Magneto-Optical Traps for Cold Atomic Gravimetry: Research Status and Development Trends
Abstract
:1. Introduction
2. Working Principle of the MOT
2.1. Cooling of the Atoms
2.2. Trapping of the Atoms
3. Classification and Application of MOTs
3.1. Application of Conventional Six-Beam MOT
3.2. Other MOT Attempts
3.3. Rise of Single Beamed MOTs
3.4. Two-Dimensional MOT for Precooling
3.5. Extremely Miniaturized MOT Development
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Long, J.; Huang, M.; Chen, B.; Yang, Y.; Jiang, X.; Xiang, C.; Ma, Z.; He, D.; Chen, L.; et al. Continuous high-precision gravity measurement over 5 months of a Portable Atom Gravimeter in field application. ESS Open Arch. 2023. preprint. [Google Scholar] [CrossRef]
- Chen, X.F.; Hu, D.J.; Zhao, J.; Wu, W.W.; Zhao, H.; Liang, H.; Huang, X.Y. Current status and progress of field experimental observations in the Sichuan region of the China Seismological Science Experimental Range. Geod. Geodyn. 2022, 42, 193–198. [Google Scholar]
- Fu, Z.; Wu, B.; Cheng, B.; Zhou, Y.; Weng, K.; Zhu, D.; Wang, Z.; Lin, Q. A new type of compact gravimeter for long-term absolute gravity monitoring. Metrologia 2019, 56, 025001. [Google Scholar] [CrossRef]
- Stock, M.; Davis, R.; de Mirandés, E.; Milton, M.J.T. The revision of the SI—The result of three decades of progress in metrology. Metrologia 2019, 56, 022001. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, Y.; Wu, B.; Weng, K.; Wang, K.; Cheng, B.; Lin, Q. Metrological traceability method for atomic absolute gravimeters. Appl. Opt. 2021, 60, 7910–7920. [Google Scholar] [CrossRef] [PubMed]
- Bassi, A.; Cacciapuoti, L.; Capozziello, S.; Dell’Agnello, S.; Diamanti, E.; Giulini, D.; Iess, L.; Jetzer, P.; Joshi, S.K.; Landragin, A.; et al. A way forward for fundamental physics in space. NPJ Microgravity 2022, 8, 49. [Google Scholar] [CrossRef]
- Badurina, L.; Buchmueller, O.; Ellis, J.; Lewicki, M.; McCabe, C.; Vaskonen, V. Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter. Philos. Trans. R. Soc. A 2022, 380, 20210060. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Cao, J.; Wu, M.; Lian, J.; Cai, S.; Wang, L. Compensation of Horizontal Gravity Disturbances for High Precision Inertial Navigation. Sensors 2018, 18, 906. [Google Scholar] [CrossRef]
- Barrett, B.; Antoni-Micollier, L.; Chichet, L.; Battelier, B.; Lévèque, T.; Landragin, A.; Bouyer, P. Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 2016, 7, 13786. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, K.; Xu, Y.; Tang, Y.; Wu, B.; Cheng, B.; Wu, L.; Zhou, Y.; Weng, K.; Zhu, D.; et al. A Truck-Borne System Based on Cold Atom Gravimeter for Measuring the Absolute Gravity in the Field. Sensors 2022, 22, 6172. [Google Scholar] [CrossRef]
- Peters, A.; Chung, K.Y.; Chu, S. High-precision gravity measurements using atom interferometry. Metrologia 2001, 38, 25–61. [Google Scholar] [CrossRef]
- Maxwell, J.C., VIII. A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 1865, 155, 459–512. [Google Scholar]
- Letkhov, V.S.; Minogin, V.G. Trapping and storage of atoms in a laser field. Appl. Phys. 1978, 17, 99–103. [Google Scholar] [CrossRef]
