Optical Behavior of Nile Red in Organic and Aqueous Media Environments
Abstract
:1. Introduction
2. Theoretical Aspects
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of the Samples
3.3. Absorption Measurements
3.4. Fluorescence Measurements
4. Results and Discussion
4.1. Absorption in Binary and Ternary Systems
4.1.1. Binary Systems
4.1.2. Ternary Systems
4.2. Static Fluorescence in Binary and Ternary Systems
4.2.1. Binary Systems
4.2.2. Ternary Systems
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarkar, N.; Das, K.; Nath, D.N.; Bhattacharyya, K. Twisted charge transfer processes of nile red in homogeneous solutions and in faujasite zeolite. Langmuir 1994, 10, 326–329. [Google Scholar] [CrossRef]
- Greenspan, P.; Lou, P. Spectrofluorometric studies of nile red treated native and oxidized low density lipoprotein. Int. J. Biochem. 1993, 25, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.; Sullivan, T.; Greenspan, P. Nile red staining of lysosomal phospholipid inclusions. Histochemisty 1992, 97, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Trappmann, B.; Ludwing, K.; Radowski, M.R.; Shukla, A.; Mohr, A.; Rehage, H.; Bottcher, C.; Haag, R. A new family of nonionic dendritic amphiphiles displaying unexpected packing parameters in micellar assemblies. J. Am. Chem. Soc. 2010, 132, 11119–11124. [Google Scholar] [CrossRef]
- Datta, A.; Mandal, D.; Pal, S.K.; Bhattacharyya, K. Intramolecular charge transfer processes in confined systems. Nile red in reverse micelles. J. Phys. Chem. B 1997, 101, 10221–10225. [Google Scholar] [CrossRef]
- Watkins, D.M.; Sayed-Sweet, Y.; Klimash, J.W.; Turro, N.J.; Tomalia, D.A. Dendrimers with hydrophobic cores and the formation of supramolecular dendrimer-surfactant assemblies. Langmuir 1997, 13, 3136–3141. [Google Scholar] [CrossRef]
- Fleige, E.; Ziem, B.; Grabolle, M.; Haag, R.; Resch-Genger, U. Aggregation phenomena of host and guest upon the loading of dendritic core-multishell nanoparticles with solvatochromic dyes. Macromolecules 2012, 45, 9452–9459. [Google Scholar] [CrossRef]
- Kurniasih, I.N.; Liang, H.; Kumar, S.; Mohr, A.; Sharma, S.K.; Rabe, J.P.; Haag, R. A bifunctional nanocarrier based on amphiphilic hyperbranched polyglycerol derivatives. J. Mater. Chem. B 2013, 1, 3569–3577. [Google Scholar] [CrossRef]
- Mukherjee, S.; Raghuraman, H.; Chattopadhyay, A. Membrane localization and dynamics of nile red: Effect of cholesterol. Biochim. Biophys. Acta Biomembr. 2007, 1768, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Sloniec, J.; Schnurr, M.; Witte, C.; Resch-Genger, U.; Schröder, L.; Hennig, A. Biomembrane interactions of functionalized cryptophane-a: Combined fluorescence and 129xe nmr studies of a bimodal contrast agent, Chem. Eur. J. 2013, 19, 3110–3118. [Google Scholar] [CrossRef]
- Sackett, D.L.; Wolff, J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal. Biochem. 1987, 167, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization, Pharm. Res. 2008, 25, 1487–1499. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, A.J.; Seddon, K.R. Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, nile red. J. Phys. Org. Chem. 2000, 13, 591–595. [Google Scholar] [CrossRef]
- Michel, R.; Gradzielski, M. Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications. IJMS 2012, 13, 11610–11642. [Google Scholar] [CrossRef] [Green Version]
- Sabın, J.; Prieto, G.; Ruso, J.M.; Hidalgo-Alvarez, R.; Sarmiento, F. Size and stability of liposomes: A possible role of hydration and osmotic forces. EPJE 2006, 20, 401–408. [Google Scholar] [CrossRef]
- Cuomo, F.; Palazzo, G.; Ceglie, A.; Lopez, F. Quenching efficiency of pyrene fluorescence by nucleotide monophosphates in cationic micelles. J. Photochem. Photobiol. 2009, 202, 21–27. [Google Scholar] [CrossRef]
- Lopez, F.; Venditti, F.; Ambrosone, L.; Colafemmina, G.; Ceglie, A.; Palazzo, G. Gelatin Microemulsion-Based Gels with the Cationic Surfactant Cetyltrimethylammonium Bromide: A Self-Diffusion and Conductivity Study. Langmuir 2004, 20, 9449–9452. [Google Scholar] [CrossRef]
- Sacco, P.; Furlani, F.; Cok, M.; Travan, A.; Borgogna, M.; Marsich, E.; Paoletti, S.; Donati, I. Boric Acid Induced Transient Cross-Links in Lactose-Modified Chitosan (Chitlac). Biomacromolecules 2017, 18, 4206–4213. [Google Scholar] [CrossRef]
- Cuomo, F.; Mosca, M.; Murgia, S.; Avino, P.; Ceglie, A.; Lopez, F. Evidence for the role of hydrophobic forces on the interactions of nucleotide-monophosphates with cationic liposomes. J. Colloid Interface Sci. 2013, 410, 146–151. [Google Scholar] [CrossRef]
