A Robust Intelligent Controller for Autonomous Ground Vehicle Longitudinal Dynamics
Abstract
:1. Introduction
- The proposed design contributes to the ADASs in general and ACC with ISA in particular.
- An adaptive control design provides disturbance rejection and uncertainty compensation.
- The novel robust law is a function of the upper bounds of lumped uncertainties and does not require any prior knowledge of the latter.
- An immediate adaptation identifies the upper bounds of perturbations and uncertainties via estimating the neural architecture’s parameters.
2. Vehicle Modeling
2.1. Longitudinal Aerodynamic Drag Force
2.2. Rolling Resistance
2.3. Longitudinal Tire Forces
2.4. Simplified Vehicle Longitudinal Model
3. Controller Development
3.1. Motivation
3.2. Problem Formulation
3.3. Robust Adaptive RBNN-SMC
3.3.1. Sliding Surfaces
3.3.2. Equivalent Control Law
3.3.3. Robust Law
4. Results and Discussion
- 1.
- A Toyota Prius first-level autonomous vehicle
- 2.
- An automatic steering wheel robot.
- 3.
- A Lenovo computer.
5. Conclusions
- Offering a robust law considering the disturbance and uncertainty upper limit as well as adapting it to each sampling time has been proven to provide outstanding results over and above the super-twisting SMC that often dominated the conventional SMC in terms of performance.
- Providing an algorithm that was able to estimate the upper limit of uncertainties and disturbances allowed the proposed design scheme to be utilized with no need for information regarding upper-limit external disturbances.
- Orienting the proposed design toward a real nonlinear system, such as longitudinal vehicle dynamics, can not only confirm the proposed method’s sovereignty but can also be embedded to contribute to the ADASs in general and ACC and ISA in particular.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Hajjami, L.; Mellouli, E.M.; Berrada, M. Neural network based sliding mode lateral control for autonomous vehicle. In Proceedings of the 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, 16–19 April 2020; pp. 1–6. [Google Scholar]
- Cao, H.; Song, X.; Huang, Z.; Pan, L. Simulation research on emergency path planning of an active collision avoidance system combined with longitudinal control for an autonomous vehicle. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2016, 230, 1624–1653. [Google Scholar] [CrossRef]
- Shladover, S.E.; Desoer, C.A.; Hedrick, J.K.; Tomizuka, M.; Walrand, J.; Zhang, W.-B.; Mcmahon, D.H.; Peng, H.; Sheikholeslam, S.; Mckeown, N. Automated vehicle control developments in the path program. IEEE Trans. Veh. Technol. 1991, 40, 114–130. [Google Scholar] [CrossRef] [Green Version]
- Skrickij, V.; Šabanovič, E.; Žuraulis, V. Autonomous road vehicles: Recent issues and expectations. IET Intell. Transp. Syst. 2020, 14, 471–479. [Google Scholar] [CrossRef]
- Hassani, H.; Mansouri, A.; Ahaitouf, A. Robust finite-time tracking control based on disturbance observer for an uncertain quadrotor under external disturbances. J. Robot. 2022, 2022, 1–20. [Google Scholar] [CrossRef]
- Mellouli, E.M.; Boumhidi, I. Direct adaptive fuzzy sliding mode controller without reaching phase for an uncertain three-tank-system. Int. J. Model. Identif. Control 2016, 25, 335–342. [Google Scholar]
- Li, A.; Niu, C.; Li, S.; Huang, X.; Xu, C.; Liu, G. Research on intelligent vehicle trajectory planning and control based on an improved terminal sliding mode. Appl. Sci. 2022, 12, 2446. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, B.; Ma, Y.; Cheng, Y. Robust adp-based sliding-mode fault-tolerant control for nonlinear systems with application to spacecraft. Appl. Sci. 2022, 12, 1673. [Google Scholar] [CrossRef]
- El Hajjami, L.; Mellouli, E.M.; Berrada, M. Autonomous vehicle lateral control for the lane-change maneuver. In WITS 2020; Springer: Berlin/Heidelberg, Germany, 2022; pp. 285–295. [Google Scholar]
- El Hajjami, L.; Mellouli, E.M.; Berrada, M. Robust adaptive non-singular fast terminal sliding-mode lateral control for an uncertain ego vehicle at the lane-change maneuver subjected to abrupt change. Int. J. Dyn. Control 2021, 9, 1765–1782. [Google Scholar] [CrossRef]
- Nouveliere, L. Experimental vehicle longitudinal control using a second order sliding mode technique. Control Eng. Pract. 2007, 15, 943–954. [Google Scholar] [CrossRef]