- Ashkin, A.; Gordon, J.P. Cooling and trapping of atoms by resonance radiation pressure. Opt. Lett. 1979, 4, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Dalibard, J.; Reynaud, S.; Cohen-Tannoudji, C. Proposals of stable optical traps for neutral atoms. Opt. Commun. 1983, 47, 395–399. [Google Scholar] [CrossRef]
- Ashkin, A.; Gordon, J.P. Stability of radiation-pressure particle traps: An optical Earnshaw theorem. Opt. Lett. 1983, 8, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A. Stable radiation-pressure particle traps using alternating light beams. Opt. Lett. 1984, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Bjorkholm, J.E.; Ashkin, A.; Cable, A. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 1986, 57, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, D.E.; Raab, E.L.; Bagnato, V.; Wieman, C.E.; Watts, R.N. Light Traps Using Spontaneous Forces. Phys. Rev. Lett. 1986, 57, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Raab, E.L.; Prentiss, M.; Cable, A.; Chu, S.; Pritchard, D.E. Trapping of Neutral Sodium Atoms with Radiation Pressure. Phys. Rev. Lett. 1987, 59, 2631–2634. [Google Scholar] [CrossRef]
- Balykin, V.I.; Letokhov, V.S.; Minogin, V.G. Laser Control of the Motion of Neutral Atoms and Optical Atomic Traps. Phys. Scr. 1988, T22, 119–127. [Google Scholar] [CrossRef]
- Cohen Tannoudji, C.N.; Phillips, W.D. New Mechanisms for Laser Cooling. Phys. Today 1990, 43, 33–40. [Google Scholar] [CrossRef]
- Chu, S. Laser Trapping of Neutral Particles. Sci. Am.-SCI AMER 1992, 266, 71–76. [Google Scholar] [CrossRef]
- Steane, A.M.; Foot, C.J. Laser Cooling below the Doppler Limit in a Magneto-Optical Trap. Europhys. Lett. (EPL) 1991, 14, 231–236. [Google Scholar] [CrossRef]
- Zhang, D.F.; Gao, T.Y.; Kong, L.R.; Li, K.; Jiang, K.J. Sub-Doppler cooling of rubidium 87 atoms using decompressed magneto-optical trap technique. J. Quantum Electron. 2018, 35, 308–312. [Google Scholar]
- Metcalf, H.J.; van der Straten, P. Laser cooling and trapping of atoms. J. Opt. Soc. Am. B 2003, 20, 887. [Google Scholar] [CrossRef]
- Gibble, K.E.; Kasapi, S.; Chu, S. Improved magneto-optic trapping in a vapor cell. Opt. Lett. 1992, 17, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Steane, A.M.; Chowdhury, M.; Foot, C.J. Radiation force in the magneto-optical trap. J. Opt. Soc. Am. B 1992, 9, 2142. [Google Scholar] [CrossRef]
- Gabbanini, C.; Evangelista, A.; Gozzini, S.; Lucchesini, A.; Fioretti, A.; Müller, J.H.; Colla, M.; Arimondo, E. Scaling laws in magneto-optical traps. Europhys. Lett. (EPL) 1997, 37, 251–256. [Google Scholar] [CrossRef]
- Edwards, N.H.; Cooper, C.J.; Zetie, K.P.; Foot, C.J.; Steane, A.M.; Szriftgiser, P.; Perrin, H.; Dalibard, J.; Townsend, C.G. Phase-space density in the magneto-optical trap. Phys. Rev. A 1995, 52, 1423–1440. [Google Scholar]
- Lett, P.D.; Watts, R.N.; Westbrook, C.I.; Phillips, W.D.; Gould, P.L.; Metcalf, H.J. Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 1988, 61, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hou, X.K.; Lu, F.F.; Hao, L.L.; He, J.; Wang, J.M. Equivalent temperature measurement of cold atomic samples using a simplified time-of-flight fluorescence imaging method. J. Quantum Opt. 2022, 28, 223–230. [Google Scholar]
