Fiber-Reinforced Polymer Confined Concrete: Data-Driven Predictions of Compressive Strength Utilizing Machine Learning Techniques
Abstract
Featured Application
Abstract
1. Introduction
2. Experimental Database and Methods
2.1. System Model
2.2. Dataset Characteristics
2.3. Input Correlations
2.4. Chi-Squared Test
2.5. Dimensionality Reduction
3. Machine Learning Algorithms
3.1. Linear-Based Algorithms
3.1.1. Multiple Linear Regression
3.1.2. Ridge Regression
3.1.3. LASSO Regression
3.2. Kernel-Based Algorithms
3.2.1. Support Vector Machines
3.2.2. Gaussian Process Regression
3.3. Tree-Based Algorithms
3.3.1. Decision Trees
3.3.2. Random Forest
3.3.3. Gradient Boosting
3.4. Perceptron-Based Algorithms
Multi-Layer Perceptron
3.5. Instance-Selection
k-Nearest Neighbors
3.6. Measures of Accuracy
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sbahieh, S.; Tahir, F.; Al-Ghamdi, S.G. Environmental and Mechanical Performance of Different Fiber Reinforced Polymers in Beams. Mater. Today: Proc. 2022, 62, 3548–3552. [Google Scholar] [CrossRef]
- Mirrashid, M.; Naderpour, H. Recent Trends in Prediction of Concrete Elements Behavior Using Soft Computing (2010–2020). Arch. Comput. Methods Eng. 2021, 28, 3307–3327. [Google Scholar] [CrossRef]
- Bhuvaneswari, V.; Priyadharshini, M.; Deepa, C.; Balaji, D.; Rajeshkumar, L.; Ramesh, M. Deep Learning for Material Synthesis and Manufacturing Systems: A Review. Mater. Today Proc. 2021, 46, 3263–3269. [Google Scholar] [CrossRef]
- Chakraborty, D.; Awolusi, I.; Gutierrez, L. An Explainable Machine Learning Model to Predict and Elucidate the Compressive Behavior of High-Performance Concrete. Results Eng. 2021, 11, 100245. [Google Scholar] [CrossRef]
- Dimiduk, D.M.; Holm, E.A.; Niezgoda, S.R. Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering. Integr. Mater. Manuf. Innov. 2018, 7, 157–172. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, C.; Snoussi, H.; Zhang, G. Machine Learning Approaches for Thermoelectric Materials Research. Adv. Funct. Mater. 2020, 30, 1906041. [Google Scholar] [CrossRef]
- Kailkhura, B.; Gallagher, B.; Kim, S.; Hiszpanski, A.; Han, T.Y.-J. Reliable and Explainable Machine-Learning Methods for Accelerated Material Discovery. NPJ Comput. Mater. 2019, 5, 108. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Q.; Yan, H.; Wen, Y. Experimental Study on Slender CFRP-Confined Circular RC Columns under Axial Compression. Appl. Sci. 2021, 11, 3968. [Google Scholar] [CrossRef]
- Gao, C.; Min, X.; Fang, M.; Tao, T.; Zheng, X.; Liu, Y.; Wu, X.; Huang, Z. Innovative Materials Science via Machine Learning. Adv. Funct. Mater. 2022, 32, 2108044. [Google Scholar] [CrossRef]
- Sofos, F.; Karakasidis, T.E. Machine Learning Techniques for Fluid Flows at the Nanoscale. Fluids 2021, 6, 96. [Google Scholar] [CrossRef]
- Kashefi, A.; Rempe, D.; Guibas, L.J. A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow Fields on Irregular Geometries. Phys. Fluids 2021, 33, 027104. [Google Scholar] [CrossRef]
- Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Rev. 2021, 63, 208–228. [Google Scholar] [CrossRef]
- Sofos, F.; Charakopoulos, A.; Papastamatiou, K.; Karakasidis, T.E. A Combined Clustering/Symbolic Regression Framework for Fluid Property Prediction. Phys. Fluids 2022, 34, 062004. [Google Scholar] [CrossRef]