- El Hajjami, L.; Mellouli, E.M.; Žuraulis, V.; Berrada, M. Vehicle adaptive cruise controller based on an optimal super-twisting sliding mode control. In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022; pp. 160–165. [Google Scholar]
- Xu, Y.; Lu, Z.; Shan, X.; Jia, W.; Wei, B.; Wang, Y. Study on an automatic parking method based on the sliding mode variable structure and fuzzy logical control. Symmetry 2018, 10, 523. [Google Scholar] [CrossRef] [Green Version]
- El-Bakkouri, J.; Ouadi, H.; Saad, A. Output feedback control of antilock braking system. Int. Rev. Autom. Control (IREACO) 2021, 14, 214–223. [Google Scholar] [CrossRef]
- Yao, Q.; Tian, Y. A model predictive controller with longitudinal speed compensation for autonomous vehicle path tracking. Appl. Sci. 2019, 9, 4739. [Google Scholar] [CrossRef] [Green Version]
- Moshayedi, A.J.; Li, J.; Sina, N.; Chen, X.; Liao, L.; Gheisari, M.; Xie, X. Simulation and validation of optimized pid controller in agv (automated guided vehicles) model using pso and bas algorithms. Comput. Intell. Neurosci. 2022, 2022, 1–22. [Google Scholar] [CrossRef]
- El Hajjami, L.; Mellouli, E.M.; Berrada, M. Optimal PID control of an autonomous vehicle using butterfly optimization algorithm boa. In Proceedings of the 4th International Conference on Big Data and Internet of Things, Rabat, Morocco, 23–24 October 2019; pp. 1–5. [Google Scholar]
- Debarshi, S.; Sundaram, S.; Sundararajan, N. Robust EMRAN-aided coupled controller for autonomous vehicles. Eng. Appl. Artif. Intell. 2022, 110, 104717. [Google Scholar] [CrossRef]
- Taghavifar, H.; Rakheja, S. Path-tracking of autonomous vehicles using a novel adaptive robust exponential-like-sliding-mode fuzzy type-2 neural network controller. Mech. Syst. Signal Process. 2019, 130, 41–55. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Cao, Y.; Xin, T.; Yang, L. Dynamic speed trajectory generation and tracking control for autonomous driving of intelligent high-speed trains combining with deep learning and backstepping control methods. Eng. Appl. Artif. Intell. 2022, 115, 105230. [Google Scholar] [CrossRef]
- Marcano, M.; Matute, J.A.; Lattarulo, R.; Martí, E.; Pérez, J. Low Speed longitudinal control algorithms for automated vehicles in simulation and real platforms. Complexity 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Reddipogu, J.; Elumalai, V. Multi-objective model predictive control for vehicle active suspension system. Int. Rev. Autom. Control (IREACO) 2020, 13, 255. Available online: https://Www.Praiseworthyprize.Org/Jsm/Index.Php?Journal=Ireaco&Page=Article&Op=View&Path%5B%5D=24828 (accessed on 2 December 2022). [CrossRef]
- Gao, B.; Cai, K.; Qu, T.; Hu, Y.; Chen, H. Personalized adaptive cruise control based on online driving style recognition technology and model predictive control. IEEE Trans. Veh. Technol. 2020, 69, 12482–12496. [Google Scholar] [CrossRef]
- Partouche, D.; Pasquier, M.; Spalanzani, A. Intelligent speed adaptation using a self-organizing neuro-fuzzy controller. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007; pp. 846–851. [Google Scholar]
- Wang, X.; Wang, J.; Sun, W.; Wang, Y.; Xie, F.; Guo, D. Development of aeb control strategy for autonomous vehicles on snow-asphalt joint pavement. Int. J. Crashworthiness 2021, 27, 1601–1621. [Google Scholar] [CrossRef]
- Jo, A.; Lee, H.; Seo, D.; Yi, K. Model-Reference Adaptive sliding mode control of longitudinal speed tracking for autonomous vehicles. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2022; Online First. [Google Scholar] [CrossRef]
- He, H.; Wang, C.; Jia, H.; Cui, X. An intelligent braking system composed single-pedal and multi-objective optimization neural network braking control strategies for electric vehicle. Appl. Energy 2020, 259, 114172. [Google Scholar] [CrossRef]
- Nie, L.; Guan, J.; Lu, C.; Zheng, H.; Yin, Z. Longitudinal speed control of autonomous vehicle based on a self-adaptive pid of radial basis function neural network. IET Intell. Transp. Syst. 2018, 12, 485–494. [Google Scholar] [CrossRef]
- Maniyan, H.; Eftekhari, S.A. Automatic Defect Analysis of Pumps Using Adaptive Neuro- Fuzzy Inference System and Vibrational Features. In Proceedings of the 9th National Mechanical Engineering Conference, Khomeyni Shahr, Iran, 1395; Available online: https://civilica.com/doc/661301 (accessed on 29 November 2022).