- Ketterle, W.; Davis, K.B.; Joffe, M.A.; Martin, A.; Pritchard, D.E. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 1993, 70, 2253–2256. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.; Feng, P.; Hoffmann, D.; Williamson, R.S. Spin-polarized spontaneous-force atom trap. Phys. Rev. Lett. 1992, 69, 2168–2171. [Google Scholar] [CrossRef] [PubMed]
- Camposeo, A.; Piombini, A.; Cervelli, F.; Tantussi, F.; Fuso, F.; Arimondo, E. A cold cesium atomic beam produced out of a pyramidal funnel. Opt. Commun. 2001, 200, 231–239. [Google Scholar] [CrossRef]
- Bowden, W.; Hobson, R.; Hill, I.R.; Vianello, A.; Schioppo, M.; Silva, A.; Margolis, H.S.; Baird, P.; Gill, P. A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock. Sci. Rep. 2019, 9, 11704. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Lee, K.I.; Noh, H.R.; Jhe, W.; Ohtsu, M. Atom trap in an axicon mirror. Opt. Lett. 1997, 22, 117. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.I.; Kim, J.A.; Noh, H.R.; Jhe, W. Single-beam atom trap in a pyramidal and conical hollow mirror. Opt. Lett. 1996, 21, 1177. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, S.; Easwaran, R.K. Theoretical design for generation of slow light in a two-dimensional magneto optical trap using electromagnetically induced transparency. Appl. Opt. 2017, 56, 3817–3823. [Google Scholar] [CrossRef] [PubMed]
- Hummon, M.T.; Yeo, M.; Stuhl, B.K.; Collopy, A.L.; Xia, Y.; Ye, J. 2D Magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 2013, 110, 143001. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Serrano, J.; Yu, N.; Kohel, J.M.; Kellogg, J.R.; Maleki, L. Multistage two-dimensional magneto-optical trap as a compact cold atom beam source. Opt. Lett. 2006, 31, 682–684. [Google Scholar] [CrossRef] [PubMed]
- Yun, M.; Yin, J. Practical scheme to realize 2D array of BECs on an atom chip: Novel 2D magneto-optical and magnetic lattices. Opt. Express 2006, 14, 2539–2551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, J.F.; Liu, C.; Zhou, S.; Loy, M.M.; Wong, G.K.; Du, S. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth. Rev. Sci. Instrum. 2012, 83, 073102. [Google Scholar] [CrossRef] [PubMed]
- Barry, J.F.; McCarron, D.J.; Norrgard, E.B.; Steinecker, M.H.; DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 2014, 512, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Monroe, C.; Swann, W.; Robinson, H.; Wieman, C. Very cold trapped atoms in a vapor cell. Phys. Rev. Lett. 1990, 65, 1571–1574. [Google Scholar] [CrossRef]
- Freier, C.; Hauth, M.; Schkolnik, V.; Leykauf, B.; Schilling, M.; Wziontek, H.; Scherneck, H.; Müller, J.; Peters, A. Mobile quantum gravity sensor with unprecedented stability. J. Phys. Conf. Ser. 2016, 723, 012050. [Google Scholar] [CrossRef]
- Hauth, M.; Freier, C.; Schkolnik, V.; Senger, A.; Schmidt, M.; Peters, A. First gravity measurements using the mobile atom interferometer GAIN. Appl. Phys. B 2013, 113, 49–55. [Google Scholar] [CrossRef]
- Bidel, Y.; Zahzam, N.; Blanchard, C.; Bonnin, A.; Cadoret, M.; Bresson, A.; Rouxel, D.; Lequentrec-Lalancette, M.F. Absolute marine gravimetry with matter-wave interferometry. Nat. Commun. 2018, 9, 6172. [Google Scholar] [CrossRef]