- Henkel, S.; Misuraca, M.C.; Troselj, P.; Davidson, J.; Hunter, C.A. Polarization effects on the solvation properties of alcohols, Chem. Sci. 2018, 9, 88–99. [Google Scholar] [CrossRef]
- Di Nezza, F.; Guerra, G.; Costagliola, C.; Zeppa, L.; Ambrosone, L. Thermo-dynamic properties and photodegradation kinetics of indocyanine green in aqueous solution. Dyes. Pigm. 2016, 134, 342–347. [Google Scholar] [CrossRef]
- Abbott, L.C.; Batchelor, S.N.; Oakes, J.; Lindsay-Smith, J.R.; Moore, J.N. Spectroscopic studies of the intermolecular interactions of a bis-azo dye, direct blue 1, on di- and trimerization in aqueous solution and in cellulose. J. Phys. Chem. B 2004, 108, 13726–13735. [Google Scholar] [CrossRef]
- Kurniasih, I.N.; Liang, H.; Mohr, P.C.; Khot, G.; Rabe, J.P.; Mohr, A. Nile red dye in aqueous surfactant and micellar solution. Langmuir 2015, 31, 2639–2648. [Google Scholar] [CrossRef] [PubMed]
- Kataev, E.A.; Shumilova, T.A.; Fiedler, B.; Anacker, T.; Friedrich, J. Under-standing stacking interactions between an aromatic ring and nucleobases in aqueous solution: Experimental and theoretical study. J. Org. Chem. 2016, 81, 6505–6514. [Google Scholar] [CrossRef] [PubMed]
- Grob, S.; Hasse, H. Reaction kinetics of the homogeneously catalyzed esterification of 1-butanol with acetic acid in a wide range of initial compositions. Ind. Eng. Chem. Res. 2006, 45, 1869–1874. [Google Scholar] [CrossRef]
- Kircher, R.; Schmitz, N.; Berje, J.; Münnemann, K.; Thiel, W.R.; Burger, J.; Hasse, H. Generalized chemical equilibrium constant of formaldehyde oligomerization. Ind. Eng. Chem. Res. 2020, 59, 11431–11440. [Google Scholar] [CrossRef]
- Dias Jr, L.C.; Custodio, R.; Pessine, F.B. Investigation of the nile red spectra by semi-empirical calculations and spectrophotometric measurements. Int. J. Quantum. Chem 2006, 106, 2624–2632. [Google Scholar] [CrossRef]
- Dutta, A.K.; Kamada, K.; Ohta, K. Spectroscopic studies of nile red in organic solvents and polymers. J. Photochem. Photobiol. A Chem. 1996, 93, 57–64. [Google Scholar] [CrossRef]
- Yablon, D.G.; Schilowitz, A.M. Solvatochromism of nile red in nonpolar solvents. Appl. Spectrosc. 2004, 58, 843–847. [Google Scholar] [CrossRef]
- Ray, A.; Das, S.; Chattopadhyay, N. Aggregation of nile red in water: Prevention through encapsulation in β-cyclodextrin. ACS. Omega 2019, 4, 15–24. [Google Scholar] [CrossRef]
- Tuck, P.O.; Mawhinney, R.C.; Rappon, M. An ab initio and td-dft study of solvent effect contributions to the electronic spectrum of nile red. Phys. Chem. Chem. Phys. 2009, 11, 4471–4480. [Google Scholar] [CrossRef] [PubMed]
- Niazi, A.; Yazdanipour, A.; Ghasemi, J.; Kubista, M. Spectrophotometric and thermodynamic study on the dimerization equilibrium of ionic dyes in water by chemometrics method. Spectrochim. Acta A Mol. Biomol. Spectrosc 2006, 65, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Ambrosone, L.; Andini, S.; Castronuovo, G.; Elia, V.; Guarino, G. Empirical correlations between thermodynamic and spectroscopic properties of aqueous solutions of alkan-m, n-diols. excess enthalpies and spin–lattice relaxation times at 298.15 k. J. Chem. Soc. Faraday Trans. 1991, 87, 2989–2993. [Google Scholar] [CrossRef]
- Guilbault, G.G. Practical Fluorescence; Marcel Dekker: New York, NY, USA, 1990. [Google Scholar]
- Reppy, M.A. Structure, emissive properties, and reporting abilities of conjugated polymers. In Advanced Fluorescence Reporters in Chemistry and Biology II; Demchenko, A.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 9, pp. 357–388. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minò, A.; Cinelli, G.; Lopez, F.; Ambrosone, L. Optical Behavior of Nile Red in Organic and Aqueous Media Environments. Appl. Sci. 2023, 13, 638. https://doi.org/10.3390/app13010638
Minò A, Cinelli G, Lopez F, Ambrosone L. Optical Behavior of Nile Red in Organic and Aqueous Media Environments. Applied Sciences. 2023; 13(1):638. https://doi.org/10.3390/app13010638
Chicago/Turabian StyleMinò, Antonio, Giuseppe Cinelli, Francesco Lopez, and Luigi Ambrosone. 2023. "Optical Behavior of Nile Red in Organic and Aqueous Media Environments" Applied Sciences 13, no. 1: 638. https://doi.org/10.3390/app13010638
APA StyleMinò, A., Cinelli, G., Lopez, F., & Ambrosone, L. (2023). Optical Behavior of Nile Red in Organic and Aqueous Media Environments. Applied Sciences, 13(1), 638. https://doi.org/10.3390/app13010638