 191 |
36 | −40 | 1 | 720 | 13,000 | 0 | 22.9 | 1,406,442.0 | 36.csv | 132 |
37 | −20 | 3 | 420 | 13,000 | 120 | 22.7 | 761,447.4 | 37.csv | 281 |
38 | −40 | 5 | 720 | 13,000 | 120 | 24.4 | 1,499,554.0 | 38.csv | 257 |
39 | −40 | 3 | 420 | 23,000 | 0 | 25.4 | 1,494,355.0 | 39.csv | 208 |
40 | −20 | 5 | 420 | 23,000 | 0 | 24.4 | 782,610.8 | 40.csv | 340 |
41 | −30 | 3 | 420 | 23,000 | 0 | 23.1 | 1,046,752.0 | 41.csv | 176 |
42 | −20 | 5 | 720 | 23,000 | 0 | 23.3 | 780,575.7 | 42.csv | 324 |
Sequence Number | Target (°C) | Hysteresis (°C) | Compressor Delay (s) | Fan Speed (Step) | Fan Delay (s) | Average Room Temperature (°C) | Electrical Energy Prediction Results (kWh) |
---|---|---|---|---|---|---|---|
0 | −20 | 1 | 0 | 3000 | 0 | 24 | 915,796.8 |
1 | −20 | 1 | 0 | 3000 | 10 | 24 | 916,796.1 |
2 | −20 | 1 | 0 | 3000 | 20 | 24 | 917,795.3 |
3 | −20 | 1 | 0 | 3000 | 30 | 24 | 918,794.8 |
4 | −20 | 1 | 0 | 3000 | 40 | 24 | 919,794.0 |
5 | −20 | 1 | 0 | 3000 | 50 | 24 | 920,793.3 |
6 | −20 | 1 | 0 | 3000 | 60 | 24 | 921,792.6 |
7 | −20 | 1 | 0 | 3000 | 70 | 24 | 922,791.9 |
8 | −20 | 1 | 0 | 3000 | 80 | 24 | 923,791.2 |
: | |||||||
12,276 | −20 | 5 | 720 | 23,000 | 40 | 24 | 783,313.6 |
12,277 | −20 | 5 | 720 | 23,000 | 50 | 24 | 781,319.5 |
12,278 | −20 | 5 | 720 | 23,000 | 60 | 24 | 779,325.5 |
12,279 | −20 | 5 | 720 | 23,000 | 70 | 24 | 777,331.5 |
12,280 | −20 | 5 | 720 | 23,000 | 80 | 24 | 775,337.5 |
12,281 | −20 | 5 | 720 | 23,000 | 90 | 24 | 773,343.4 |
12,282 | −20 | 5 | 720 | 23,000 | 100 | 24 | 771,349.4 |
12,283 | −20 | 5 | 720 | 23,000 | 110 | 24 | 769,355.4 |
12,284 | −20 | 5 | 720 | 23,000 | 120 | 24 | 768,018.1 |
Minimum Electrical Energy | Maximum Electrical Energy | Max.−Min. | |
---|---|---|---|
Sequence Number | 2054 | 10,088 | N/A |
Target (°C) | −20 | −20 | N/A |
Hysteresis (°C) | 1 | 5 | N/A |
Compressor delay (s) | 620 | 0 | N/A |
Fan speed (step) | 14,000 | 23,000 | N/A |
Fan delay (s) | 0 | 0 | N/A |
Average room temperature (°C) | 24 | 24 | N/A |
Electrical energy prediction results (kWh) | 737,498 | 1,100,332 | 362,834 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S. A Study on the Prediction of Electrical Energy in Food Storage Using Machine Learning. Appl. Sci. 2023, 13, 346. https://doi.org/10.3390/app13010346
Kim S. A Study on the Prediction of Electrical Energy in Food Storage Using Machine Learning. Applied Sciences. 2023; 13(1):346. https://doi.org/10.3390/app13010346
Chicago/Turabian StyleKim, Sangoh. 2023. "A Study on the Prediction of Electrical Energy in Food Storage Using Machine Learning" Applied Sciences 13, no. 1: 346. https://doi.org/10.3390/app13010346
APA StyleKim, S. (2023). A Study on the Prediction of Electrical Energy in Food Storage Using Machine Learning. Applied Sciences, 13(1), 346. https://doi.org/10.3390/app13010346