- Bidel, Y.; Zahzam, N.; Bresson, A.; Blanchard, C.; Cadoret, M.; Olesen, A.V.; Forsberg, R. Absolute airborne gravimetry with a cold atom sensor. Geodesy 2020, 94, 1–9. [Google Scholar] [CrossRef]
- Li, Z.Y.; Hu, M.Z.; Wang, Y.; Liu, Z.W.; Wu, Y.L.; Zhang, X.L.; Wang, J.P.; Wang, J.; Li, F. Field test results of a domestic rubidium atomic absolute gravimeter. Proc. Chin. Jt. Annu. Geosci. Conf. 2021, 29, 1. [Google Scholar]
- Shimizu, F.; Shimizu, K.; Takuma, H. Laser cooling and trapping of Ne metastable atoms. Phys. Rev. A 1989, 39, 2758–2760. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, F.; Shimizu, K.; Takuma, H. Four-beam laser trap of neutral atoms. Opt. Lett. 1991, 16, 339. [Google Scholar] [CrossRef]
- Arlt, J.; Bance, P.; Hopkins, S.; Martin, J.; Webster, S.; Wilson, A.; Zetie, K.; Foot, C.J. Suppression of collisional loss from a magnetic trap. J. Phys. B At. Mol. Opt. Phys. 1998, 31, L321–L327. [Google Scholar] [CrossRef]
- di Stefano, A.; Wilkowski, D.; Müller, J.H.; Arimondo, E. Five-beam magneto-optical trap and optical molasses. Appl. Phys. B 1999, 69, 263–268. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, C.; Chen, P.; Cheng, B.; Zhu, D.; Wang, K.; Wang, X.; Wu, B.; Qiao, Z.; Lin, Q.; et al. A Testing Method for Shipborne Atomic Gravimeter Based on the Modulated Coriolis Effect. Sensors 2023, 23, 881. [Google Scholar] [CrossRef] [PubMed]
- Che, H.; Li, A.; Fang, J.; Ge, G.; Gao, W.; Zhang, Y.; Liu, C.; Xu, J.N.; Chang, L.B.; Huang, C.F.; et al. Experimental study on shipboard dynamic absolute gravity measurement based on cold atomic gravimeter. J. Phys. 2022, 71, 148–156. [Google Scholar]
- Geiger, R.; Ménoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; et al. Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2011, 2, 474. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, Y.; Cheng, B.; Zhu, D.; Wang, K.N.; Zhu, X.X.; Chen, P.J.; Weng, K.X.; Yang, Q.H.; Lin, J.H.; et al. Vehicle-mounted static absolute gravity measurements based on an atomic gravimeter. J. Phys. 2020, 69, 25–32. [Google Scholar]
- Cheng, B.; Chen, P.J.; Zhou, Y.; Wang, K.N.; Zhu, D.; Chu, L.; Weng, K.X.; Wang, H.L.; Peng, S.P.; Wang, X.L.; et al. Absolute gravity dynamical mobility measurement experiment based on cold atomic gravimeter. J. Phys. 2022, 71, 247–257. [Google Scholar]
- Zhang, X.; Zhong, J.; Tang, B.; Chen, X.; Zhu, L.; Huang, P.; Wang, J.; Zhan, M. Compact portable laser system for mobile cold atom gravimeters. Appl. Opt. 2018, 57, 6545–6551. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Zhang, H.; Zhang, K.; Duan, X.C.; Hu, Z.K.; Chen, L.L.; Zhou, M.K. A compact laser system for a portable atom interferometry gravimeter. Rev. Sci. Instrum. 2019, 90, 043104. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Hu, J.; Chen, X.; Zhu, H.; Zhou, L.; Zhong, J.; Wang, J.; Zhan, M. Realization of a compact one-seed laser system for atom interferometer-based gravimeters. Opt. Express 2018, 26, 1586–1596. [Google Scholar] [CrossRef] [PubMed]