- Cook, R.; Lapeyre, J.; Ma, H.; Kumar, A. Prediction of Compressive Strength of Concrete: Critical Comparison of Performance of a Hybrid Machine Learning Model with Standalone Models. J. Mater. Civ. Eng. 2019, 31, 04019255. [Google Scholar] [CrossRef]
- Young, B.A.; Hall, A.; Pilon, L.; Gupta, P.; Sant, G. Can the Compressive Strength of Concrete Be Estimated from Knowledge of the Mixture Proportions?: New Insights from Statistical Analysis and Machine Learning Methods. Cem. Concr. Res. 2019, 115, 379–388. [Google Scholar] [CrossRef]
- Asteris, P.G.; Skentou, A.D.; Bardhan, A.; Samui, P.; Pilakoutas, K. Predicting Concrete Compressive Strength Using Hybrid Ensembling of Surrogate Machine Learning Models. Cem. Concr. Res. 2021, 145, 106449. [Google Scholar] [CrossRef]
- Abdulhameed, A.A.; Al-Zuhairi, A.H.; Al Zaidee, S.R.; Hanoon, A.N.; Al Zand, A.W.; Hason, M.M.; Abdulhameed, H.A. The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach. Appl. Sci. 2022, 12, 2245. [Google Scholar] [CrossRef]
- da Silva, S.R.; Cimadon, F.N.; Borges, P.M.; Schiavon, J.Z.; Possan, E.; de Oliveira Andrade, J.J. Relationship between the Mechanical Properties and Carbonation of Concretes with Construction and Demolition Waste. Case Stud. Constr. Mater. 2022, 16, e00860. [Google Scholar] [CrossRef]
- Wei, J.; Chu, X.; Sun, X.; Xu, K.; Deng, H.; Chen, J.; Wei, Z.; Lei, M. Machine Learning in Materials Science. InfoMat 2019, 1, 338–358. [Google Scholar] [CrossRef]
- Valasaki, M.; Papakonstantinou, C.G. Confined Circular Columns: An Experimental Overview. Buildings. submitted.
- Keshtegar, B.; Gholampour, A.; Thai, D.-K.; Taylan, O.; Trung, N.-T. Hybrid Regression and Machine Learning Model for Predicting Ultimate Condition of FRP-Confined Concrete. Compos. Struct. 2021, 262, 113644. [Google Scholar] [CrossRef]
- Ying, X. An Overview of Overfitting and Its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T.; Vincent, T. Axial Compressive Behavior of Circular High-Strength Concrete-Filled FRP Tubes. J. Compos. Constr. 2014, 18, 04013037. [Google Scholar] [CrossRef]
- Michael, N. Fardis and Homayoun Khalili Concrete Encased in Fiberglass-Reinforced Plastic. ACI J. Proc. 1981, 78, 440–446. [Google Scholar] [CrossRef]
- Papakonstantinou, C.G. Fiber Reinforced Polymer (FRP) Confined Circular Columns: Compressive Strength Assessment. JESTR 2020, 13, 1–13. [Google Scholar] [CrossRef]
- Behnke, M.; Briner, N.; Cullen, D.; Schwerdtfeger, K.; Warren, J.; Basnet, R.; Doleck, T. Feature Engineering and Machine Learning Model Comparison for Malicious Activity Detection in the DNS-Over-HTTPS Protocol. IEEE Access 2021, 9, 129902–129916. [Google Scholar] [CrossRef]
- Sofos, F.; Karakasidis, T.E. Nanoscale Slip Length Prediction with Machine Learning Tools. Sci. Rep. 2021, 11, 12520. [Google Scholar] [CrossRef]
- Wang, M.; Wang, T.; Cai, P.; Chen, X. Nanomaterials Discovery and Design through Machine Learning. Small Methods 2019, 3, 1900025. [Google Scholar] [CrossRef]
- Dobgegah, R.; Owusu-Manu, D.-G.; Omoteso, K. A Principal Component Analysis of Project Management Construction Industry Competencies for the Ghanaian. Constr. Econ. Build. 2011, 11, 26–40. [Google Scholar] [CrossRef]
- Sofos, F.; Stavrogiannis, C.; Exarchou-Kouveli, K.K.; Akabua, D.; Charilas, G.; Karakasidis, T.E. Current Trends in Fluid Research in the Era of Artificial Intelligence: A Review. Fluids 2022, 7, 116. [Google Scholar] [CrossRef]