- Fan, B.; Zhang, Y.; Chen, Y.; Meng, L. Intelligent vehicle lateral control based on radial basis function neural network sliding mode controller. CAAI Trans. Intell. Technol. 2022, 7, 455–468. [Google Scholar] [CrossRef]
- Chen, L.; Tang, L. Yaw stability control for steer-by-wire vehicle based on radial basis network and terminal sliding mode theory. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2022; Online First. [Google Scholar] [CrossRef]
- Rajamani, R. Vehicle Dynamics and Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 1-4614-1432-6. [Google Scholar]
- Jazar, R.N. Vehicle Dynamics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1. [Google Scholar]
- Attia, R.; Orjuela, R.; Basset, M. Longitudinal control for automated vehicle guidance. IFAC Proc. Vol. 2012, 45, 65–71. [Google Scholar] [CrossRef]
- Eskandarian, A. Handbook of Intelligent Vehicles; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2. [Google Scholar]
- Xia, J.S.; Khabaz, M.K.; Patra, I.; Khalid, I.; Alvarez, J.R.; Rahmanian, A.; Eftekhari, S.A.; Toghraie, D. Using feedforward perceptron artificial neural network (ann) model to determine the rolling force, power and slip of the tandem cold rolling. ISA Trans. 2022; in press. [Google Scholar] [CrossRef]
- Kawato, M.; Uno, Y.; Isobe, M.; Suzuki, R. Hierarchical neural network model for voluntary movement with application to robotics. IEEE Control Syst. Mag. 1988, 8, 8–15. [Google Scholar] [CrossRef]
- Psaltis, D.; Sideris, A.; Yamamura, A.A. A multilayered neural network controller. IEEE Control Syst. Mag. 1988, 8, 17–21. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, C.; Zhang, Y.; Li, X.; Sun, L. A neural network-based navigation approach for autonomous mobile robot systems. Appl. Sci. 2022, 12, 7796. [Google Scholar] [CrossRef]
- Agand, P.; Shoorehdeli, M.A.; Khaki-Sedigh, A. Adaptive recurrent neural network with lyapunov stability learning rules for robot dynamic terms identification. Eng. Appl. Artif. Intell. 2017, 65, 1–11. [Google Scholar] [CrossRef]
- Truong, H.-V.-A.; Tran, D.-T.; Ahn, K.K. A neural network based sliding mode control for tracking performance with parameters variation of a 3-dof manipulator. Appl. Sci. 2019, 9, 2023. [Google Scholar] [CrossRef] [Green Version]
- Liu, J. Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 3-642-34816-5. [Google Scholar]
- Boukattaya, M.; Mezghani, N.; Damak, T. Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems. ISA Trans. 2018, 77, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Asl, S.B.F.; Moosapour, S.S. Adaptive backstepping fast terminal sliding mode controller design for ducted fan engine of thrust-vectored aircraft. Aerosp. Sci. Technol. 2017, 71, 521–529. [Google Scholar]
- Ji, X.; He, X.; Lv, C.; Liu, Y.; Wu, J. Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits. Control Eng. Pract. 2018, 76, 41–53. [Google Scholar] [CrossRef]
- Wai, R.-J. Tracking control based on neural network strategy for robot manipulator. Neurocomputing 2003, 51, 425–445. [Google Scholar] [CrossRef]
Approaches | Performance Index |
---|---|
Proposed method | 0.825 |
Super-twisting SMC | 64.419 |
Approaches | Performance Index |
---|---|
Proposed method | 27.719 |
Super-twisting SMC | 196.8197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hajjami, L.; Mellouli, E.M.; Žuraulis, V.; Berrada, M.; Boumhidi, I. A Robust Intelligent Controller for Autonomous Ground Vehicle Longitudinal Dynamics. Appl. Sci. 2023, 13, 501. https://doi.org/10.3390/app13010501
El Hajjami L, Mellouli EM, Žuraulis V, Berrada M, Boumhidi I. A Robust Intelligent Controller for Autonomous Ground Vehicle Longitudinal Dynamics. Applied Sciences. 2023; 13(1):501. https://doi.org/10.3390/app13010501
Chicago/Turabian StyleEl Hajjami, Lhoussain, El Mehdi Mellouli, Vidas Žuraulis, Mohammed Berrada, and Ismail Boumhidi. 2023. "A Robust Intelligent Controller for Autonomous Ground Vehicle Longitudinal Dynamics" Applied Sciences 13, no. 1: 501. https://doi.org/10.3390/app13010501
APA StyleEl Hajjami, L., Mellouli, E. M., Žuraulis, V., Berrada, M., & Boumhidi, I. (2023). A Robust Intelligent Controller for Autonomous Ground Vehicle Longitudinal Dynamics. Applied Sciences, 13(1), 501. https://doi.org/10.3390/app13010501