- Sabulsky, D.O.; Junca, J.; Lefèvre, G.; Zou, X.; Bertoldi, A.; Battelier, B.; Prevedelli, M.; Stern, G.; Santoire, J.; Beaufils, Q.; et al. A fibered laser system for the MIGA large scale atom interferometer. Sci. Rep. 2020, 10, 3268. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wang, Q.; Yan, S.; Hou, Z.; He, C.; Ji, Y.; Li, Z.; Jiang, J.; Qiao, B.; Zhou, L.; et al. Modular-assembled laser system for a long-baseline atom interferometer. Appl. Opt. 2022, 61, 4648–4654. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.S.; Riis, E. Laser cooling and trapping of neutral atoms. Prog. Quant. Electron. 1997, 21, 1–79. [Google Scholar] [CrossRef]
- Lu, Z.T.; Corwin, K.L.; Renn, M.J.; Anderson, M.H.; Cornell, E.A.; Wieman, C.E. Low-Velocity Intense Source of Atoms from a Magneto-optical Trap. Phys. Rev. Lett. 1996, 77, 3331–3334. [Google Scholar] [CrossRef] [PubMed]
- Williamson, R.; Voytas, P.; Newell, R.; Walker, T. A magneto-optical trap loaded from a pyramidal funnel. Opt. Express 1998, 3, 111–117. [Google Scholar] [CrossRef]
- Arlt, J.J.; Maragò, O.; Webster, S.; Hopkins, S.; Foot, C.J. A pyramidal magneto-optical trap as a source of slow atoms. Opt. Commun. 1998, 157, 303–309. [Google Scholar] [CrossRef]
- Kohel, J.M.; Ramirez-Serrano, J.; Thompson, R.J.; Maleki, L.; Bliss, J.L.; Libbrecht, K.G. Generation of an intense cold-atom beam from a pyramidal magneto-optical trap: Experiment and simulation. J. Opt. Soc. Am. B 2003, 20, 1161. [Google Scholar] [CrossRef]
- Bodart, Q.; Merlet, S.; Malossi, N.; Dos Santos, F.P.; Bouyer, P.; Landragin, A. A cold atom pyramidal gravimeter with a single laser beam. Appl. Phys. Lett. 2010, 96, 134101. [Google Scholar] [CrossRef]
- Kasevich, M.; Weiss, D.S.; Riis, E.; Moler, K.; Kasapi, S.; Chu, S. Atomic velocity selection using stimulated Raman transitions. Phys. Rev. Lett. 1991, 66, 2297–2300. [Google Scholar] [CrossRef] [PubMed]
- Lautier, J.; Landragin, A.; Battelier, B.; Bouyer, P. MiniAtom: Realization of an Absolute Compact Atomic Gravimeter; IEEE: New York, NY, USA, 2013; pp. 448–449. [Google Scholar]
- Louchet-Chauvet, A.; Farah, T.; Bodart, Q.; Clairon, A.; Landragin, A.; Merlet, S.; Santos, F.P.D. The influence of transverse motion within an atomic gravimeter. New J. Phys. 2011, 13, 065025. [Google Scholar] [CrossRef]
- Ménoret, V.; Vermeulen, P.; Le Moigne, N.; Bonvalot, S.; Bouyer, P.; Landragin, A.; Desruelle, B. Gravity measurements below 10–9 g with a transportable absolute quantum gravimeter. Sci. Rep. 2018, 8, 12300. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Weiner, S.; Pagel, Z.; Malek, B.S.; Muller, H. Mobile Quantum Gravimeter with a Novel Pyramidal Magneto-Optical Trap. In Proceedings of the CLEO, Washington, DC, USA, 10–15 May 2020; pp. 1–2. [Google Scholar]
- Wu, X.; Pagel, Z.; Malek, B.S.; Nguyen, T.H.; Zi, F.; Scheirer, D.S.; Muller, H. Gravity surveys using a mobile atom interferometer. Sci. Adv. 2019, 5, eaax0800. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zi, F.; Dudley, J.; Bilotta, R.J.; Canoza, P.; Müller, H. Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap. Optica 2017, 4, 1545. [Google Scholar] [CrossRef]
- Dieckmann, K.; Spreeuw, R.J.C.; Weidemüller, M.; Walraven, J.T.M. Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 1998, 58, 3891–3895. [Google Scholar] [CrossRef]