- Uyanık, G.K.; Güler, N. A Study on Multiple Linear Regression Analysis. Procedia -Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef]
- McDonald, G.C. Ridge Regression. WIREs Comput. Stat. 2009, 1, 93–100. [Google Scholar] [CrossRef]
- Gareth James, D.W.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Bibas, K.; Fogel, Y.; Feder, M. A New Look at an Old Problem: A Universal Learning Approach to Linear Regression. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 2304–2308. [Google Scholar]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Society Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Sonnenburg, S.; Rätsch, G.; Schäfer, C.; Schölkopf, B. Large Scale Multiple Kernel Learning. J. Mach. Learn. Res. 2006, 7, 1531–1565. [Google Scholar]
- Fan, Z.; Chiong, R.; Hu, Z.; Lin, Y. A Fuzzy Weighted Relative Error Support Vector Machine for Reverse Prediction of Concrete Components. Comput. Struct. 2020, 230, 106171. [Google Scholar] [CrossRef]
- Deringer, V.L.; Bartók, A.P.; Bernstein, N.; Wilkins, D.M.; Ceriotti, M.; Csányi, G. Gaussian Process Regression for Materials and Molecules. Chem. Rev. 2021, 121, 10073–10141. [Google Scholar] [CrossRef]
- Rasmussen, C.E. Gaussian Processes in Machine Learning. In Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, 2–14 February 2003, Tübingen, Germany, 4–16 August 2003, Revised Lectures; Bousquet, O., von Luxburg, U., Rätsch, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 63–71. ISBN 978-3-540-28650-9. [Google Scholar]
- Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent Advances and Applications of Machine Learning in Solid-State Materials Science. NPJ Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- Allers, J.P.; Harvey, J.A.; Garzon, F.H.; Alam, T.M. Machine Learning Prediction of Self-Diffusion in Lennard-Jones Fluids. J. Chem. Phys. 2020, 153, 034102. [Google Scholar] [CrossRef]
- Rahman, J.; Ahmed, K.S.; Khan, N.I.; Islam, K.; Mangalathu, S. Data-Driven Shear Strength Prediction of Steel Fiber Reinforced Concrete Beams Using Machine Learning Approach. Eng. Struct. 2021, 233, 111743. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, T.Y.; Shi, S.Q. Machine Learning of Mechanical Properties of Steels. Sci. China Technol. Sci. 2020, 63, 1247–1255. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Batth, R.S. Software Reuse Analytics Using Integrated Random Forest and Gradient Boosting Machine Learning Algorithm. Softw. Pract. Exp. 2021, 51, 735–747. [Google Scholar] [CrossRef]
- Ikumi, T.; Galeote, E.; Pujadas, P.; de la Fuente, A.; López-Carreño, R.D. Neural Network-Aided Prediction of Post-Cracking Tensile Strength of Fibre-Reinforced Concrete. Comput. Struct. 2021, 256, 106640. [Google Scholar] [CrossRef]
- Roberson, M.M.; Inman, K.M.; Carey, A.S.; Howard, I.L.; Shannon, J. Probabilistic Neural Networks That Predict Compressive Strength of High Strength Concrete in Mass Placements Using Thermal History. Comput. Struct. 2022, 259, 106707. [Google Scholar] [CrossRef]
- Nguyen, H.; Vu, T.; Vo, T.P.; Thai, H.-T. Efficient Machine Learning Models for Prediction of Concrete Strengths. Constr. Build. Mater. 2021, 266, 120950. [Google Scholar] [CrossRef]
- Song, Y.; Liang, J.; Lu, J.; Zhao, X. An Efficient Instance Selection Algorithm for k Nearest Neighbor Regression. Neurocomputing 2017, 251, 26–34. [Google Scholar] [CrossRef]
