Electro-Optic Properties of High-Efficiency Organic Electronics with the Addition of An Interlayer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cleaning Process
2.3. SAMs and Device Deposition Process
2.4. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jou, J.-H.; Kumar, S.; Agrawal, A.; Li, T.-H.; Sahoo, S. Approaches for fabricating high efficiency organic light emitting diodes. J. Mol. Cell. Cardiol. 2015, 3, 2974–3002. [Google Scholar]
- Tyan, Y.-S. Organic light-emitting-diode lighting overview. J. Photon. Energy 2011, 1, 011009. [Google Scholar] [CrossRef]
- Geffroy, B.; Le Roy, P.; Prat, C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. Polymer Int. 2006, 55, 572–582. [Google Scholar] [CrossRef]
- Kim, H.; Pique, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Indium tin oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 1999, 74, 3444–3446. [Google Scholar] [CrossRef]
- Tak, Y.H.; Kim, K.B.; Park, H.G.; Lee, K.H.; Lee, J.R. Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Film. 2002, 411, 12–16. [Google Scholar] [CrossRef]
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Tang, C.W.; VanSlyke, S.A.; Chen, C.H. Electroluminescence of doped organic thin films. J. Appl. Phys. 1989, 65, 3610–3616. [Google Scholar] [CrossRef]
- Hung, L.S.; Tang, C.W.; Mason, M.G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 1997, 70, 152–154. [Google Scholar] [CrossRef]
- Lim, J.; Park, J.; Jhon, M.; Yeom, G. Study of the Electronic Structure of the Interfaces between 2-TNATA and MoO x. J. Nanotechnol. 2013, 13, 8025–8031. [Google Scholar]
- Su, S.-H.; Hou, C.-C.; Tsai, J.-S.; Yokoyama, M. Enhancement of efficiency of white organic light-emitting diodes with p-type hole injection layer. Thin Solid Films 2009, 517, 5293–5297. [Google Scholar] [CrossRef]
- Swayamprabha, S.S.; Nagar, M.R.; Yadav, R.A.K.; Gull, S.; Dubey, D.K.; Jou, J.-H. Hole-transporting materials for organic light-emitting diodes: An overview. J. Mater. Chem. C 2019, 7, 7144–7158. [Google Scholar]
- Yadav, R.A.K.; Dubey, D.K.; Chen, S.-Z.; Liang, T.-W.; Jou, J.-H. Role of molecular orbital energy levels in OLED performance. Sci. Rep. 2020, 10, 102317079. [Google Scholar] [CrossRef] [PubMed]
- Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.S.; Kang, S.M.; Choi, I.S. Surface Engineering Based on Self-Assembled Monolayers. Polym. Sci. Technol. 2006, 17, 172–181. [Google Scholar]
- Bigelow, W.; Pickett, D.; Zisman, W. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. J. Colloid Sci. 1946, 1, 513–538. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Yun, Y.-J.; Kim, D.-Y.; Han, S.-H. Formation of a self-assembled monolayer of diaminododecane and a heteropolyacid monolayer on the ITO surface. Langmuir 1999, 15, 4690–4692. [Google Scholar] [CrossRef]
- Lee, J.; Jung, B.-J.; Lee, J.-I.; Chu, H.Y.; Do, L.-M.; Shim, H.-K. Modification of an ITO anode with a hole-transporting Sam for improved OLED device characteristics. J. Mater. Chem. 2002, 12, 3494–3498. [Google Scholar] [CrossRef]
- Can, M.; Havare, A.K.; Aydın, H.; Yagmurcukardes, N.; Demic, S.; Icli, S.; Okur, S. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications. Appl. Surf. Sci. 2014, 314, 1082–1086. [Google Scholar] [CrossRef] [Green Version]
- An, D.; Liu, H.; Wang, S.; Li, X. Modification of ito anodes with self-assembled monolayers for enhancing hole injection in oleds. Appl. Phys. Lett. 2019, 114, 153301. [Google Scholar] [CrossRef]
- Havare, A.K. Effect of the interface improved by self-assembled aromatic organic semiconductor molecules on performance of OLED. ECS J. Solid State Sci. Technol. 2020, 9, 041007. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, F.; Zhou, N.; Sun, M.; Li, X.; Xiao, Y.; Wang, S. Self-assembled monolayer-modified ito for efficient organic light-emitting diodes: The impact of different self-assemble monolayers on interfacial and electroluminescent properties. Org. Electron. 2018, 56, 89–95. [Google Scholar] [CrossRef]