- Zeng, D.J.; Huang, M.; Zhang, H.; Huang, K.K.; Lu, X.H. A two-dimensional cold atomic beam system for increasing the loading rate of three-dimensional magneto-optical traps. Infrared Laser Eng. 2019, 48, 73–78. [Google Scholar]
- Wang, K.N.; Xu, H.; Zhou, Y.; Xu, Y.P.; Song, W.; Tang, H.Z.; Wang, Q.W.; Zhu, D.; Weng, K.X.; Wang, H.L.; et al. Rapid mapping of absolute gravity in the external field based on a vehicle-mounted atomic gravimeter. J. Phys. 2022, 71, 347–356. [Google Scholar]
- Jin, S.; Gao, J.; Chandrashekara, K.; Gölzhäuser, C.; Schöner, J.; Chomaz, L. A 2D MOT of dysprosium atoms as a compact source for efficient loading of a narrow-line 3D MOT. arXiv 2023, arXiv:2303.05191. [Google Scholar]
- Zhang, Y.; Liu, Q.; Sun, J.; Xu, Z.; Wang, A. Enhanced cold mercury atom production with two-dimensional magneto-optical trap. Chin. Phys B 2022, 31, 073701. [Google Scholar] [CrossRef]
- Eriksson, S.; Trupke, M.; Powell, H.F.; Sahagun, D.; Sinclair, C.D.J.; Curtis, E.A.; Sauer, B.E.; Hinds, E.A.; Moktadir, Z.; Gollasch, C.O.; et al. Integrated optical components on atom chips. Eur. Phys. J. D 2005, 35, 135–139. [Google Scholar] [CrossRef]
- Trupke, M.; Ramirez-Martinez, F.; Curtis, E.A.; Ashmore, J.P.; Eriksson, S.; Hinds, E.A.; Moktadir, Z.; Gollasch, C.; Kraft, M.; Vijaya Prakash, G.; et al. Pyramidal micromirrors for microsystems and atom chips. Appl. Phys. Lett. 2006, 88, 071116. [Google Scholar] [CrossRef]
- Blumenthal, D.J. Photonic integration for UV to IR applications. APL Photonics 2020, 5, 020903. [Google Scholar] [CrossRef]
- Pollock, S.; Cotter, J.P.; Laliotis, A.; Hinds, E.A. Integrated magneto-optical traps on a chip. Opt. Express 2009, 17, 14109. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.N.; Moktadir, Z.; Gollasch, C.; Kraft, M.; Pollock, S.; Ramirez-Martinez, F.; Ashmore, J.P.; Laliotis, A.; Trupke, M.; Hinds, E.A. Fabrication of Magnetooptical Atom Traps on a Chip. J. Microelectromech. Syst. 2009, 18, 347–353. [Google Scholar] [CrossRef]
- Vangeleyn, M.; Griffin, P.F.; Riis, E.; Arnold, A.S. Single-laser, one beam, tetrahedral magneto-optical trap. Opt. Express 2009, 17, 13601–13608. [Google Scholar] [CrossRef]
- Lee, J.; Grover, J.A.; Orozco, L.A.; Rolston, S.L. Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap. J. Opt. Soc. Am. B 2013, 30, 2869. [Google Scholar] [CrossRef]
- McGilligan, J.P.; Griffin, P.F.; Elvin, R.; Ingleby, S.J.; Riis, E.; Arnold, A.S. Grating chips for quantum technologies. Sci. Rep. 2017, 7, 387. [Google Scholar] [CrossRef]
- Barker, D.S.; Norrgard, E.B.; Klimov, N.N.; Fedchak, J.A.; Scherschligt, J.; Eckel, S. Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating. Phys. Rev. Appl. 2019, 11, 064023. [Google Scholar] [CrossRef]
- McGehee, W.R.; Zhu, W.; Barker, D.S.; Westly, D.; Yulaev, A.; Klimov, N.; Agrawal, A.; Eckel, S.; Aksyuk, V.; McClelland, J.J. Magneto-optical trapping using planar optics. New J. Phys. 2021, 23, 013021. [Google Scholar] [CrossRef]
- Earl, L.; Vovrosh, J.; Wright, M.; Roberts, D.; Winch, J.; Perea-Ortiz, M.; Lamb, A.; Hayati, F.; Griffin, P.; Metje, N.; et al. Demonstration of a Compact Magneto-Optical Trap on an Unstaffed Aerial Vehicle. Atoms 2022, 10, 32. [Google Scholar] [CrossRef]