- Han, Q.; Gui, C.; Xu, J.; Lacidogna, G. A Generalized Method to Predict the Compressive Strength of High-Performance Concrete by Improved Random Forest Algorithm. Constr. Build. Mater. 2019, 226, 734–742. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike Information Criterion: Background, Derivation, Properties, Application, Interpretation, and Refinements. WIREs Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Baguley, T.S. Serious Stats: A Guide to Advanced Statistics for the Behavioral Sciences; Palgrave Macmillan: New York, NY, USA, 2012; p. xxiii. ISBN 0-230-57718-0. [Google Scholar]
- Ben Chaabene, W.; Flah, M.; Nehdi, M.L. Machine Learning Prediction of Mechanical Properties of Concrete: Critical Review. Constr. Build. Mater. 2020, 260, 119889. [Google Scholar] [CrossRef]
- Bartók, A.P.; Payne, M.C.; Kondor, R.; Csányi, G. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons. Phys. Rev. Lett. 2010, 104, 136403. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Z.; Qian, P.; Ala-Nissila, T.; Caro, M.A. Structure and Pore Size Distribution in Nanoporous Carbon. Chem. Mater. 2022, 34, 617–628. [Google Scholar] [CrossRef]
- Bengfort, B.; Bilbro, R. Yellowbrick: Visualizing the Scikit-Learn Model Selection Process. J. Open Source Softw. 2019, 4, 1075. [Google Scholar] [CrossRef]
Specimen Type | Concrete Strength | Description | N |
---|---|---|---|
A: AFRP-H | High | Aramid FRP | 25 |
B: AFRP-N | Normal | Aramid FRP | 67 |
C: CFRP-H | High | Carbon FRP | 135 |
D: CFRP-L | Low | Carbon FRP | 22 |
E: CFRP-N | Normal | Carbon FRP | 574 |
F: GFRP-H | High | Glass FRP | 53 |
G: GFRP-N | Normal | Glass FRP | 234 |
H: HM_UHM_CFRP-H | High | High Modulus Carbon FRP | 24 |
I: HM_UHM_ CFRP-N | Normal | High Modulus Carbon FRP | 50 |
J: UB_TUBE_H | High | FRP Tubes | 114 |
K: UB_TUBE_N | Normal | FRP Tubes | 178 |
Total | 1476 |
Variable | Description | Mean | Min | Max |
---|---|---|---|---|
D | Concrete specimen diameter (mm) | 152.36 | 47.00 | 600.00 |
H | Concrete specimen height (mm) | 316.57 | 100.00 | 1200.00 |
fco | unconfined concrete strength (MPa) | 46.41 | 6.20 | 169.70 |
Ef | FRP elastic modulus (GPa) | 160.96 | 2.63 | 640.00 |
ff | FRP ultimate tensile stress (MPa) | 2553.87 | 75.00 | 4900.00 |
εfu | FRP ultimate tensile strain (%) | 1.85 | 0.22 | 5.14 |
t | total FRP thickness (mm) | 0.92 | 0.06 | 15.00 |
L | number of FRP layers | 2.79 | 1.00 | 28.00 |
fcc | confined compressive strength (MPa) | 86.09 | 12.80 | 303.60 |
D | H | fco | Ef | ff | εfu | T | L | |
---|---|---|---|---|---|---|---|---|
VIF | 4.53 | 4.52 | 1.06 | 4.49 | 3.85 | 2.08 | 2.31 | 1.49 |
PCA1 | PCA2 | PCA3 | PCA4 | PCA5 | PCA6 | PCA7 | PCA8 | |
---|---|---|---|---|---|---|---|---|
D | 0.256 | 0.613 | 0.062 | 0.152 | −0.178 | −0.014 | −0.422 | −0.567 |
H | 0.251 | 0.619 | 0.037 | 0.119 | −0.182 | −0.089 | 0.441 | 0.549 |
fco | −0.037 | −0.283 | 0.577 | 0.158 | −0.748 | 0.024 | 0.026 | −0.002 |
Ef | −0.498 | 0.247 | 0.341 | −0.012 | 0.219 | 0.213 | 0.558 | −0.412 |
ff | −0.484 | 0.169 | 0.122 | 0.471 | 0.147 | 0.330 | −0.463 | 0.395 |
εfu | 0.193 | −0.222 | −0.394 | 0.757 | −0.052 | 0.187 | 0.316 | −0.217 |
t | 0.512 | −0.072 | 0.266 | −0.171 | 0.195 | 0.769 | −0.004 | 0.059 |
L | 0.299 | −0.128 | 0.552 | 0.336 | 0.515 | −0.458 | −0.024 | 0.014 |
Metric | Formula |
---|---|
is the mean value of the expected output) | |