- Jeon, Y.; Choi, H.-R.; Kwon, J.H.; Choi, S.; Nam, K.M.; Park, K.-C.; Choi, K.C. Sandwich-structure transferable free-form oleds for wearable and disposable skin wound photomedicine. Light Sci. Appl. 2019, 8, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cios, A.; Ciepielak, M.; Szymański, Ł.; Lewicka, A.; Cierniak, S.; Stankiewicz, W.; Mendrycka, M.; Lewicki, S. Effect of different wavelengths of laser irradiation on the skin cells. Int. J. Mol. Sci. 2021, 22, 2437. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Y.; Chen, A.C.-H.; Carroll, J.D.; Hamblin, M.R. Biphasic dose response in low level light therapy. Dose-Response 2009, 7, 09–027. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.E.; Araújo, A.R.; Piancastelli, A.C.; Pinotti, M. Effects of low-power light therapy on wound healing: Laser X led. An. Bras. Dermatol. 2014, 89, 616–623. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, L.F.; Hamblin, M.R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murawski, C.; Gather, M.C. Emerging biomedical applications of organic light-emitting diodes. Adv. Opt. Mater. 2021, 9, 2100269. [Google Scholar] [CrossRef]
- Ahn, J.; Lee, B.; Jin, S.; Kim, H. Photobiomodulation-based skin-care effect of organic light-emitting diodes. Proc. SPIE Adv. Biophotonics Conf. 2021, 2022, 42–45. [Google Scholar]
- Singh, N.; Mohapatra, A.; Chu, C.-W.; Tao, Y.-T. Modulation of work function of ITO by self-assembled monolayer and its effect on device characteristics of inverted perovskite solar cells. Org. Electron. 2021, 98, 106297. [Google Scholar] [CrossRef]
- Sharma, A.; Haldi, A.; Hotchkiss, P.J.; Marder, S.R.; Kippelen, B. Effect of phosphonic acid surface modifiers on the work function of indium tin oxide and on the charge injection barrier into organic single-layer diodes. J. Appl. Phys. 2009, 105, 074511. [Google Scholar] [CrossRef]
- Sharma, A.; Hotchkiss, P.J.; Marder, S.R.; Kippelen, B.J. Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes. J. Appl. Phys. 2009, 105, 084507. [Google Scholar] [CrossRef]
- Rohloff, R.; Kotadiya, N.B.; Crăciun, N.; Blom, P.W.; Wetzelaer, G. Electron and hole transport in the organic small molecule α-NPD. Appl. Phys. Lett. 2017, 110, 073301. [Google Scholar] [CrossRef]
- Baek, M.-G.; Shin, J.-E.; Park, S.-G. Differences in ITO Interface Characteristics Change According to the Formation of Aromatic-Ring and Aliphatic Self-Assembled Monolayers. Crystals 2020, 11, 26. [Google Scholar] [CrossRef]
- Kim, H.R.; Kim, T.W.; Park, S.G. Effective hole-injection characteristics of organic light-emitting diodes due to fluorinated self-assembled monolayer embedded as a buffer layer. Polym. Int. 2019, 68, 1478–1483. [Google Scholar] [CrossRef]
- Donley, C.L.; Dunphy, D.R.; Doherty, W.J.; Zangmeister, R.A.P.; Drager, A.S.; O’Brien, D.F.; Saavedra, S.S.; Armstrong, N.R. Indium—Tin Oxide Organic Interfaces. Mol. Compon. Electron. Devices 2003, 844, 133–153. [Google Scholar]
- Wu, Q.-H. Progress in modification of indium-tin oxide/organic interfaces for organic light-emitting diodes. Crit. Rev. Solid State Mater. Sci. 2013, 38, 318–352. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Park, S.-G.; Park, H.-G. Alignment of liquid crystal molecules on self-assembled monolayer with fluorinated alkyl chain at different deposition time. Opt. Mater. 2018, 85, 298–302. [Google Scholar] [CrossRef]
- Kim, S.Y.; Cho, S.J.; Byeon, S.E.; He, X.; Yoon, H.J. Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 2020, 10, 2002606. [Google Scholar] [CrossRef]
(A) | ITO | SAM (1 nm) | α-NPD (50 nm) | Alq3 (50 nm) | LiF (0.6 nm) | Al (100 nm) |
(B) | ITO | α-NPD (50 nm) | Alq3 (50 nm) | LiF (0.6 nm) | Al (100 nm) | |
(C) | ITO | Alq3 (50 nm) | LiF (0.6 nm) | Al (100 nm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-G.; Batdelger, A.; Yun, S.-S.; Park, S.-G. Electro-Optic Properties of High-Efficiency Organic Electronics with the Addition of An Interlayer. Appl. Sci. 2023, 13, 624. https://doi.org/10.3390/app13010624
Lee S-G, Batdelger A, Yun S-S, Park S-G. Electro-Optic Properties of High-Efficiency Organic Electronics with the Addition of An Interlayer. Applied Sciences. 2023; 13(1):624. https://doi.org/10.3390/app13010624
Chicago/Turabian StyleLee, Soon-Gyu, Ankhnybayar Batdelger, Sang-Seok Yun, and Sang-Geon Park. 2023. "Electro-Optic Properties of High-Efficiency Organic Electronics with the Addition of An Interlayer" Applied Sciences 13, no. 1: 624. https://doi.org/10.3390/app13010624
APA StyleLee, S. -G., Batdelger, A., Yun, S. -S., & Park, S. -G. (2023). Electro-Optic Properties of High-Efficiency Organic Electronics with the Addition of An Interlayer. Applied Sciences, 13(1), 624. https://doi.org/10.3390/app13010624