- Lee, J.; Ding, R.; Christensen, J.; Rosenthal, R.R.; Ison, A.; Gillund, D.P.; Bossert, D.; Fuerschbach, K.H.; Kindel, W.; Finnegan, P.S.; et al. A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system. Nat. Commun. 2022, 13, 5131. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Liu, X.; Zhou, Y.; Xu, X.; Chen, L.; Zou, C.; Zhu, Z.; Yu, Z.; Ru, N.; Qu, J. High diffraction efficiency grating atom chip for magneto-optical trap. Opt. Commun. 2022, 513, 128087. [Google Scholar] [CrossRef]
- Huang, C.; Xu, X.; Zhang, Y.; Ma, D.; Lu, Z.; Wang, Z.; Chen, G.; Zhang, J.; Tang, H.X.; Dong, C.; et al. Planar-Integrated Magneto-Optical Trap. Phys. Rev. Appl. 2022, 17, 034031. [Google Scholar]
- Burrow, O.S.; Osborn, P.F.; Boughton, E.; Mirando, F.; Burt, D.P.; Griffin, P.F.; Arnold, A.S.; Riis, E. Stand-alone vacuum cell for compact ultracold quantum technologies. Appl. Phys. Lett. 2021, 119, 124002. [Google Scholar] [CrossRef]
- Trimeche, A.; Battelier, B.; Becker, D.; Bertoldi, A.; Bouyer, P.; Braxmaier, C.; Charron, E.; Corgier, R.; Cornelius, M.; Douch, K.; et al. Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. Class. Quant Grav 2019, 36, 215004. [Google Scholar] [CrossRef]
- Loriani, S.; Schlippert, D.; Schubert, C.; Abend, S.; Ahlers, H.; Ertmer, W.; Rudolph, J.; Hogan, J.M.; Kasevich, M.A.; Rasel, E.M.; et al. Atomic source selection in space-borne gravitational wave detection. New J. Phys. 2019, 21, 63030. [Google Scholar] [CrossRef]
- Nshii, C.C.; Vangeleyn, M.; Cotter, J.P.; Griffin, P.F.; Hinds, E.A.; Ironside, C.N.; See, P.; Sinclair, A.G.; Riis, E.; Arnold, A.S. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies. Nat. Nanotechnol. 2013, 8, 321–324. [Google Scholar] [CrossRef]
- Elvin, R.; Hoth, G.W.; Wright, M.; Lewis, B.; McGilligan, J.P.; Arnold, A.S.; Griffin, P.F.; Riis, E. Cold-atom clock based on a diffractive optic. Opt. Express 2019, 27, 38359. [Google Scholar] [CrossRef]
- Franssen, J.G.H.; de Raadt, T.C.H.; van Ninhuijs, M.A.W.; Luiten, O.J. Compact ultracold electron source based on a grating magneto-optical trap. Phys. Rev. Accel. Beams 2019, 22, 023401. [Google Scholar] [CrossRef]
- Eckel, S.; Barker, D.S.; Fedchak, J.A.; Klimov, N.N.; Norrgard, E.; Scherschligt, J.; Makrides, C.; Tiesinga, E. Challenges to miniaturizing cold atom technology for deployable vacuum metrology. Metrologia 2018, 55, S182–S193. [Google Scholar] [CrossRef]
- Bondza, S.; Lisdat, C.; Kroker, S.; Leopold, T. Two-Color Grating Magneto-Optical Trap for Narrow-Line Laser Cooling. Phys. Rev. Appl. 2022, 17, 044002. [Google Scholar] [CrossRef]
- Imhof, E.; Stuhl, B.K.; Kasch, B.; Kroese, B.; Olson, S.E.; Squires, M.B. Two-dimensional grating magneto-optical trap. Phys. Rev. A 2017, 96, 033636. [Google Scholar] [CrossRef]
- Sitaram, A.; Elgee, P.K.; Campbell, G.K.; Klimov, N.N.; Eckel, S.; Barker, D.S. Confinement of an alkaline-earth element in a grating magneto-optical trap. Rev. Sci. Instrum. 2020, 91, 103202. [Google Scholar] [CrossRef] [PubMed]
- Rushton, J.A.; Aldous, M.; Himsworth, M.D. Contributed Review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology. Rev. Sci. Instrum. 2014, 85, 121501. [Google Scholar] [CrossRef] [PubMed]