Mean Absolute Error (MAE) and ) | |
Root Mean Squared Error (RMSE) | |
Average Absolute Deviation (AAD) | |
Akaike Information Criterion (AIC) (k: number of parameters in the model, L:{\displaystyle {\hat {L}}} max value of the likelihood function) |
R2 | MAE | RMSE | AAD | AIC | |
---|---|---|---|---|---|
MLR | 0.767 | 18.05 | 25.84 | 21.72 | 2755.38 |
Lasso | 0.765 | 18.27 | 25.68 | 21.93 | 2753.81 |
Ridge | 0.767 | 18.05 | 25.83 | 21.72 | 2755.33 |
SVR-lin | 0.702 | 17.67 | 30.44 | 20.48 | 2846.65 |
SVR-rbf | 0.825 | 17.32 | 26.06 | 20.33 | 2728.42 |
SVR-poly | 0.918 | 9.94 | 16.24 | 11.37 | 2476.21 |
GP | 0.758 | 19.91 | 26.92 | 25.23 | 2779.82 |
k-NN | 0.921 | 10.27 | 15.59 | 12.30 | 2459.17 |
DT | 0.933 | 8.92 | 14.64 | 10.47 | 2422.61 |
RF | 0.957 | 7.52 | 11.58 | 8.82 | 2283.46 |
GBR | 0.934 | 9.06 | 14.22 | 10.94 | 2404.13 |
MLP | 0.919 | 10.89 | 15.79 | 12.52 | 2463.32 |
R2 | MAE | MSE | AAD | AIC | |
---|---|---|---|---|---|
MLR | 0.749 | 19.01 | 26.39 | 23.38 | 2769.66 |
Lasso | 0.748 | 18.92 | 26.32 | 23.57 | 2768.43 |
Ridge | 0.749 | 19.01 | 26.39 | 23.38 | 2769.62 |
SVR-lin | 0.749 | 17.31 | 26.56 | 20.19 | 2774.11 |
SVR-rbf | 0.790 | 16.63 | 26.31 | 21.43 | 2753.01 |
SVR-poly | 0.883 | 12.82 | 18.66 | 15.17 | 2565.71 |
GP | 0.748 | 20.02 | 27.59 | 26.69 | 2795.89 |
k-NN | 0.883 | 10.42 | 18.69 | 12.19 | 2564.77 |
DT | 0.880 | 10.38 | 19.12 | 12.18 | 2579.17 |
RF | 0.903 | 9.72 | 17.13 | 11.91 | 2514.28 |
GBR | 0.883 | 9.97 | 18.67 | 12.07 | 2566.18 |
MLP | 0.885 | 12.57 | 18.60 | 15.18 | 2559.64 |
R2 | MAE | RMSE | AAD | AIC | |
---|---|---|---|---|---|
MLR | 2.35% | 5.32% | 2.14% | 7.64% | 0.52% |
Lasso | 2.22% | 3.56% | 2.49% | 7.48% | 0.53% |
Ridge | 2.35% | 5.32% | 2.15% | 7.64% | 0.52% |
SVR-lin | 6.70% | 2.04% | 12.72% | 1.42% | 2.55% |
SVR-rbf | 4.24% | 3.98% | 0.95% | 5.41% | 0.90% |
SVR-poly | 3.81% | 28.97% | 14.90% | 33.42% | 3.61% |
GP | 1.32% | 0.55% | 2.52% | 5.79% | 0.58% |
k-NN | 4.13% | 1.46% | 19.89% | 0.89% | 4.29% |
DT | 5.68% | 16.37% | 30.57% | 16.33% | 6.46% |
RF | 5.64% | 29.26% | 47.95% | 35.03% | 10.11% |
GBR | 5.46% | 10.04% | 31.37% | 10.33% | 6.74% |
MLP | 3.70% | 15.43% | 17.74% | 21.25% | 3.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofos, F.; Papakonstantinou, C.G.; Valasaki, M.; Karakasidis, T.E. Fiber-Reinforced Polymer Confined Concrete: Data-Driven Predictions of Compressive Strength Utilizing Machine Learning Techniques. Appl. Sci. 2023, 13, 567. https://doi.org/10.3390/app13010567
Sofos F, Papakonstantinou CG, Valasaki M, Karakasidis TE. Fiber-Reinforced Polymer Confined Concrete: Data-Driven Predictions of Compressive Strength Utilizing Machine Learning Techniques. Applied Sciences. 2023; 13(1):567. https://doi.org/10.3390/app13010567
Chicago/Turabian StyleSofos, Filippos, Christos G. Papakonstantinou, Maria Valasaki, and Theodoros E. Karakasidis. 2023. "Fiber-Reinforced Polymer Confined Concrete: Data-Driven Predictions of Compressive Strength Utilizing Machine Learning Techniques" Applied Sciences 13, no. 1: 567. https://doi.org/10.3390/app13010567
APA StyleSofos, F., Papakonstantinou, C. G., Valasaki, M., & Karakasidis, T. E. (2023). Fiber-Reinforced Polymer Confined Concrete: Data-Driven Predictions of Compressive Strength Utilizing Machine Learning Techniques. Applied Sciences, 13(1), 567. https://doi.org/10.3390/app13010567