- Keil, M.; Amit, O.; Zhou, S.; Groswasser, D.; Japha, Y.; Folman, R. Fifteen years of cold matter on the atom chip: Promise, realizations, and prospects. J. Mod. Opt. 2016, 63, 1840–1885. [Google Scholar] [CrossRef] [PubMed]
- Birkl, G.; Buchkremer, F.B.J.; Dumke, R.; Ertmer, W. Atom optics with microfabricated optical elements. Opt. Commun. 2001, 191, 67–81. [Google Scholar] [CrossRef]
Year | Institution | Type | Results | Reference |
---|---|---|---|---|
2009 | Imperial College London Blackett Laboratory | PMOT | Pollock et al. [86,87] | |
2009 | University of Strathclyde | PMOT | atoms | Vangeleyn et al. [88] |
2013 | University of Maryland | PMOT | Lee et al. [89] | |
2017 | University of Strathclyde | GMOT | in 10 ms | McGilligan et al. [90] |
2019 | National Institute of Standards and Technology in Maryland | GMOT | atoms | Barker et al. [91] |
2021 | University of Maryland | GMOT | in 0.25s | McGehee et al. [92] |
2022 | University of Birmingham | PMOT | cold atoms | Earl et al. [93] |
2022 | Sandia National Laboratories | GMOT |
atomic | Lee et al. [94] |
2022 | China Academy of Metrology | GMOT | atoms | Duan et al. [95] |
2022 | China Academy of Metrology | GMOT | atoms | Duan et al. [96] |
Type | Advantages | Disadvantages | Use Cases |
---|---|---|---|
Six-beam MOT [44,45,46,47,48,49] | High number of cold atoms and low temperature. | Large size, complex optical path. | Scientific research institutes, schematical prototypes. |
Four-beam MOT [50,51] | Captures more atoms in less time. | Difficult beam adjustment. | Used in conjunction with a slower Zeeman coil for efficient atom trapping. |
Five-beam MOT [52,53] | Insensitive to laser beam phase fluctuations. | Low cold atom number. | Removal of the cooled atoms from the cooling beam for other studies. |
Single-beam MOT [74,75,76] | Pre-cooling of atoms, small size for dynamic measurements. | Difficult mirror surface processing. | Field dynamic measurements, used with six-beam to produce cold atomic beams. |
2D-MOT [78,79,80] | Pre-cooling of atoms. | Unsatisfactory cold atom preparation. | Used in conjunction with 3D MOTs to produce cold atomic beams. |
PMOT [85,86,87,88] | Very compact size. | Etch depth limits the number of cold atoms. | Integrated cold atom sensor. |
GMOT [93,94,95] | Large optical overlap volume, very compact size. | Low grating diffraction efficiency. | Miniaturized cold atom system. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Li, A.; Li, D.; Yan, J. Magneto-Optical Traps for Cold Atomic Gravimetry: Research Status and Development Trends. Appl. Sci. 2023, 13, 6076. https://doi.org/10.3390/app13106076
Xu R, Li A, Li D, Yan J. Magneto-Optical Traps for Cold Atomic Gravimetry: Research Status and Development Trends. Applied Sciences. 2023; 13(10):6076. https://doi.org/10.3390/app13106076
Chicago/Turabian StyleXu, Rui, An Li, Dongyi Li, and Jiujiang Yan. 2023. "Magneto-Optical Traps for Cold Atomic Gravimetry: Research Status and Development Trends" Applied Sciences 13, no. 10: 6076. https://doi.org/10.3390/app13106076
APA StyleXu, R., Li, A., Li, D., & Yan, J. (2023). Magneto-Optical Traps for Cold Atomic Gravimetry: Research Status and Development Trends. Applied Sciences, 13(10), 6076. https://doi.org/10.3390/app13106076